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Abstract

Although adaptive processors can exploit application variability
to improve performance or save energy, effectively managing their
adaptivity is challenging. To address this problem, we introduce a
new approach to adaptivity: the Positional approach. In this ap-
proach, both the testing of configurations and the application of the
chosen configurations are associated with particular code sections.
This is in contrast to the currently-used Temporal approach to adap-
tation, where both the testing and application of configurations are
tied to successive intervals in time.

We propose to use subroutines as the granularity of code sections
in positional adaptation. Moreover, we design three implementa-
tions of subroutine-based positional adaptation that target energy
reduction in three different workload environments: embedded or
specialized server, general purpose, and highly dynamic. All three
implementations of positional adaptation are much more effective
than temporal schemes. On average, they boost the energy savings
of applications by 50% and 84% over temporal schemes in two ex-
periments.

1 Introduction

Processor adaptation offers a major opportunity to the designers
of modern processors. Currently, many proposed architectural en-
hancements have the desired effect (e.g. improve performance or
save energy) on average for the whole program, but have the oppo-
site effect during some periods of program execution. If the proces-
sor were able to adapt as the application executes by dynamically
activating/deactivating the enhancement, the average performance
improvement or energy savings would be higher.

Perhaps the area where adaptive processors have been studied
the most is the low-power domain — this is why we focus the anal-
ysis in this paper on this area. In this case, researchers have pro-
posed various architectural Low-Power Techniques (LPTs) that al-
low general-purpose processors to save energy, typically at the ex-
pense of performance (e.g. [1, 2, 4, 8, 17, 19]). Examples of such
LPTs are cache reconfiguration and issue-width changes. By acti-
vating these LPTs dynamically, processors can be more effective.
Some of the more advanced proposals for adaptive processors com-
bine several LPTs [7, 12, 13, 15, 21].
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Unfortunately, controlling processor adaptation effectively is
challenging. Indeed, an adaptive processor with multiple LPTs
needs to make the twin decisions of when to adapt the hardware and
what specific LPTs to activate. These decisions are usually based
on testing a few different configurations of the LPTs and identify-
ing which ones are best, and when.

Nearly all existing proposals for adaptive systems follow what
we call a Temporal approach to adaptation [1, 2, 4, 6, 7, 8, 9, 12,
15, 19, 21]. In this case, both the testing (or exploration) for the
best configuration and the application of the chosen configuration
are tied to successive intervals in time. Specifically, to identify the
best configuration, the available configurations are typically tested
back-to-back one after another. Moreover, once the testing period is
over, the adaptation decisions to be made at the beginning of every
new interval are based on the behavior of the most recent interval(s).
The rationale behind these schemes is that the behavior of the code
is largely stable across successive intervals.

In this paper, we introduce a new approach to adaptation: the Po-
sitional approach. In this case, both the testing for the best configu-
ration and the application of the chosen configuration are associated
with position, namely with particular code sections. To identify the
best configuration, the available configurations are tested on differ-
ent invocations of the same code section. Once the best configu-
ration for a code section is identified, it is kept for later use when
that same code section is invoked again. The rationale behind this
approach is that the behavior of the code is largely stable across in-
vocations of the same section. Note also that, with this approach,
we can optimize the adaptations globally across the whole program.

To combine ease of implementation and effectiveness, we pro-
pose to use subroutines as the granularity of code sections in po-
sitional adaptation. Moreover, we propose three implementations
of subroutine-based positional adaptation that are generic, easy to
implement, and effective. Each implementation targets a differ-
ent workload environment: embedded or specialized server, general
purpose, and highly dynamic. Our results show that all three im-
plementations of subroutine-based positional adaptation are much
more effective than temporal schemes. On average, they boost
the energy savings of applications by 50% and 84% over temporal
schemes in two experiments.

This paper is organized as follows: Section 2 describes in more
detail subroutine-based positional adaptation; Section 3 presents our
three different implementations; Section 4 discusses our evaluation
environment; Section 5 evaluates the implementations; Section 6
discusses related work, and Section 7 concludes.
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2 Subroutine-Based Positional Adaptation

This paper proposes the Positional approach to adaptation, in
contrast to the currently-used Temporal approach [1, 2, 4, 6, 7, 8, 9,
12, 15, 19, 21]. The fundamental difference between them is their
different approach to exploiting program behavior repetition: the
temporal approach exploits the similarity between successive inter-
vals of code in dynamic order, while the positional approach ex-
ploits the similarity between different invocations of the same code
section.

