
60

The microprocessor industry is
rapidly moving to the use of multicore chips
as general-purpose processors. Whereas the
current generation of chip multiprocessors
(CMPs)—such as the IBM Power5,1 Intel’s
Montecito,2 and Sun’s Niagara3—target serv-
er applications, future desktop processors will
likely have tens of multithreaded cores on a
single die. Various redundant multithreading
(RMT) approaches exploit the multithread-
ed capability of current general-purpose
microprocessors. These approaches replicate
the entire program, running it as a separate
thread using time or space redundancy. This
guards the processor core against all errors,
including those in combinational logic.
Because RMT exploits the existing multi-
threaded hardware, it requires only a modest
amount of additional hardware support for
comparing results and, depending on the
implementation, duplicating inputs.

However, RMT typically involves signifi-
cant power overhead. The many new RMT
designs4-8 devote little attention to the power
dissipation issue, despite power efficiency’s
criticality in modern processor design. Clear-
ly, with power dissipation and system robust-
ness on an equal footing in future generations,

multiprocessors will have to achieve the
required level of soft-error tolerance in a more
power-aware fashion, while minimally
impacting individual program performance.
Furthermore, the hardware fabric must be
flexible enough for the runtime system to
make appropriate decisions on hardware use,
given application criticality (in terms of both
performance and reliability), as well as the cur-
rent power envelope, workload mix, and level-
of-error vulnerability.

The presence of many cores in current
microprocessors also provides opportunities
to exploit parallelism. Our approach is a novel
twist on the familiar use of parallelism to
reduce power through voltage scaling. We base
our approach on a CMP microarchitecture (it
therefore most closely resembles chip-level
redundant threading, or CRT5). We divide a
computation into a series of chunks and run
them on two or more copies of the same hard-
ware to achieve the same processing band-
width as a sequential execution at a more
energy-efficient operating point—for exam-
ple, through the use of dynamic voltage scal-
ing (DVS). With tens of processor cores on a
single die in future microprocessors, harness-
ing a few to achieve power-efficient error tol-

M. Wasiur Rashid
Edwin J. Tan

Michael C. Huang
University of Rochester

David H. Albonesi
Cornell University

A REDUNDANT MULTITHREADING MICROARCHITECTURE PARALLELIZES THE

VERIFICATION PROCESS TO RUN ON MULTIPLE CORES WHILE THE COMPUTATION

THREAD RUNS AHEAD. THIS PARALLELIZATION APPROACH CREATES

SIGNIFICANTLY LESS POWER OVERHEAD THAN OTHER RMT APPROACHES.

POWER-EFFICIENT ERROR
TOLERANCE IN CHIP
MULTIPROCESSORS

Published by the IEEE Computer Society 0272-1732/05/$20.00 2005 IEEE

erance will be a viable solution under some
runtime conditions. Because each processor
core in the CMP microarchitecture is identi-
cal, the runtime system can use a given core as
a leading compute core, a trailing checker, or
in isolation in a nonredundant fashion. Ded-
icated redundancy solutions such as DIVA9

don’t provide such flexibility.

Implementation challenges
To ensure parallel verification’s effectiveness,

it’s important to let the leading computation
thread run far ahead of the verifying threads—
in other words, to deeply decouple the com-
putation and verification threads. This creates
a large enough verification workload to
achieve efficient parallelization. A large slack
between the computation and verification
wavefronts also prevents any slowdown or
overhead in the verification process from
“dragging down” the computation. Further-
more, by running far ahead of the verification
threads, the lead thread creates a natural
prefetch effect for the verification threads
because it brings data into the shared L2
cache, therefore making the checker threads’
memory latency more fully hidden.

Although this strategy initially appears
straightforward, it presents several implemen-
tation challenges. Perhaps the largest technical
challenge is untangling the complex web of
relationships between memory instructions.
The many physical threads involved in the
process share the same address space and, com-
bined, represent the same semantic thread.
However, they operate at different logical times,
with the trailing verification threads essential-
ly seeing a past instant of the lead thread and
thus seeing the memory state as it was in that
past instant (we describe this in more detail
later). Thus, out of the same address space, we
must provide multiple, consistent memory-
state images for the different logical times.
(Having the redundant threads each own a dis-
tinct address space isn’t a viable solution. In
addition to wasting precious memory and
cache space, this approach would drastically
complicate the handling of shared-memory
parallel programs because two separate execu-
tions of the same parallel program can legiti-
mately generate different memory images. A
typical error-detection mechanism would erro-
neously attribute the differences to soft errors.)

