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Computer systems’ prevalence in
almost every aspect of society has profound
implications for computer system designers.
With the number of computers in use (the
industry is shipping about a quarter billion
CPUs a year just for PCs and servers), their
energy efficiency has a significant impact on
the economy and the environment. On a
smaller scale, high energy consumption in
modern microprocessors complicates many
system design issues, such as battery life, heat
dissipation, and electricity delivery.

High-end processors typically incorporate
powerful branch predictors consisting of many
large structures that together consume a large
portion of total chip power. Depending on the
application, some of these structures are under-
utilized for long periods or contribute nothing

to the prediction. This results in energy waste
and high power consumption. Here, we pro-
pose to gauge branch prediction demand and
dynamically adjust prediction resources accord-
ingly. Specifically, we customize the size of the
branch target buffer (BTB) and the composi-
tion of the hybrid direction predictor for each
code section. To gauge branch prediction
demand, we use a profile-based approach that
incurs little runtime overhead and results in
simple and straightforward architectural sup-
port. The approach is also very accurate because
of program behavior repetition.

We focus on reducing branch prediction
energy consumption in high-performance
processors by dynamically reducing the branch
predictor’s complexity. To clarify our concept
of complexity, we informally classify it into two
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categories: Design complexity describes the
design’s static, conceptual complexity—that
is, how difficult it is to understand, verify, and
test the design. Operational complexity
describes a more dynamic aspect of the
design—the extent of the circuit (the number
of components or the magnitude of capacitive
load) that is actively switching to perform a
particular operation. Operational complexity
relates directly to energy consumption.

Although the two concepts are correlated,
they do not necessarily change in the same
direction. In fact, there is a somewhat intrin-
sic tradeoff between the two types of com-
plexity, especially for high-performance
architectures. To maintain certain perfor-
mance levels, queues or buffers must be very
large. As their size increases, these structures
are more often designed as clusters or hierar-
chies of smaller components rather than large,
monolithic structures.1 This type of design
reduces operational complexity at the expense
of some extra design complexity.

Gating is another typical method of reduc-
ing operational complexity, albeit dynamically.
With gating, all the active circuit components
contribute to energy consumption, but not all
of them actually contribute to the operation.
For example, in a typical set-associative cache,
multiple data and tag ways are accessed in par-
allel. Although one cache way at most contains
the data of interest, energy is spent in all cache
ways. Explicitly separating (or gating) non-
contributing segments from the rest of the cir-
cuit reduces operational complexity in terms
of capacitive load or switching activity. How-
ever, the circuitry that handles the gating adds
to design complexity and thus should be very
simple. An example of this separation is clock
gating, a technique used extensively in recent
systems. This technique consists of gating the
clock signal at a certain level of noncontribut-
ing functional blocks to prevent the circuit
downstream from switching and consuming
energy. However, clock gating sometimes
requires extra clock buffer and control signals,
which can potentially negate the energy sav-
ings if the gating is too fine grained.

We have developed a technique in which we
apply structure resizing and access gating to cre-
ate a customized branch predictor. Branch pre-
diction is a key technology in exploiting
instruction-level parallelism. Modern high-end

processors use an array of tables for branch
direction and destination prediction.2 These
tables are large (more than 350,000 bits just for
the direction predictors in the Alpha EV8) and
are accessed every cycle. This high operational
complexity causes significant energy consump-
tion: In certain cases, branch prediction
accounts for more than 10 percent of total chip
power. High prediction accuracy is essential to
high performance and energy efficiency. Mis-
predictions cause the processor to waste energy
executing wrong path instructions. They also
increase execution time and related energy over-
head such as energy for clock distribution.

However, always using the branch predic-
tor’s maximum configuration, regardless of
application demands, is not energy efficient.
Consider a loop-based application with a very
regular control flow: A simple branch predic-
tor—or even simply predicting all branches
taken—would work just as well as a complex
hybrid predictor. Our idea is to bring the gen-
eral principle of on-demand resource alloca-
tion to branch prediction by using software
to customize the predictor according to its
resource demands. To achieve this goal with
little added energy overhead or design com-
plexity, we propose a design that moves the
responsibility of identifying and expressing
resource demands to software components.