These two approaches differ on how they test the configurations
to identify the best one, and on how they apply the best configura-
tion. Specifically, temporal schemes typically test several configura-
tions in time succession. Consequently, each configuration is tested
on a different section of the code, which may have a different be-
havior. This increases the inaccuracy of the calibration. Moreover,
once the testing period is over, the adaptation decisions to be made
at the beginning of every new interval are based on the behavior of
the most recent interval(s). As a result, if the code behavior changes
across intervals, the configuration applied will be non-optimal.

In positional schemes, instead, we associate both the testing of
configurations and the application of the chosen one with position,
that is, with a particular code section. To determine the best con-
figuration for a code section, different configurations are tested on
different executions of the same code section. Once the best config-
uration is determined, it is applied on future executions of the same
code section.

Positional adaptation is based upon the intuition that program
behavior at a given time is mostly related to the code that it is exe-
cuting at that time. This intuition is also explored in [23]. Further,
positional adaptation has the advantage that, if we can estimate the
relative weight of each code section in the program, we can optimize
the adaptations globally across the program: each configuration is
activated in the code sections where it has the greatest benefit com-
pared to all other sections and all other configurations available, all
subject to a maximum cost (e.g. slowdown) for the whole program.

2.1 Granularity of Code Sections

Before applying configurations on code sections, we need to de-
termine the granularity of these sections. Code sections used in po-
sitional adaptation should satisfy three conditions: capture homo-
geneous behavior within a section, capture heterogeneous behavior
across contiguous sections, and be easy to support.

In this paper, we propose to use the major subroutines of the
application as code sections for adaptation. Intuitively, choosing
subroutines is likely to satisfy the first two conditions. Indeed, a
subroutine often performs a single, logically distinct operation. As
a result, it may well exhibit a behavior that is roughly homogeneous
and different from the other subroutines. Later in the paper, we show
data that suggest that, on average, code behavior is quite homoge-
neous within a subroutine (Section 5.2), and fairly heterogeneous
across subroutines (Section 5.3.2).

Using subroutines also eases the implementation in many ways.
First, most subroutine boundaries are trivial to find, as they are
marked by call and return instructions. Second, most applications
are structured with subroutines.

In our proposal, each code section is constructed with one of the
major subroutines of the application plus all the minor subroutines

that it dynamically calls. Code sections can nest one another. The
remainder of the program, which is the root (main) subroutine and
the minor subroutines called from main, also forms one code sec-
tion. This section is usually unimportant: on average, it accounts
for about 1% of the execution time in our applications. It is pos-
sible that, in some applications, this section may have a significant
weight. In that case, we can extend our algorithm to subdivide this
section to capture behavior variability. For the applications that we
study, this is unnecessary.

It is possible that a given subroutine executes two logically dis-
tinct operations, or that it executes completely different code in dif-
ferent invocations. Our algorithms do not make any special provi-
sion for these cases and still obtain good results (Section 5).

Finally, there are other choices for code sections, such as fixed-
sized code chunks (e.g. a page of instructions) or finer-grained enti-
ties such as loops. However, they all have some drawbacks. Specif-
ically, for fixed-sized code chunks, the boundaries are arbitrary and
do not naturally coincide with behavior changes. On the other hand,
using fine-grained or sophisticated entities may involve higher time
or energy overheads. Moreover, there is some evidence that us-
ing finer-grained entities only provides fairly limited improvements
over using subroutine-based sections [11, 18].

3 Implementing Subroutine-Based Positional
Adaptation

We present three different implementations of subroutine-based
positional adaptation. They differ on how many of the adaptation
decisions are made statically and how many are made at run time.
Specifically, we call Instrumentation (I) the selection of when to
adapt the processor, and Decision (D) the selection of what LPTs
to activate or deactivate at those times. Then, each selection can be
made Statically (S) before execution or Dynamically (D) at run time.
Each of the three implementations targets a different workload envi-
ronment, which we label as embedded or specialized-server, general
purpose, and highly dynamic (Figure 1).