The second major challenge is creating a
large slack between the leading and checker
threads. This requires a memory-buffering
mechanism that holds a large amount of unver-
ified stores and yet supports fast searching and
forwarding to ensure correct memory-based
dependences. Any added circuitry accessed by
more than one core must be latency tolerant to
scale well in future technology nodes, and
should introduce little additional complexity
to the cores themselves. Existing RMT designs
use a straightforward fully associative buffer to
hold unverified stores.5,6,8 These designs sim-
ply keep the buffer small to permit fast search-
es for every load. The use of a small buffer
doesn’t support the deep decoupling required
for parallel verification. Yet, simply increasing
the buffer size would severely impact load laten-
cy and thus performance. Therefore, we need
a new solution that permits a large buffer of
unverified stores with little impact on the load
instructions’ critical path.

Architectural support for error tolerance
In our fault-tolerant CMP microarchitec-

ture, every computation thread is executed on
a lead processor and a verification copy of the
thread is parallelized to execute on multiple
checker processors (or checkers), which oper-
ate at a more energy-efficient point (using
lowered supply voltage, increased threshold
voltage through body biasing, or both) and
reduced frequency. The processors are physi-
cally identical but configured slightly differ-
ently depending on their role.

As Figure 1 illustrates, we divide the
dynamic instruction stream into chunks of
consecutive instructions and distribute the
chunks to different checkers for parallel veri-
fication. To initiate the register state, the lead
processor passes checkpoints—that is, lead
processor-generated snapshots containing the
architectural registers and a few microarchi-
tectural pointers—to the checkers. After the
lead processor has executed a certain number
of instructions, it freezes the retirement stage
and takes a snapshot of the register contents.
Given a checkpoint, a checker can start exe-
cution as it would if it was loading a new con-
text. The lead processor maintains several
checkpoints (➄ in Figure 2). When it detects
a transient error, it can load a checkpoint from
before the erring instruction and restart exe-

61NOVEMBER–DECEMBER 2005

cution. It recycles a checkpoint when there’s
no possibility of reverting back to that point.

During execution, the checkers re-execute
each chunk and verify the lead processor’s exe-
cution by comparing the address and data of
every store in the chunk to those of the orig-
inal copy executed in the lead processor.
When a checker finishes executing the chunk,
it compares the register state to that of the next
checkpoint. If it finds no discrepancy in the
final register state or in the entire sequence of
memory updates, it validates the chunk. Oth-
erwise, the checker assumes that a transient
error has occurred in the chunk’s original or

redundant execution. To recover, the proces-
sor simply rolls back to the chunk’s starting
checkpoint. Figure 1 illustrates this process.

Core operation
Figure 2 shows the components of the fault-

tolerant CMP.
The lead processor operates much like an

ordinary processor—fetching, decoding,
scheduling, and executing instructions. How-
ever, before it lets the computation’s results per-
manently affect the memory state, the lead
processor must verify the results with the
checkers’ independent computations. Thus,

62

RELIABILITY-AWARE MICROARCHITECTURE

IEEE MICRO

Chunk 2Chunk 1

Redundant chunk 1
Error detected

Redundant chunk 2

Chunk 3Chunk 3

Reload checkpoint

Verifying checkpoint

Lead processor

Checker 1

Checker 2

Creating checkpoints

Figure 1. Two-way parallel verification and recovery.

L2 Cache

6

5

7

1 2

4

Checkpoint
buffer

PCB

Execution
information

queue

L1 Cache

3

Merge

Merge

1 2

4

Checkpoint
buffer

Execution
information

queue

Core

PCBL1 Cache

3

Processor 2

Processor 1

Core

Figure 2. Microarchitecture overview and operation.

when the lead processor commits stores from
its store queue (SQ), it places them into the
post-commit buffer (PCB) in program order
(➁ in Figure 2). It doesn’t release stores until it
verifies the entire chunk of instructions. As
with the SQ, a core needs to search the PCB to
forward results. Thus, the PCB’s scalability is
a serious issue, and the PCB must be much
larger than a typical SQ to provide sufficient
decoupling of the lead and checker threads.