This on-demand branch prediction, which
we call adaptive branch prediction, incurs two
types of overhead: reconfiguration overhead
and energy waste incurred by increased mis-
speculation due to weaker predictor configu-
rations. To reduce such overhead, we adopt a
feedback-based approach. We divide an appli-
cation into smaller units called modules, char-
acterize their branch prediction demand
through profiling, and then instrument the
application to dynamically reconfigure the
predictor. The benefit is twofold: First,
because characterization and decision making
take place offline, this approach incurs little
runtime reconfiguration overhead and adds
little to the processor’s design complexity. Sec-
ond, because of the modules’ behavior repeti-
tion, the hardware receives accurate demand
information, which leads to a highly efficient
reduction of operational complexity.

Branch predictor reconfiguration
To reconfigure the branch predictor at the
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circuit level, we use access gating to reduce
ineffectual circuit switching and table resiz-
ing to reduce the capacitive load. There are
other ways to reconfigure the branch predic-
tor. We focus on these two generic, straight-
forward methods, mainly to demonstrate the
effectiveness of our overall approach. Modern
branch predictors contain numerous table
structures, and there are many ways to apply
the access-gating and resizing techniques to
different tables. To limit our exploration, we
use a specific circuit-level technique from each
category. For access gating, we use a simple
extension to the direction predictor. For table
resizing, we focus on the BTB and apply Yang
et al.’s technique,3 one of many for reconfig-
uring cache-like structures.4

Adaptive hybrid predictor
Our baseline direction predictor is a

dealiased hybrid predictor named 2Bc-gskew-
pskew.5 Like many other hybrid predictors,
this one accesses various prediction tables, and
the resulting predictions go through majori-
ty voting—sometimes a series of majority
votes. For certain branches, a vote from a spe-
cific prediction table or tables can be more
accurate than a majority vote. Metatables are
designed to decide which vote prevails.

To reduce energy waste in accessing multi-
ple tables, we disable tables that do not
contribute much prediction accuracy im-
provement. As Figure 1 shows, we decompose
the baseline predictor into three components:
gskew, pskew, and bimodal. We use control
signalsGEN andPEN to disable gate access-

es to the gskew and pskew components. We
can wire the signals to a special control regis-
ter and set or clear them with special register
load instructions. Once this mechanism dis-
ables a subset of tables, the tables remain inac-
tive until enabled again. When a certain
component is disabled, related metatables may
become irrelevant and can be disabled as well.
For example, when PEN is asserted, the
pskew component and metatable Meta2 are
gated, and the rest of the tables essentially
form a gskew predictor.

We do not gate the bimodal component
because it also supports majority voting in
the other two components and does not con-
sume a significant amount of energy. More-
over, having only two control signals
simplifies the circuitry.

In theory, it is possible to gate accesses to
branch prediction tables for every prediction
by using the metatables to allow accesses only
to tables whose predictions will be selected.
This saves the energy wasted in accessing
tables whose predictions will be disregarded
anyway. In practice, this does not work well
because it sequences accesses to the metatable
and the prediction tables, significantly slow-
ing branch prediction.

Adaptive BTB
Accurate branch direction prediction is not

enough; without the target address, instruc-
tion fetch cannot proceed after predicted-
taken branches. The BTB helps provide the
target address quickly. Increasing the BTB’s
size and associativity helps reduce conflict and
capacity misses. However, for certain applica-
tions, large size can be wasteful. For example,
the compress benchmark in the SPEC95 suite
has only 46 static branch instructions.2 There-
fore, we resize the BTB on the fly. The BTB
is similar to a normal data cache in terms of
organization and access. There are several
schemes for resizing caches and circuitry to
perform the resizing. In particular, the asso-
ciativity,4 the number of sets,3 or the two com-
bined can be adjusted dynamically. These
schemes’ effectiveness depends on the partic-
ular cache structure organization. In our case,
dynamically varying the number of sets of our
baseline BTB is more effective than changing
BTB ways.6 We use instructions to select the
desired size (a power of two) through special
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control registers, which trigger hardware to
adjust the BTB accordingly.