SISD:

Static Dynamic
Decision: What to adapt

Embedded or

Dynamic

Static
Instrumentation:
When to adapt

SIDD:

DIDD:
Dynamic

PurposeSpecialized Server General

Highly

Figure 1. Different implementations of subroutine-based po-
sitional adaptation and workload environments targeted.

In general, as we go from Static Instrumentation and Static De-
cision (SISD) to SIDD, and then to DIDD, the adaptation process
becomes increasingly automated and has more general applicability.
However, it also requires more run-time support and has less global
information. Note that there is no DISD environment because the
decisions on LPT activation or deactivation cannot be made prior to
deciding on the instrumentation points.

We want implementations that are generic, flexible to use, and
simple. In particular, they should be able to manage any number of
dynamic LPTs. Moreover, to trigger adaptations, we prefer not to
use any LPT-specific metrics such as cache miss rate or functional
unit utilization. There are two reasons for this. First, it is hard to



cross-compare the impact of two different LPTs using two different
metrics. Second, such metrics need empirical thresholds that are
often application-dependent.

While positional adaptation can be used for different purposes,
here we will use it to minimize the energy consumed in the proces-
sor subject to a given tolerable application slowdown (slack). We
assume that the processor provides support to measure energy con-
sumption. While energy counters do not yet exist in modern pro-
cessors, it has been shown that energy consumption could be esti-
mated using existing performance counters [16]. In the following,
we present each of our three implementations in turn.

3.1 Static Instrumentation & Decision (SISD)

In an embedded or specialized-server environment, we can use
off-line profiling to identify the important subroutines in the appli-
cation, and to decide what LPTs to activate or deactivate at their
entry and exit points.

3.1.1 Instrumentation Algorithm

A single off-line profiling run is used to identify the major sub-
routines in the application. For a subroutine to qualify as major, its
contribution to the total execution time has to be at least thweight,
and its average execution time per invocation at least thgrain. The
reason for the latter is that adaptation always incurs overhead, and
thus very frequent adaptation should be avoided. We instrument
entry and exit points in major subroutines. At run time, minor sub-
routines will be dynamically included as part of the closest major
subroutine up the call graph. Finally, recall that the remaining main
code in the program also form one “major subroutine”.

To reduce overhead, we use several optimizations. For example,
we create a wrapper around a recursive subroutine and only instru-
ment the wrapper. Also, if a subroutine is invoked inside a tight
loop, we instrument the loop instead.

3.1.2 Decision Algorithm

We perform off-line profiling of the application to determine the
impact of the LPTs. Consider first the case where each LPT only has
two states (on and off), and LPTs do not interfere with each other. In
this case, if the processor supports n LPTs, we perform n+1 profil-
ing runs: one run with each LPT activated for the whole execution,
and one run with no LPT activated. In each run, we record the exe-
cution time and energy consumed by each of the instrumented sub-
routines. Consider subroutine i and assume that Ei and Di are the
energy consumption and execution time (delay), respectively, of all
combined invocations of the subroutine when no LPT is activated.
Assume that when LPTj is activated, the energy consumed and
execution time of all invocations of the subroutine is Eij and Dij ,
respectively. Thus, the impact of LPTj on subroutine i is ∆Eij and
∆Dij , where ∆Eij = Ei − Eij and ∆Dij = Dij − Di. These
values are usually positive, since LPTs tend to save energy and slow
down execution.

Once we have ∆Eij and ∆Dij for a subroutine-LPT pair, we
compute the Efficiency Score of the pair as:











−1 if ∆Eij ≤ 0 ; increases energy consumed
+∞ if ∆Eij > 0 & ∆Dij ≤ 0 ; saves energy, speeds up
∆Eij

∆Dij
Otherwise ; saves energy, slows down

The efficiency score indicates how much energy a pair can save
per unit time increase, allowing direct comparisons between dif-
ferent pairs. High, positive values indicate more efficient tradeoffs.
Subroutine-LPT pairs that both save energy and speed up the appli-
cation are very desirable; pairs that increase the energy consumed
are undesirable.