To resolve this problem, the cores write to
the L1 data cache after stores commit but
before verifying the chunk, and at the same
time writes them into the slower PCB. Subse-
quently, when handling a load, the processor
only needs to check the SQ and the L1 data
cache (➀ in Figure 2) as in a conventional
processor, rather than searching through the
larger and slower PCB. Only in the rare case of
an L1 miss does the processor probe the PCB
(➂ in Figure 2) along with the L2 cache. The
processor merges the results and writes them
into the L1 cache. However, it doesn’t let
blocks that are written in the L1 data cache
but not yet verified propagate to the L2 cache.
Thus, when the processor replaces these blocks
in the L1 data cache, they are simply discard-
ed. In fact, the very concept of dirty data is
irrelevant (in the context of executing sequen-
tial code). The PCB performs the “write-back”
when the data’s correctness is verified (➃ in
Figure 2). In essence, the store-load forward-
ing functionality is largely removed from the
PCB and assumed by the L1 data cache.

Removing the PCB from the critical load-hit
path has two important advantages. It lets us

• implement very large PCBs, enabling sig-
nificant decoupling without performance
loss; and

• construct a single processor and use it in
both redundant and nonredundant
modes because all of the timing-critical
memory operations remain the same
regardless of processor mode.

Checkers have the same physical design as
a lead processor, run in the same address
space, and operate similarly, but differ in
three major ways.

• Similar to other RMT designs,6,7 check-
ers receive branch outcomes and target

addresses from the lead processor
through the execution info queue (➅ in
Figure 2). For some applications, this can
greatly reduce energy waste for wrong-
path instructions. The checker also uses
the L1-miss addresses recorded from the
lead processor to prefetch at the begin-
ning of the chunk.

• When a store is committed, the checker
sends its address and data to the lead
processor’s PCB for verification. When
this verification detects a discrepancy, it
triggers a roll-back.

• Finally, when servicing a cache miss, the
checker consults the lead processor’s PCB
instead of its own (➆ in Figure 2).

PCB operation
The PCB not only enables rapid fault recov-

ery, but more importantly, it’s essential to the
efficient creation of multiple memory images
for the redundant threads. Consider the exam-
ple in Figure 3. While the lead processor is
forging ahead executing chunk 6, the check-
ers are verifying earlier chunks. At the same
moment of wall-clock time, the checkers are
actually replaying the lead processor’s history,
and the shared memory system must provide
the memory image as the lead processor saw
it when executing the instruction. In other
words, when a load executes in a checker, the
SQ, the PCB, and the memory hierarchy
should together capture the effect of all stores
prior to the load and none thereafter. With
the help of the PCB, we only store the images’
common part in the L2 cache and the rest of
the memory subsystem, and construct the
most up-to-date image on-the-fly based on
the processor initiating the request. The
processor’s identity determines which logical
time pointer of “now” to use.

To enhance efficiency, all cores use their pri-
vate L1 cache to store data consistent with
their view of the memory image. This lets
them access the PCB only when a miss occurs.
Cache lines must therefore contain the most
up-to-date data from that processor’s view-
point. So, when a checker needs to fill a cache
line, it obtains the data from the L2 cache and
searches the PCB for appropriate updates.
This is called a backward search (see Figure 3).
To get an up-to-date cache line, the checker
must obtain the most recent writes to all

63NOVEMBER–DECEMBER 2005

words in the line in the backward search.
To avoid the circuit complexity of returning

multiple words with different offsets from dif-
ferent PCB entries, we use a PCB that can
only return one word at a time. When we
search the PCB for the word being loaded, we
can simultaneously detect whether the PCB
contains other words of the same line. If so,
we increment the word address (with wrap-
around) and probe the PCB multiple times
until we cover the entire line. This, of course,
delays the cache line’s availability except for
the critical word. Without multiple probes,
we can’t cache the line. This would lead to
pathologically high performance degradation
and thus isn’t a viable solution. If the cache
has per-word valid bit support, however, we
can avoid multiple PCB probes by caching
only the word being loaded. Our simulation
shows that this only marginally degrades per-
formance and energy metrics.10