In the context of data caches, resizing neces-
sitates flushing blocks or other mechanisms
to maintain coherence. In our case, flushing is
not necessary because the information stored
in any prediction table affects only perfor-
mance and energy, not program execution
correctness.

Control policy: profiling approach
Adaptive architecture is a promising tech-

nology for meeting applications’ diverse and
dynamic resource demands efficiently. Never-
theless, managing the adaptation of branch pre-
dictors is a challenging task. We must balance
costs and benefits carefully. We can switch to a
less power-hungry branch predictor configu-
ration only if the switch causes minimum
degradation of prediction accuracy. Processing
wrong path instructions causes potentially far
more energy waste in other parts of the proces-
sor than is saved in the branch predictor.
Another problem is that any extra hardware for
keeping track of and predicting branch pre-
diction demand will itself consume extra ener-
gy, directly cutting savings. Consequently, we
use a profile-based feedback mechanism to esti-
mate branch prediction demand without incur-
ring runtime overhead.

Module selection. We statically partition the
code into smaller sections, called modules. A
module is the smallest unit to which we apply
branch prediction reconfiguration. We tie
branch predictor reconfiguration to the static
code because, intuitively, the code strongly
affects branch prediction demand. After all,
the predictor uses an instruction address,
exclusively or inclusively, to index almost every
table. Also, the runtime characteristics of
branches (and thus the appropriate branch pre-
dictors) do not change much. Certain branch-
es are strongly biased; others correlate with
other branches. Finally, our prior research has
shown that tying behavior prediction, and thus
adaptivity control, to the code’s position is gen-
erally more effective than time-based predic-
tion and control mechanisms.7

A module’s granularity is also important. If a
module is too fine grained, the reconfiguration
overhead at runtime will be large, reducing ener-
gy savings. If it is too coarse grained, it can con-

tain smaller units with different demands on
the branch predictor. Here, we select important
subroutines as modules. Our experience shows
that typical programs are well structured, and
performing adaptations at subroutine bound-
aries is a good engineering solution. To reduce
reconfiguration overhead, we use two thresh-
olds in selecting subroutines: average length per
invocation, Thgrain, and total execution time
weight, Thweight. We set these thresholds to 1
microsecond and 5 percent, respectively. We
treat the subroutines not selected as extended
portions of their dynamic callers.

Per-module exploration. After identifying the
module boundaries, we perform profiling to
determine each module’s demand for predic-
tion resources, using a training input. We use
a straightforward approach, running the appli-
cation multiple times to directly measure the
performance and energy effect of different pre-
dictor configurations for each module. Dur-
ing this stage, we can obtain the energy and
performance metrics by various methods: soft-
ware instrumentation, simulation, or using
hardware counters. In a naive implementation,
we would exhaustively search the space, cov-
ering all combinations of configurations for
each module. But this is impractical because
it would require nm profiling runs, where n is
the number of possible branch prediction con-
figurations and m is the number of modules.

Several approximations can greatly reduce
the number of experiments. First and foremost,
we assume that choosing a different prediction
configuration for one module does not affect
other modules, and that the impact of recon-
figuring different modules is additive. Under
this assumption, the number of experiments in
the profiling stage decreases to around n × m,
significantly fewer than the naive solution. The
assumption ignores the effect of destructive or
constructive interference among different mod-
ules. This interference tends to be secondary
unless the size becomes very small. As we
explain later, moderate resizing and access gat-
ing provide the most benefits, and thus we will
not likely select very small sizes. Similarly, we
treat the adaptive BTB and hybrid predictor as
two independent reconfigurations whose effects
are additive.