Once the results of all subroutine-LPT pairs are obtained, we
sort them in a Score Table in order of decreasing efficiency score.
Each row in the table includes the accumulated slowdown, which
is the sum of the ∆Dij of all the pairs up to (and including) this
entry. This accumulated slowdown is stored as a percentage of to-
tal execution time. This table is then included in the binary of the
application, and will be dynamically accessed at run time from the
instrumentation points identified above. Note that, in each produc-
tion run of the application, a tolerable slack for the application will
be given. That slack will be compared at run time to the accumu-
lated slowdown column of the table, and a cut-off line will be drawn
in the table at the point where the slowdown equals the slack. Pairs
in the table that are below the cut-off line are not activated in that
run.

Simple extensions handle the case when an LPT has multiple
states. Briefly, we perform a profile run for each configuration and
record ∆Eij and ∆Dij . Since two such configurations cannot be
activated concurrently on the same subroutine, if we select a second
configuration, we need to “reverse” the impact of the first configu-
ration on the score table. This effect is achieved by subtracting in
the table the impact of one configuration from that of the next most
efficient configuration of the same subroutine-LPT pair. In the case
where an LPT has too many configurations, the algorithm chooses to
profile only a representative subset of them. Alternatively, it could
find the best configurations through statistical profiling [6].

When two LPTs interfere with each other or are incompatible
in some ways, the algorithm simply combines them into a single
LPT that takes multiple states. Some of these states may have ∆Eij

and ∆Dij that are not the simple addition of its component LPTs’;
other states may be missing due to incompatibility. The resulting
multi-state LPT is treated as indicated above.

Finally, we assume that the effect of an LPT on a subroutine is
largely independent of what LPTs are activated for other subrou-
tines.

3.2 Static Instrum. & Dynamic Decision (SIDD)

In a general-purpose environment, it may be unreasonable to re-
quire so many profiling runs. Consequently, in SIDD, only the In-
strumentation algorithm is executed off-line. It needs a single pro-
filing run to identify the subroutines to instrument and their weight.
The Decision algorithm is performed during execution, using code
included in the binary of the application.

The Decision algorithm runs in the first few invocations of the
subroutines marked by the Instrumentation algorithm. Consider one
such subroutine. To warm up state, we ignore its first invocation
in the program. In the second invocation, we record the number
of instructions executed, the energy consumed, and the time taken.
Then, in each of the n subsequent invocations, we activate one of
the n LPTs, and record the same parameters. When a subroutine has
gone through all these runs, our algorithm computes the efficiency
scores for the subroutine with each of the LPTs, and inserts them in
the sorted score table. With this information, and the weight of the



subroutine as given by the Instrumentation algorithm, the system re-
computes the new cut-off line in the score table. At any time in the
execution of a program, the entries in the score table that are above
the cut-off line are used to trigger adaptations in the processor.

The fact that the Decision algorithm runs on-line requires that
we change it a bit relative to that in Section 3.1.2. One difficulty
is that the efficiency score for a subroutine-LPT pair is now com-
puted based on a single invocation of the subroutine. To be able
to compare across invocations of the same subroutine with different
numbers of instructions, we normalize energy and execution time
to the number of instructions executed in the invocation. Thus, we
use Energy Per Instruction (EPI) and Cycles Per Instruction (CPI).
Furthermore, the ratio of energy savings to time penalty used in
the efficiency score (now

∆EPIij

∆CPIij
) is too sensitive to noise in the

denominator that may occur across invocations of the same subrou-
tine. Consequently, we use an efficiency score that is less subject
to noise, namely EPIi∗CPIi

EPIij∗CPIij
. The values in the numerator corre-

spond to subroutine i when no LPT is activated, while the values
in the denominator correspond to subroutine i when LPTj is acti-
vated. As usual, high efficiency scores are better.

A second difficulty in the on-line Decision algorithm occurs
when a subroutine has only a few, long invocations. In this case,
the algorithm may take too long to complete for that subroutine. To
solve this problem, our system times out when a subroutine has been
executing for too long. At that point, our system assumes that a new
invocation of the same subroutine is starting and, therefore, it tests
a new LPT.