Parallelizing the verification thread onto
multiple checkers creates a peculiar cache-
coherence issue. When a checker is verifying
a chunk of instructions, other checkers veri-
fying the same program will not execute the
stores in that chunk, resulting in some data in

the L1 data cache becoming stale when the
checkers execute subsequent chunks. To solve
this problem, we can leverage the built-in
cache-coherence protocol in a chip-multi-
processor. The lead processor sends a quasi-
invalidation message the first time every cache
line is written to in a chunk. When a checker
receives the invalidation, it sets a volatile bit if
it finds the cache line in its L1 cache. This
indicates that the cache line is being updated
in a future instruction chunk. Therefore,
when the checker skips one or more chunks
to verify another chunk, all volatile lines are
invalidated because they might be modified
in the skipped chunks. Also, when filling a
cache line, a checker sets the volatile bit when
the search in PCB reveals that the line will be
modified in a future chunk. This requires a
forward search in the PCB (Figure 3). The for-
ward search requires little additional support.
Finally, we can optimize this basic protocol to
reduce unnecessary invalidations.10

Because the PCB is large and accessed in an
associative manner, each access takes significant
time and energy; thus, reducing unnecessary
PCB accesses is desirable. Our empirical find-
ings show that many PCB searches return no

64

RELIABILITY-AWARE MICROARCHITECTURE

IEEE MICRO

A PCB section
corresponds to an
instruction chunk

Last verified store
by checkers 1 and 2

Wall clock time now

Logical time now
Checker 2

Logical time now
Checker 1

Logical time now
Lead processor

Instruction
execution

Backward
search

Forward
search

Lead processor
Checker 1
Checker 2

PCB tail
Next PCB entry to

be written back to L2

PCB head
Next committed store
from lead processor

PCB

53

Chunk 2 4

Chunk 1

5

Lead processor

Checker 1

Checker 2

Chunk 3 46

Figure 3. Logical time frames from the different cores’ perspectives. At any moment, a checker’s logical time is in the lead
processor’s past. Correspondingly, the checkers only see part of the memory state in the post-commit buffer (PCB, shown in
different shades) in the backward search. A forward search starts from the next section of the PCB (corresponding to the
next chunk of instructions).

hit. This is especially so for the searches initi-
ated by the lead processor: on average, no more
than 0.3 percent of these searches return a
match. A quick membership test using a hash
table can filter out unnecessary PCB searches.10

Finally, in its current form, our design only
supports redundant execution of applications
with a single semantic thread. We will extend
the support to parallel applications in the future.

Experimental setup and analysis
To evaluate the proposed architectural sup-

port for fault tolerance, we simulate a CMP
in which one core runs as the lead processor
with various configurations of checker proces-
sors. We use a modified version of the Sim-
pleScalar 3.0b toolset simulating the Alpha
AXP ISA with structures for intercore com-
munication. Table 1 lists the parameters for a
single CMP core. We interconnect the cores
using a ring with a bandwidth of 128 bits per
cycle. We performed the experiments using
the Standard Performance Evaluation Cor-
poration (SPEC) CPU2000 benchmark suite.

To evaluate energy consumption, we model
both dynamic and leakage energy in detail.
We use Wattch11 to estimate the dynamic
energy component, whereas leakage energy is
temperature dependent and based on predic-

tive SPICE circuit simulations for 45-
nanometer technology using BSIM3.12 We
base device parameters, such as Vth, on 2003
International Technology Roadmap for Semi-
conductors projections for the year 2010.
ITRS forecasts a 45-nm technology node with
a 15-GHz clock frequency. We model tem-
perature (for leakage calculations) using
HotSpot13 with the Compaq Alpha 21364 as
the core floor plan.

Except in special-purpose environments,
fault-tolerant systems spend most of the time in
fault-free situations. For example, at sea level,
cosmic particle flux is on the order of 10—
100n/cm2 hour.14 Even pessimistic estimation
would translate this to no more than a few
potential upsets per minute. In terms of micro-
processor clock cycles, this constitutes an
exceedingly rare event. Therefore, our experi-
mental analysis focuses on the design’s perfor-
mance and energy characteristics in fault-free
situations. We show that even when soft errors
occur as frequently as once per millisecond, the
rollback overhead is still negligible.10

The energy-efficient fault-tolerant config-
uration consists of a lead processor and two
checkers. The checkers run at half frequency
to verify the computation in parallel. In this
study, the supply voltage is appropriately

65NOVEMBER–DECEMBER 2005

Table 1. Simulation parameters.