Second, as we progressively reduce branch
prediction resources, performance degradation
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increases and energy savings decrease for each
module. Thus, we can stop exploration of the
next-lower configuration if the current relative
improvement in energy savings falls below a
certain threshold (for example, 0.1 percent of
total processor energy consumption), or if per-
formance degradation goes above a certain
threshold (we set it to 0.5 percent of total exe-
cution time in this article). This helps prune
out unpromising configurations.

Choosing the configurations. After per-module
exploration, we can obtain the best configura-
tions by solving the knapsack problem.8 How-
ever, we don’t try to solve the problem exactly.
Rather, we approximate the best solution using
the simple greedy strategy. In this case, the tol-
erable performance degradation is the knapsack’s
capacity, and the total energy savings is the value
we want to maximize. We have a maximum of
m(nBTB + nHP) items to choose from; m is the
number of modules, and nBTB and nHP are the
numbers of possible states in the adaptive BTB
and the adaptive hybrid predictor. Each item,
uniquely identified by a module identification
and one of the nBTB possible BTB states or nHP

possible direction predictor states, represents the
additional energy savings and performance
degradation incurred by a module’s changing
from one state to the next most efficient state.

We use these incremental values in the knap-
sack problem. To obtain them, for each adap-
tive technique, we take the energy and
performance impact of all the states (for exam-
ple, nBTB), rank them according to energy sav-
ings per unit increase in execution time, and
subtract the energy and performance impact of
the state ranked immediately above. (To sim-

plify the math, if the performance degradation
of a state is negative, which is rare if even pos-
sible, we simply use a positive infinitesimal
value instead.) If, after the subtraction, the ener-
gy savings becomes negative, we remove the
state from the ranking. After this process, we
will be dealing with a list of pairs of incremen-
tal energy savings and performance degrada-
tion, both positive. (If, after the subtraction,
the energy savings is negative while perfor-
mance degradation is positive, going from the
previous to the current state causes energy waste
and slowdown, clearly undesirable. Also, if
energy savings and performance degradation
are negative after subtraction, the state is unde-
sirable and should be removed. Furthermore,
because the list is sorted by decreasing ratio of
energy savings to performance degradation,
there will not be a state in which additional per-
formance degradation is negative while addi-
tional energy savings is positive.)

Evaluation
We evaluated our proposed customized

branch predictor on a simulated, generic, out-
of-order processor, loosely modeled on a MIPS
R10000.9 The baseline branch predictor was a
2Bc-gskew-pskew predictor configured with

• two 4,096-entry metatables,
• a 4,096-entry bimodal table,
• a gskew component consisting of two

4,096-entry global history tables that use
10 bits of global history, and

• a pskew component consisting of a
1,024-entry local history table (8 bits
wide) and two 2,048-entry pattern his-
tory tables.
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Table 1. System configuration.

Processor Caches Bus and memory
Six-issue, 1-GHz, out-of-order L1 data cache: 32-Kbyte, 2-way, Front-side bus: 128-bit, 333-MHz
I-window size: 96 entries least-recently-used Memory: Two-channel Rambus
Units: 5 integer, 4 floating-point, Occupancy: 1; RT: 3 ns DRAM bandwidth: 3.2 Gbytes/s

2 load/store, 1 branch L2 cache: 512-Kbyte, 8-way, Memory RT: 108 ns
Pending loads: 16; stores: 16 pseudo-least-recently-used
Branch penalty: 8 cycles Occupancy: 4; RT: 12 ns
Return address stack entries: 32 Instruction cache: 32-Kbyte, 2-way
BTB: 2-way, 4,096 entries
Predictor: 2Bc-gskew-pskew

RT: contention-free round trip from the processor



Table 1 shows some of the simulated sys-
tem’s parameters. As the evaluation tool, we
use a heavily modified, execution-driven sim-
ulator, based on the MIPS Interpreter
(MINT), that models all resources’ contention
and occupancy.10 The simulator incorporates
the Wattch framework11 to evaluate energy
consumption. Our simulator accounts for
energy overhead induced by misspeculation.