The computation of efficiency scores and the updates to the ta-
ble only occur in the first few invocations of the subroutines. In
steady state, the overhead is the same as in SISD: at instrumentation
points, the algorithm simply checks the table to decide what LPTs
to activate. Appendix A briefly discusses the overheads involved.

3.3 Dynamic Instrumentation & Decision (DIDD)

We now consider an environment where the application binaries
remain unmodified. In this case, both Instrumentation and Deci-
sion algorithms run on-line. In practice, DIDD is useful in highly-
dynamic environments, such as internet workloads where programs
are sometimes executed only once, or in just-in-time compilation
frameworks. Moreover, it is also useful when it is too costly to
modify the binary.

DIDD needs three micro-architectural features. The first one
dynamically identifies the important subroutines in the application
with low overhead. The second one automatically activates the cor-
rect set of LPTs for these subroutines. The third one automatically
redirects execution from the first few invocations of these subrou-
tines to a dynamically linked library that implements the Decision
algorithm.

3.3.1 Identifying Important Subroutines

We propose a simple micro-architecture module called the Call
Stack (Figure 2). On a subroutine call, the Call Stack pushes in an
entry with the subroutine ID and the current readings of the time
and energy counters. For ID, we use the block address of the first
instruction of the subroutine. On a subroutine return, the Call Stack
pops out an entry. If the difference between the current time and

the entry’s time is at least thinvoc, the subroutine is considered im-
portant. As a result, the hardware saves its ID in a fully-associative
table of important subroutines called Call Cache (Figure 2).

In MemoryOn−chip

DecisionMadeHitMaskEnergyTimeID

MaskID

Call CacheCall Stack

LibPtr

Accounted Energy

Overflow Counter

Call Stack Pointer

Call Table (Software)

ID Mask EPI∆
Return Address

Accounted Time

D

Figure 2. Support for DIDD. The shaded area corresponds
to the proposed on-chip hardware. It occupies an insignificant
area: about 0.29 mm2 in 0.18 µm technology.

The Call Stack handles the nesting of important subroutines by
subtracting the callee’s execution time from the caller’s. To support
this case, we maintain an Accounted Time register that accumulates
the cycles consumed by completed invocations of important subrou-
tines up to the current time (Figure 2). With this support, when we
push/pop an entry into/from the Call Stack, the current time is taken
to be the wall clock time minus the Accounted Time. Moreover,
when we finish processing the popping of an important subroutine,
we add its time contribution to the Accounted Time. As a result, its
contribution will not be erroneously assigned to its caller. Figure 2
also includes an Accounted Energy register that is used in the same
way.

If the Call Stack overflows, we stop pushing entries. We main-
tain an Overflow Counter to count the number of overflow levels.
When the counter falls back to zero, we resume operating the Call
Stack.

3.3.2 Activating LPTs & Invoking Decision Algorithm

The hardware must perform two operations at the entry and exit
points of these important subroutines. In steady state, it must acti-
vate or deactivate LPTs; in the first few invocations of these subrou-
tines, it must redirect execution to the library that implements the
Decision algorithm. We consider these two cases in turn.

In steady state, each of the subroutines in the Call Cache keeps
a mask with the set of LPTs to activate on invocation (Mask field)
and a DecisionMade (D) bit set. When an entry is pushed into the
Call Stack, the hardware checks the Call Cache for a match. If the
entry is found, the LPTs in the Mask field are activated (after saving
the current mask of LPTs in the Call Stack) and the Hit bit in the
Call Stack is set. The Hit bit will be useful later. Specifically, when
the entry is popped from the Call Stack, if the Hit bit is set, the Call
Cache is checked. If the corresponding D bit is set, the hardware
simply restores the saved mask of activated LPTs.

In the first few invocations of an important subroutine, the sub-
routine must run under each of the LPTs in sequence, and the result
must be analyzed by the Decision algorithm (Section 3.2). During
this period, the corresponding entry in the Call Cache keeps its D
bit clear and Mask indicates the single LPT to test in the next invo-
cation. As usual, when an entry is pushed into the Call Stack, the
hardware checks the Call Cache and, if the entry is found, the LPT



in the Mask is activated. When the entry is popped out of the Call
Stack, if the Hit bit is set and the corresponding D bit is clear, the
hardware redirects execution to the Decision algorithm library.