Feature Size
Fetch queue size 16 instructions
Fetch/dispatch/commit 4/4/12
Combined branch predictor 4,096-entry bimodal, 2-level adaptive (1,024 L1, 4,096 L2), and

4,096-entry meta predictor
Branch target buffer/return address stack 2,048 entries two-way /32 entries
Branch misprediction latency 15 cycles
Integer units 3 arithmetic logic units (ALU), 1 multiplication unit
Floating-point units 3 ALU, 1 multiplication unit
Register file 128 integer, 128 floating-point
Issue queue 32 integer entries, 32 floating-point entries
Load-store queue (LSQ)/Re-order buffer (ROB) 64 entries/256 entries
L1 I/D cache 32 Kbytes, two way, 32-byte line, 2 cycles
L2 cache (shared) 8 Mbytes, 32 way, 128-byte line, 20 cycles
TLB (I/D each) 128 entries, 8 Kbytes, fully associative
Memory latency 250 cycles
Post-commit buffer 128 entries per chunk, 8 chunks, 1 port, 8 cycles per search
Chunk size 2048 instructions or 128 stores, whichever comes first
Membership hash table 257 entries, 8 bits per entry
Checkpoint creation/loading 16 cycles (4 registers per cycle)

reduced with the frequency. We compare this
configuration with several others: a checker at
full frequency; a checker at half frequency; a
design modeled after CRT5; and, as a refer-
ence, an instruction-level in-core replication
mechanism15 offering more limited protec-
tion. In all cases, the lead processor runs at full
frequency. Results are normalized to that of a
single core running at full frequency without
any fault-tolerance mechanism.

Figure 4 shows the performance and ener-
gy overhead with fault-tolerant operation. We
can make three observations from this figure.

First, the performance degradation of using
two half-speed checkers is imperceptible: the
IPC (instruction per cycle) of redundant exe-
cution normalized to that of nonredundant
execution is close to 1 for all applications. This
is because the overhead of checkpoint creation
is negligible, and the checkers provide suffi-
cient verification bandwidth and thus don’t
slow the lead processor. Furthermore, if the

verification mechanism can’t keep up (such as
when running a single half-speed checker),
not only does performance degrade, but the
energy overhead increases because the power-
hungry full-speed lead processor runs longer
and burns more power in clock distribution
and leakage.

For example, with swim, using a single half-
speed checker slows the lead processor so
much that the energy overhead is about three
times that of using two checkers. On the other
hand, for applications such as lucas and mgrid,
the lead processor’s prefetching effect makes
one half-speed checker fast enough that the
overall performance of using a single half-
speed checker isn’t much different from that
of using two. In such cases, the extra checker
doesn’t save much energy, if any.

Second, parallelizing the checking process
significantly improves the energy efficiency of
fault-tolerant operation. Compared to a
roughly 60-percent energy overhead using one

66

RELIABILITY-AWARE MICROARCHITECTURE

IEEE MICRO

avg FP

N
or

m
al

iz
ed

 IP
C

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sixtra
ck

bzip

bzip

eon
crafty gap gcc

gzip
twolf

vorte
x vpr

ammp
applu apsi

galgel

equakeart
lucas

mesa
mgrid

swim
avg IN

T

avg FP
sixtra

ck
eon

crafty gap gcc
gzip

twolf
vorte

x vpr
ammp

applu apsi
galgelart

equake
lucas

mesa
mgrid

swim
avg IN

T
0

20

40

60

80

100

E
ne

rg
y

ov
er

he
ad

 (
pe

rc
en

t)

InCore replication 1 Checker full speed 1 Checker half speed 2 Checkers half speedCRT

(a)

(b)

Figure 4. Effect of using different fault-tolerant configurations on various applications’ performance (a) and energy (b).

checker at full speed, the parallel verification
approach incurs only about 31-percent ener-
gy overhead. (Discounting the energy contri-
bution from the shared L2 cache, these
overheads become 96 and 45 percent, respec-
tively.) In fact, the energy overhead of using
two half-speed checkers is even lower than the
overhead of the in-core replication technique.15