To evaluate our approach for different types
of applications, we selected eight applications,
including multimedia (mp3dec), integer (bzip,
crafty, eon, mcf, and parser), and floating-point
applications (apsi and swim). The integer and
floating-point applications come from the
SPEC CPU2000 suite. In selecting applica-
tions, we tried to cover a wide variety of behav-
ior. Because it would require an enormous
number of simulations, we could not perform
our study on a complete benchmark suite.

We compiled the applications with the MIP-
SPro compiler, using proper optimizations. We
simulated each application to completion after
skipping the initialization phase, which we
identify manually. To make the simulations of
the SPEC CPU2000 applications more man-
ageable, we reduced the official SPEC ref input
set to serve as our default production input.12

For profiling (training), we used the SPEC test
input set for these applications. For the multi-
media application, we used random music and
voice clips as input sets. Simulation length
ranged from several hundred million to more
than 2.5 billion instructions.

Adaptive BTB
The adaptive BTB exploits the fact that

many BTB entries are underutilized. Figure 2
shows the relationship between BTB size and
the miss rate for different applications and for
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different modules in one application. Figure
2a shows that in some applications, such as
bzip, the BTB miss rate is almost independent
of BTB size, whereas other applications, such
as crafty, exhibit a significant increase in miss
rate for small BTB sizes. This demonstrates
the difference in demand at the application
level. In addition, as Figure 2b illustrates, BTB
demand also varies widely among different

modules in a given application. This suggests
that in some applications, many BTB entries
remain unused for long periods. In Figure 3,
we sort BTB entries by the number of access-
es to each entry. As the figure shows, a hand-
ful of entries are heavily accessed, whereas
many others are not.

We followed the profiling procedure outlined
earlier to characterize the energy and perfor-
mance impact of various BTB configurations,
using the training input set. Figure 4 illustrates
some results of this approach for the application
mp3dec. The horizontal axis shows the program’s
relative execution time increase; the vertical axis
shows the processor’s energy savings relative to
the total program’s energy consumption. We
observe the following: First, for certain modules,
moderate BTB resizing can produce relatively
significant energy reduction without incurring
much slowdown. In Figure 4, each of the three
selected configurations results in a total chip
energy reduction of about 1 percent, while incur-
ring a slowdown of only about 0.1 percent. Sec-
ond, beyond a certain size, further reducing BTB
size is counterproductive: When the BTB
becomes too small, misprediction-induced ener-
gy waste outweighs the BTB’s extra energy sav-
ings. This is demonstrated in Figure 4 by the
module whose curve bends downward, indicat-
ing that the next configuration incurs more slow-
down and reduces energy savings.

To demonstrate the effectiveness of BTB
resizing, we set up a 0.5 percent threshold for
tolerable performance degradation. We chose
such a small threshold to keep systemwide
energy overhead low. Using the profile infor-
mation and this threshold, our offline deci-
sion algorithm chose the configuration that
saves the most energy without going over the
threshold for each application and embedded
the decision into the application binaries. We
then performed two production runs, using
the training input and the production input.
Table 2 shows the results. The table does not
explicitly show the improvements in various
metrics such as ED (energy-delay product) or
ED2. However, because actual performance
degradation is generally very small, the
improvements in these metrics largely follow
the energy consumption reduction.

For each application, the two columns cor-
respond to the training and production input
sets used in the production runs. Each col-
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umn lists the relative energy savings in the
processor (–∆ETotal) and the branch predictor
(–∆EBP) and the relative increase in total exe-
cution time (∆T). This table shows that
dynamically changing BTB size can be prof-
itable: It can save 20 to 70 percent of energy
spent in the branch predictor and up to 8.6
percent of total chip energy, with very little
performance degradation.