This redirection is done transparently. We modify the branch
unit such that when a subroutine return instruction is executed, the
hardware checks if the returning subroutine is in the Call Cache and
its D bit is clear. If so, the return instruction is replaced by a jump
to the entry point of the Decision library code. This entry point is
stored in the LibPtr special register (Figure 2). The library runs
the Decision algorithm as in Section 3.2: it reads the time and en-
ergy consumed by this subroutine-LPT pair from the Call Stack,
computes the efficiency score, and updates the score table. In its
operation, the Decision algorithm keeps its state in a software data
structure in memory called Call Table (Figure 2). Once finished, the
library issues a return, which redirects execution back to the caller
of the important subroutine. This is feasible because the original
return address was kept in place, in its register or stack location.
In addition, during the redirection to the library, the RAS (Return
Address Stack) was prevented from adjusting the pointer and be-
coming misaligned. With this support, we have effectively delayed
the return from the important subroutine by invoking the Decision
algorithm seamlessly and with little overhead.

Before the Decision library returns, it updates the Mask for this
subroutine in the Call Cache to prepare for the next invocation. If it
finds that it has tested all the LPTs for this subroutine, it computes
the steady state value for the Mask. Then, it sets the Mask to that
value and sets the D bit. Future invocations of this subroutine will
not invoke the library anymore.

It is possible that capacity limitations force the displacement of
an entry from the Call Cache. There is no need to write back any
data. When the corresponding subroutine is invoked again, the Call
Cache will miss and, on return from the subroutine, the Decision
library will be invoked. At that point, the Decision library will copy
the Call Table entry for the subroutine to the Call Cache, effectively
restoring it to its old value.

Overall, the proposed hardware is fairly modest. We use
CACTI [24] to estimate that the hardware in Figure 2 takes 0.29
mm2 in 0.18 µm technology. This estimate assumes 32 entries for
the Call Cache and Call Stack.

3.3.3 Decision Algorithm

The Decision algorithm used is similar to the one for SIDD. The
only difference is that subroutines are now identified on the fly and,
therefore, their contribution to the total execution time of the pro-
gram is unknown. Consequently, the algorithm needs to make a
rough estimation. It assumes that all the important subroutines have
the same weight: 10%. The inaccuracy of this assumption does not
affect the ranking of the subroutine-LPT pairs in the score table.
However, it affects the location of the cut-off line in the table. As
a result, it is now more challenging to fine tune the total program
slowdown to be close to the allowed slack.

We have attempted to use more accurate, yet more costly ways of
estimating the contribution of each subroutine. Specifically, we have
added support for the system to continuously record and accumulate
the execution time of each subroutine. We can then recompute the
weights of all the subroutines periodically and update the cut-off
line in the score table. From the results of experiments not presented
here, we find it hard to justify using these higher-overhead schemes.

3.4 Tradeoffs

Table 1 summarizes the tradeoffs between our three implemen-
tations. SISD is the choice when the off-line profiling effort can
be amortized over many runs on the platform where profiling oc-
curred. SISD has complete global information of the program and,
therefore, can make well-informed adaptation decisions. The only
source of inaccuracy is the difference between the profiling and pro-
duction input sets. Finally, SISD has minimal run-time overhead.

Pros Cons Domain

SISD
Global information of the
program. Minimal run-time
overhead

Requires many off-line pro-
filing runs. Profiling has to
be on target platform

Embedded systems
and specialized
servers

SIDD

Single performance-only
profiling run. Profiling is
partially platform indepen-
dent

Run-time overhead at start-
up. Partial information.
Limited profiling

General purpose

DIDD No off-line profiling
Same as SIDD. Extra micro-
architectural support

Unavailable off-line
profiling: e.g. dy-
namically generated
binary

Table 1. Tradeoffs between the different implementations of
subroutine-based positional adaptation.