Third, even with one full-speed checker,
our approach achieves noticeably lower ener-
gy overhead than a CRT-like system. This is
mainly because of the PCB’s deep decoupling
capability: Even when the checker isn’t work-
ing, the lead processor can execute tens of
thousands of instructions without stalling.
This gives us the flexibility to orchestrate
instruction execution on the checkers to
improve energy efficiency without impacting
the lead processor’s performance. For exam-
ple, when the lead processor’s PCB is close to
empty, we can set the checker core to sleep
mode or use it for other tasks altogether until
the PCB is close to full again. Because of assist-
ed execution, the checker can drain the PCB
faster than the lead processor fills it. Indeed,
we found that a full-speed checker is idle on
average 32 percent of the time and as much
as 80 percent of the time. Once idle, the
checker can stay idle for an average of 4,300
cycles at a time. To model the effect of sleep
mode or the use of the otherwise idle check-
er for other tasks, we assume that the checker

consumes no dynamic energy in these long
idle periods. Without a large PCB in a CRT-
like design, the trailing thread is much more
tightly coupled to the leading thread and
doesn’t have these long idling periods, mak-
ing it impractical to apply sleep states or use
it for other tasks.

To better illustrate the energy overhead
reduction, Figure 5 further breaks down the
normalized energy consumption into different
components: the lead processor’s energy con-
sumption, the L2 cache’s energy consump-
tion, the checkers’ leakage energy, and the
checkers’ dynamic energy consumption. For
clarity, we show only the averages of the inte-
ger and floating-point applications. The vari-
ation from application to application is
moderate. Clearly, using two voltage-scaled,
half-speed checkers consumes much less
dynamic energy—about 34 percent that of
one full-speed checker. The reduction in sup-
ply voltage (from 1 to 0.6 volt) is the main
factor in this reduction. Thanks to the “per-
fect” branch prediction and lead processor
prefetching, the checkers also execute fewer
instructions and have shorter run. These fac-
tors also help reduce energy consumption.

The reduced supply voltage combined with
lower temperature due to much lower power
consumption significantly reduces the per-
core leakage power. However, the combined
leakage of two cores stays largely the same as

67NOVEMBER–DECEMBER 2005

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Checker leakage energy
Checker dynamic energy
Total L2 energy
Total lead processor energy

a: InCore replication
b: 1 Checker full speed
c: 1 Checker half speed
d: CRT
e: 2 Checkers half speed

a

b
c

d

e

a

b
c

d

e

N
or

m
al

iz
ed

 e
ne

rg
y

INT benchmark average FP benchmark average

Figure 5. Normalized energy consumption by category.

that of a single full-speed core. The overall
result is that the energy cost is lower than that
incurred by techniques with more limited
replication (for example, the in-core replica-
tion scheme doesn’t replicate instruction fetch
and decode15). This is because even though
the redundancy is more limited, it’s provided
on more power-hungry hardware. Further-
more, in the in-core replication design, com-
petition for the same resources increases
execution time, which in turn increases per-
cycle energy costs due to leakage, clock dis-
tribution, and so on.

Evaluating design options
Several design options are possible in terms

of architectural support. As in the previous
section, we compare these options in terms of
average results of the integer and floating-
point applications.

Effectiveness of assisted execution
The lead processor passes various informa-

tion, including branch outcomes, branch tar-
get addresses, and L1 data cache miss
addresses, for load prefetch. Figure 6 shows
the performance impact of different forms of
assistance. We compute the checker’s effective
IPC by excluding idle periods with no verifi-
cation workload. This is a useful metric
because although the checkers aren’t a bottle-
neck in the experiments, in a real-world sce-
nario, the system might multiplex different
verification workloads onto the same set of
checkers, in which case checker performance
can be important. We normalize the results to

a system in which none of this information
passes from the lead processor to the checker.

With assisted execution, the checkers are up
to 35-percent faster on average. Information
about branch outcomes is indeed useful. Its
availability improves the effective IPC by about
10 percent. L1 prefetch information isn’t as
useful, improving only about 1 percent of the
effective IPC, although it requires little band-
width to communicate that information.
Branch-destination information is helpful,
especially for integer applications, improving
checker performance by another 20 percent.
However, communicating that information
can require a lot of bandwidth as well as ener-
gy. Finally, the impact of assisted execution on
overall program IPC is small—from 1 to 5 per-
cent. This indicates that indeed the two check-
ers aren’t the bottleneck in this configuration
and thus have processing power to spare.