Adaptive hybrid predictor
Just as the demand on the BTB varies both

within and across applications, the demand
on the direction predictor’s strength also
varies. Figure 5 shows the misprediction rate
for predictor configurations ranging from the
most sophisticated full configuration to the
simplest bimodal predictor. Figure 5a shows
the difference in misprediction rate across
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Table 2. Energy savings and performance degradation for all applications, using the adaptive BTB.

apsi bzip crafty eon mcf mp3dec parser swim     
Metric T P T P T P T P T P T P T P T P
–∆ETotal (%) 3.55 3.60 8.54 8.62 2.25 2.37 1.60 1.75 7.60 7.72 3.87 3.24 6.54 6.60 1.27 1.17
–∆EBP (%) 57.0 57.8 66.2 66.0 20.1 21.1 43.3 44.8 71.3 72.2 64.6 57.1 57.9 58.4 53.1 49.5
∆T (%) 0.01 0.01 –0.02 0.08 0.50 0.64 0.75 0.97 0.02 0.02 0.38 0.44 0.05 0.08 –0.01 0.00

T: training input; P: production input
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applications, and Figure 5b shows the differ-
ence across modules in one application.

Figure 5 shows that certain predictors some-
times produce results close to those of the
more sophisticated predictors. For example,
the bimodal predictor produces satisfactory
results for bzip, exhibiting a small overall mis-
prediction rate. Experiments show that dis-
abling gate accesses to the gskew and pskew
components in the predictor results in notable
energy savings (3 percent of total processor
energy) without measurable performance
degradation for bzip. Table 3 summarizes the
performance and energy impact of the adap-
tive predictor for all the applications. Again,
we set a 0.5 percent performance degradation
threshold.

Combining the two adaptations
Finally, we combined the two techniques

to achieve more flexible on-demand branch
prediction. Table 4 shows energy savings and
performance degradation using both adaptive
techniques to save as much energy as possible
without slowing down more than 0.5 percent.
Again, we based the decision of what adapta-
tion to use on the profiling results using the
training input. The table shows that we
achieved a reduction in processor-wide ener-
gy consumption of about 6.2 percent on aver-
age and 11.5 percent maximum.

From the results we’ve presented, we make a

key observation: Using the same profile (based
on the training input), we obtained very simi-
lar results for the two sets of production runs
using different inputs. This confirms our intu-
ition that branch prediction demand largely
depends on the code. Also, our results suggest
that the two techniques are largely indepen-
dent under the tested scenario. Finally, we
observe that overall energy savings depend not
only on the proposed adaptive system’s effec-
tiveness but also on the application’s branch
prediction demand and the proportion of ener-
gy spent in branch prediction. For example, the
application crafty has a very complex control
flow and requires powerful branch prediction,
so our techniques can achieve only moderate
strength reduction for this application. On the
other hand, swim is a very regular application
with many loops, so a very simple predictor
configuration can still do a good job of pre-
dicting branches. However, floating-point units
and the memory subsystem use much of the
energy. Thus, even a significant energy reduc-
tion in the branch predictor becomes insignif-
icant in the processor as a whole.

Other experimental results
We performed additional experiments to

investigate several other issues.

Invocation variation. We propose dynamical-
ly adjusting branch prediction strength for
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Table 3. Energy savings and performance degradation for all applications, using the adaptive hybrid predictor.

apsi bzip crafty eon mcf mp3dec parser swim     
Metric T P T P T P T P T P T P T P T P
–∆ETotal (%) 1.84 2.11 2.78 2.95 2.43 2.90 0.92 0.75 3.39 3.29 1.51 1.44 2.20 2.10 0.58 0.56
–∆EBP (%) 28.5 32.1 25.3 28.5 21.3 25.0 17.6 17.6 22.7 21.9 24.1 23.5 19.0 18.2 24.2 24.0
∆T (%) 0.09 0.12 0.03 0.07 0.32 0.29 -0.09 0.35 –0.02 0.01 0.11 0.19 –0.14 –0.01 0.00 0.00

T: training input; P: production input

Table 4. Energy savings and performance degradation for all applications using 

both the adaptive BTB and the adaptive hybrid predictor.