SIDD has a wider applicability. It is best for environments where
software is compiled for a range of adaptive architectures, each of
which may even have a different set of LPTs. In this case, the rank-
ing of adaptations is not included in the application code. It is ob-
tained on-line, by measuring the impact of each LPT on the target
platform, while the application is running. The only off-line profil-
ing needed is to identify important subroutines and their execution
time weight. This does not need to be carried out on the exact tar-
get platform. However, SIDD has several shortcomings. First, it
incurs run-time overhead, partly due to the application of inefficient
adaptations during the initial period of LPT testing. Second, some
decisions on what adaptations to apply are necessarily sub-optimal,
since they are made before testing all subroutine-LPT pairs. Finally,
SIDD relies on the first few invocations of each subroutine to be rep-
resentative of the steady state, which may not be fully accurate.

DIDD has the widest applicability. It works even when no off-
line profiling is available. This is the case when binaries are dy-
namically generated, or in internet workloads where programs are
often executed only once. The shortcomings of DIDD are the micro-
architectural support required and all the shortcomings of SIDD
with higher intensity. In particular, identifying the important sub-
routines on-line is challenging and, unless it is done carefully, may
lead to high overheads.

4 Evaluation Environment

4.1 Architecture and Algorithm Parameters

To evaluate positional adaptation, we use detailed execution-
driven simulations. The baseline machine architecture includes a
6-issue out-of-order processor, two levels of caches, and a Rambus-
based main memory (Table 2). The processor can be adapted using
three LPTs, which are described in Section 4.3. The simulation
models resource contention in the entire system in detail, as well as
all the overheads in our adaptation algorithms.

We compare our implementations of positional adaptation
to three existing temporal adaptation schemes, which we call



Processor

Frequency: 1GHz
Technology: 0.18µm
Voltage: 1.67V
Fetch/issue width: 6/6
I-window entries: 96
Ld/St units: 2
Int/FP/branch units: 4/4/1
MSHRs: 24

Branch penalty: 8 cycles (min)
Up to 1 taken branch/cycle
RAS entries: 32
BTB: 2K entries, 4-way assoc
Branch predictor:

gshare
entries: 8K

TLB: like MIPS R10000

Cache L1 L2 Bus & Memory

Size: 32KB 512KB
RT: 3 cycles 12 cycles
Assoc: 2-way 8-way
Line size: 32B 64B
Ports: 2 1

FSB frequency: 333MHz
FSB width: 128bit
Memory: 2-channel Rambus
DRAM bandwidth: 3.2GB/s
Memory RT: 108ns

Table 2. Baseline architecture modeled. MSHR, RAS, FSB
and RT stand for Miss Status Handling Register, Return Ad-
dress Stack, Front-Side Bus, and Round-Trip time from the
processor, respectively. Cycle counts are in processor cycles.

DEETM′, Rochester, and Rochester′. The parameter values used
for all the schemes are shown in Table 3. thweight, thgrain, and
thinvoc are set empirically.

Algorithm Parameter Values

SISD and thweight = 5%; thgrain = 1,000 cyc;
SIDD LPT (de)activation overhead: 2-10 instr

DIDD
thinvoc = 256 cyc; Call Stack: 32 entries, 9B/entry,
56 pJ/access; Call Cache: 32 entries, full-assoc,
4B/entry, 66 pJ/access

DEETM′ Microcycle = 1, 10, 100 µs;
Macrocycle = 1,000 microcycles

Rochester Parameter values as in [3, 4], e.g. basic interval = 100 µs
Rochester′ Rochester with the tuning optimization in [6]

Table 3. Parameter values used for the positional and tempo-
ral adaptation schemes.

Consider the positional schemes first. Under static instrumen-
tation (SISD and SIDD), we filter out subroutines whose average
execution time per invocation is below thgrain; under dynamic in-
strumentation (DIDD), we filter out any invocation that takes less
than thinvoc. These two thresholds have different values because
they have slightly different meanings. The table also shows the val-
ues of the main instruction and energy overheads of the schemes;
they are discussed in Appendix A. The energy numbers are obtained
with the models of Section 4.2.