Further reduction of complexity
Intuitively, because the leading computation

passes on branch information and helps prefetch
data into caches, it’s much easier for the check-
ers to exploit instruction-level parallelism (ILP).
Therefore, we might be able to reduce checker
design complexity by disabling some of the core
ILP mechanisms. This would reduce checker
energy consumption without much perfor-
mance impact on the lead processor.

We evaluate two possibilities:

• We disable load speculation and dynam-
ic disambiguation and force memory
instructions to execute in order.

• We turn off out-of-order scheduling
(issuing instructions in order).

Figure 7a shows the degradation in the effec-
tive IPC of the checkers and in the entire pro-
gram IPC under these simplifications. Figure
7b shows the increase in energy consumption.
In all cases, the baseline is the default config-
uration without any complexity reduction
measure. Surprisingly, these simplifications
result in no net energy gain. In fact, the ener-
gy increases. There are two reasons for this:

• The simplifications slow both the check-
ers and the lead processor. The added
execution time increases energy over-
head, especially for the lead processor.

68

RELIABILITY-AWARE MICROARCHITECTURE

IEEE MICRO

INT FP INT FP
0

10

20

 IP
C

 im
pr

ov
em

en
t (

pe
rc

en
ta

ge
)

Program IPCEffective checker IPC

35
Branch direction only
Branch direction and Id prefetch
Branch target and Id prefetch

Figure 6. Performance impact of assisted execution.

• Because of the voltage scaling of the slow-
er checkers, the checkers yield little addi-
tional energy savings.

Thus, we can achieve most of the energy
savings by simply using the per-processor
DVS mechanisms already being incorporat-
ed into next-generation multicore chips,2

without resorting to dynamic simplification
of the checker cores.

In the near future, system reliability will
quickly become a major design concern and

has to be addressed at both the circuit and
architecture levels as a first-class design con-
straint. Redundant Multi-Threading effective-
ly exploits multi-threaded microprocessors for
both fault detection and recovery, yet prior
approaches are either inflexible or energy-inef-
ficient. As power consumption is already the
limiting factor in high-end processors, energy-
efficient fault tolerance can no longer be regard-
ed as an oxymoron, but as a challenge that has
to be addressed. The forthcoming integration
of tens of processor cores on a single die pre-
sents an opportunity to exploit the inherent
parallelism in correctness verification. We have
described a flexible platform using novel mech-
anisms and modest hardware support to enable

on-demand, energy-efficient redundant exe-
cution. In future work, we plan to extend the
support to parallel applications. MICRO

References
1. R. Kalla, B. Sinharoy, and J. Tendler, “Simul-

taneous Multithreading Implementation in
Power5—IBM’s Next-Generation Power
Microprocessor,” Proc. Hot Chips 15, IEEE
CS Press, 2003, pp. 293-303.

2. C. McNairy and R. Bhatia, “Montecito: A
Dual-Core, Dual-Thread Itanium Processor,”
IEEE Micro, vol. 25, no. 2, Mar./Apr. 2005,
pp. 10-20.

3. P. Kongetira, K. Aingaran, and K. Olukotun,
“Niagara: A 32-Way Multithreaded Sparc
Processor,” IEEE Micro, vol. 25, no. 2,
Mar./Apr. 2005, pp. 21-29.

4. M. Gomaa et al., “Transient-Fault Recovery
for Chip Multiprocessors,” Proc. Int’l Symp.
Computer Architecture, IEEE CS Press,
2003, pp. 98-109.

5. S. Mukherjee, M. Kontz, and S. Reinhardt,
“Detailed Design and Evaluation of Redun-
dant Multithreading Alternatives,” Proc. Int’l
Symp. Computer Architecture, IEEE CS
Press, 2002, pp. 99-110.

6. S. Reinhardt and S. Mukherjee, “Transient
Fault Detection via Simultaneous Multi-

69NOVEMBER–DECEMBER 2005

INT FP INT FP INT FP

IP
C

 d
eg

ra
da

tio
n

(p
er

ce
nt

ag
e)

In
cr

ea
se

 o
f e

ne
rg

y
co

m
su

m
pt

io
n

(p
er

ce
nt

ag
e)

0

10

20

30

40

50

0

35

30

25

20

15

10

5

In order load/store
In order core

Effective checker IPC Program IPC(a) (b)

Figure 7. Impact on performance (a) and energy consumption (b) of disabling various instruc-
tion-level parallelism (ILP) mechanisms in the checker cores .

threading,” Proc. Int’l Symp. Computer Archi-
tecture, IEEE CS Press, 2000, pp. 25-36.