apsi bzip crafty eon mcf mp3dec parser swim     
Metric T P T P T P T P T P T P T P T P
–∆ETotal (%) 5.20 5.33 11.5 11.5 4.83 5.21 2.26 2.28 10.7 10.8 5.06 4.81 8.15 8.21 1.76 1.81
–∆EBP (%) 78.9 80.5 89.2 89.5 41.6 43.4 54.1 54.4 74.8 75.5 86.1 82.4 72.4 73.2 74.6 75.0
∆T (%) 0.12 0.15 0.00 0.16 0.82 0.96 0.71 1.26 0.03 0.03 0.55 0.69 –0.02 0.11 0.00 0.00

T: training input; P: production input



each module because we hypothesize that
branch prediction demand is largely a func-
tion of the static code itself. To find out
whether there is much variation of branch pre-
diction demand among the dynamic instances
of a module, we computed the standard devi-
ation of the BTB hit rate and the branch direc-
tion prediction rate for all applications. Figure
6 shows the results. We computed the stan-
dard deviation of these rates among all
instances of a single module and then com-
puted the weighted average of all per-module
results as the final result for the application.
In general, the variation is very small. When
the configuration is dynamically adjusted, the
increase of standard deviation is also small.

Influence of different inputs. Our feedback-
based approach gauges applications’ demand
using the training input and makes decisions
based on that. We have already presented

some evidence that this is a valid approach:
The energy savings and performance impact
on two sets of experiments using the train-
ing and the production inputs are similar to
each other. Figure 7 shows the difference in
branch prediction and BTB hit rates between
different inputs. We used the same instru-
mented binaries to change branch prediction
configurations. We executed the binaries
using our default production input, the
reduced version of ref, and the original
unchanged ref input for 1 billion instructions
after the initialization phase. We compared
the per-module prediction rates to those
obtained using the training input and calcu-
lated the weighted average of the absolute
difference. Except for application mcf, the
difference is quite small, suggesting that
using compile-time profiling is indeed a valid
approach to gauging branch prediction
demand.
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Interference between modules. To reduce the
number of profiling experiments, we made a
simplifying assumption that the choice of one
module’s predictor configuration is indepen-
dent of that of other modules. To learn whether
this assumption is reasonable, we compared
every module’s BTB hit rate and direction pre-
diction rate under two different cases, in which
the difference was the predictor configuration
for other modules. In the profiling stage, our
algorithm selects for each module a configura-
tion that we expect to achieve maximum ener-
gy savings without incurring more than a
0.5-percent execution time increase. We denote
the configurations selected for module i as CMi⋅
When we are testing module i, that module’s
predictor configuration is CMi in both cases. In
case 1, all modules except module i select the
full configuration. This case is the profile-time
scenario. In case 2, every other module j (j ≠ i)
selects its own configuration CMj⋅ This is the
production-time scenario. To eliminate the

influence of different input sets, we used the
same input—the training input—in both cases.

Figure 8a shows the BTB hit rate and branch
direction prediction rate of these two scenar-
ios for application bzip. As the figure shows,
the difference between the two cases is negli-
gible. Figure 8b shows this experiment’s results
for other applications. For each module, we
computed the absolute difference between the
two measurements, and here we show the
weighted average of this absolute difference.

Comparison with prediction probe detector.
Finally, we compared our customized branch
predictor with the prediction probe detector
(PPD), a hardware-only mechanism that
reduces the branch predictor’s energy con-
sumption.13 (The “Related work” sidebar
describes other research in energy-saving
branch prediction.) This mechanism exploits
the fact that not every cache line of instruc-
tions contains a branch, and thus, in some

22

POWER- AND COMPLEXITY-AWARE ARCHITECTURE

IEEE MICRO

80

85

90

95

100

0

1

2

3

4

bzip modules

P
re

di
ct

io
n 

or
 h

it 
ra

te
 (

%
)

D
iff

er
en

ce
 (

%
)

Direction prediction rate: profile
Direction prediction rate: production
BTB hit rate: profile
BTB hit rate: production

Direction prediction
BTB   

apsi bzip crafty eon mcf mp3dec parser swim Average

(a)

(b)

Figure 8. Projected BTB hit rate or branch direction prediction rate in profiled and actual rates in production
stage: individual rates of all modules in application bzip (a); weighted average of absolute per-module differ-
ence between projected and measured rates (b).



fetch cycles, we can avoid accessing the branch
predictor. A PPD is a small cache in which
each entry corresponds to a cache line in the
instruction cache. Each entry contains two
bits indicating whether we must access the
BTB or the direction predictor when fetch-
ing the corresponding line from the instruc-
tion cache. If not, the access can be avoided or
aborted. Compared with our customized
branch predictor, a major advantage of the
PPD is that it requires no profiling.