7. E. Rotenberg, “AR-SMT: A Microarchitec-
tural Approach to Fault Tolerance in Micro-
processors,” Proc. Int’l Symp. Fault-Tolerant
Computing, IEEE CS Press, 1999, pp. 84-91.

8. T. Vijaykumar, I. Pomeranz, and K. Cheng,
“Transient-Fault Recovery via Simultaneous
Multithreading,” Proc. Int’l Symp. Computer
Architecture, IEEE CS Press, 2002, pp. 87-98.

9. T. Austin, “DIVA: A Reliable Substrate for
Deep Submicron Microarchitecture Design,”
Proc. Int’l Symp. Microarchitecture, IEEE CS
Press, 1999, pp. 196-207.

10. M. Rashid et al., “Exploiting Coarse-Grain
Verification Parallelism for Power-Efficient
Fault Tolerance,” Proc. Int’l Conf. Parallel
Architectures and Compilation Techniques,
IEEE CS Press, 2005, pp. 315-325.

11. D. Brooks, V. Tiwari, and M. Martonosi,
“Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,”
Proc. Int’l Symp. Computer Architecture,
IEEE CS Press, 2000, pp. 83-94.

12. BSIM Design Group, BSIM3v3.3 MOSFET
Model—Users’ Manual, Jul. 2005, http://
www-device.eecs.berkeley.edu/~bsim3/
ftpv330/Mod_doc/b3v33manu.tar.

13. K. Skadron et al., “Temperature-Aware
Microarchitecture,” Proc. Int’l Symp. Com-
puter Architecture, IEEE CS Press, 2003, pp.
2-13.

14. J. Ziegler et al., “IBM Experiments in Soft
Fails in Computer Electronics (1978-1994),”
IBM J. Research and Development, vol. 40,
no. 1, Jan. 1996, pp. 3-18.

15. J. Ray, J. Hoe, and B. Falsafi, “Dual Use of
Superscalar Datapath for Transient-Fault
Detection and Recovery,” Proc. Int’l Symp.
Microarchitecture, IEEE CS Press, 2001, pp.
214-224.

M. Wasiur Rashid is a PhD candidate in the
Department of Electrical and Computer
Engineering at the University of Rochester.
His research interests include energy-aware
and fault-tolerant microprocessor architec-
tures. He has an MS in Electrical Engineer-
ing from the University of Rochester. He is a
student member of IEEE. Contact him at
rashid@ece.rochester.edu.

Edwin J. Tan is a doctoral candidate in the
Department of Electrical and Computer
Engineering at the University of Rochester.
His research interests include fault-tolerant
computer architectures, digital and analog
VLSI circuit design, and image processing. He
has an MS in Electrical Engineering from the
University of Rochester. He is a student mem-
ber of IEEE, TBP, and HKN. Contact him at
etan@ece.rochester.edu.

Michael C. Huang is an assistant profes-
sor in the Department of Electrical and
ComputerEngineering and the Department
of Computer Science at the University of
Rochester. His research interests include
computer system architecture and proces-
sor microarchitecture, with emphases on
adaptive architecture, power-aware design,
reliability, and system optimization. Huang
has a PhD in computer science from the
University of Illinois at Urbana-Champaign.
He is a member of the IEEE Computer
Society and the ACM.

David H. Albonesi is an associate professor
in the Computer Systems Laboratory at Cor-
nell University. His research interests span
single and multiple processors and threads,
with particular interests in adaptive, power-
efficient, and reliability-aware computer archi-
tectures, and microarchitectures exploiting
new technologies. Albonesi has a PhD in
computer engineering from the University of
Massachusetts Amherst. He is a senior mem-
ber of the IEEE Computer Society and a
member of the ACM.

Direct questions and comments about this
article to Michael C. Huang, 414 Computer
Studies Building, Department of Electrical
and Computer Engineering, University of
Rochester, Rochester, NY 14627; michael.
huang@rochester.edu

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

70

RELIABILITY-AWARE MICROARCHITECTURE

IEEE MICRO