However, it also has the following disad-
vantages: First, to completely save the energy
of accessing the branch predictor, we must
access the PPD sequentially before accessing
the predictors. This can severely limit the
latency (and thus the size) of the predictors. If
we access the PPD in parallel to the predictors,
the mechanism can achieve only partial ener-
gy savings. For example, the sense amplifica-
tion can be aborted. However, our model
shows that in our environment, this energy
component is less than 10 percent. Second,
the PPD is itself a source of energy overhead,
and it further adds to design complexity. For
the predictor to determine which PPD entry
to access if the instruction cache is set-asso-
ciative, either the tags must be stored in the
PPD, significantly increasing its size and ener-
gy, or the instruction cache must communi-
cate the way-matching information. Either
way, it takes longer to get the information from
the PPD if the instruction cache is set-asso-
ciative, exacerbating the first disadvantage.

We simulated an idealized PPD in which
no tags were stored and access was fast enough
to completely avoid any branch predictor
lookup. Table 5 shows the energy savings we
obtained. On average, the energy savings
achieved with the customized branch predic-
tor were even higher than those achieved with
the idealized PPD. Moreover, the customized
predictor achieved these savings with far less
design complexity.

We have shown that by
exploiting program

behavior repetition, we can
implement branch predictors
customized to particular pro-
gram needs. This customiza-
tion results in minimal
degradation of prediction
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Related work
In addition to the prediction probe detector approach, researchers have proposed other

solutions to branch prediction energy issues. Most of the proposals can work with our pro-
posal to further reduce energy consumption.

Manne, Klauser, and Grunwald’s scheme, pipeline gating, monitors the confidence of pre-
dictions for outstanding branches.1 When the aggregated confidence is too low, instruction
fetch is disabled. Whereas we try to reduce energy wasted in the branch predictor itself,
these researchers try to prevent energy waste in other parts of the processor caused by inef-
fectual branch prediction.

Hu et al. stop powering branch predictor entries that remain unused for a long time and let
them “decay.”2 This reduces the branch predictor’s leakage energy. Like ours, this approach exploits
the fact that many entries in modern processors’ branch predictor tables are underutilized. How-
ever, this approach targets leakage energy, while ours mainly targets dynamic energy.

Other work also proposes dynamically adjusting hardware resources to reduce energy
consumption while still meeting application demand. For example, Albonesi adjusts the
cache configuration, Folegnani and González disable empty instruction window entries, and
Bahar and Manne shut down functional units.3-5 The concept of these approaches is similar
to ours, but achieving on-demand branch prediction is a bit trickier. Although any adaptation
that results in performance degradation runs the risk of increasing energy consumption
(caused by fixed energy overhead per cycle), adapting the branch predictor adds an extra
source of energy waste: Wrong branch predictions introduce useless instructions that are
squashed later. This is not the case for these other adaptations. Moreover, to predict appli-
cation demand accurately without incurring energy overhead, we adopt a feedback-based
approach that exploits program behavior repetition at the module level, whereas these relat-
ed proposals generally use time-based algorithms to control adaptation.
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accuracy and performance, while achieving
notable energy savings. In addition, we are con-
sidering exploiting program behavior repetition
to optimize other aspects of system design. For
example, we can make detailed architectural
simulations more efficient by avoiding the sim-
ulation of code execution that repeats prior
behavior. We are also looking at using other
high-level program information to optimize
resource allocation at the microarchitecture level
to improve energy efficiency. MICRO
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