DEETM′ is an enhanced version of the DEETM Slack algorithm
in [12]. In this algorithm, the set of active LPTs is re-assessed at
constant-sized time intervals called macrocycles. At the beginning
of a macrocycle, each different configuration is tested for one mi-
crocycle. After all configurations have been tested in sequence, the
algorithm decides what configuration to keep for the remainder of
the macrocycle. This algorithm is more flexible than the one in [12]:
the latter assumes a fixed effectiveness rank of LPTs, which limits
the set of configurations that it can apply. In [12], a microcycle is
1,000 cycles and a macrocycle is 1,000 microcycles. We examine
three different microcycles, namely 1, 10, and 100 µs. We call the
schemes DEETM′1, DEETM′10, and DEETM′100, respectively.

Rochester is the scheme in [4]. The algorithm uses a basic inter-
val. Initially, each configuration is tested for one interval. After that,

the best configuration is selected and applied. From then on, at the
end of each interval, the algorithm compares the number of branches
and cache misses in the interval against those in the previous inter-
val. If the difference is within a threshold, the configuration is kept,
therefore extending the effective interval. If the difference is over
the threshold, the algorithm returns to testing the configurations.
The algorithm uses several other thresholds. For our experiments,
we start with the parameter values proposed by the authors [3], in-
cluding a basic interval of 100,000 cycles. We then slightly tune
them for better performance.

Rochester′ adds one enhancement proposed in [6] to the
Rochester scheme. The enhancement appears when the difference
between the branches and misses in one interval and those in the
previous one is above the threshold. At that point, Rochester′ does
not return to testing the configurations right away. The rationale
is that it is best not to test configurations while the program goes
through a phase change. The algorithm waits until the difference is
below the threshold, which indicates that the change has stabilized.
Then, the testing of configurations can proceed.

Overall, we consider temporal schemes with fixed-size inter-
vals (DEETM′) and with variable-sized intervals (Rochester and
Rochester′). Note that we do not choose the interval sizes so that
all schemes have exactly the same average size, or they match the
average size of the intervals in positional schemes. Instead, we use
the parameter values as proposed by the authors (although we also
slightly tune them to get better performance). With this approach,
we hope to be fair and capture good design points for each scheme.

4.2 Energy Consumption Estimation

To estimate energy consumption, we incorporated Wattch [5]
into our simulator. We enhanced Wattch in two ways. Recall that
Wattch uses a modified version of CACTI [24] to model SRAM ar-
rays. We have refined the modeling of such structures to address
several limitations. Specifically, we enhanced the modeling of the
sense amplifiers and the bitline swing for writes to make them more
accurate. In addition, we always search for the SRAM array con-
figuration that has the lowest energy consumption given the timing
constraints.

For the energy consumption in the functional units, we used
Spice models of the functional units of a simple superscalar core
to derive the average energy consumed for each type of operation.
We used results from [20] for more complicated functional units.

We compute the energy consumed in the whole machine, includ-
ing processor, instruction and data caches, bus, and main memory.
To model the energy consumed in the memory, we use Intel’s white
paper [14]. For example, from that paper, one memory channel op-
erating at full bandwidth and its memory controller consume 1.2W.

4.3 Adaptive Low-Power Techniques (LPTs)

We model an adaptive processor with three LPTs that can be dy-
namically activated and deactivated (Figure 3). These LPTs are: a
filter cache [17], a phased cache [10] mode for the L1 data cache,
and a slave functional unit cluster that can be disabled. We choose
these LPTs because they are well understood and target some major
sources of energy consumption in processors. Note that our adap-
tation algorithms are very general and largely independent of the
LPTs used – we simply choose these three LPTs as examples.
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Figure 3. Pipeline of the adaptive processor considered. The
shaded areas show the LPTs.

Instruction Filtering (IFilter). The instruction cache hierar-
chy has a 1-Kbyte filter cache [17]. If it is deactivated, instructions
are fetched from the L1 instruction cache; otherwise, the processor
checks the filter cache first. Using the filter cache usually saves en-
ergy because each hit consumes very little energy. The reason is that
the filter cache is small, direct-mapped, and does not require a TLB
check because it is virtually tagged. However, the code may run
slower because of frequent misses in the small filter cache, which
then access L1. Interestingly, this LPT may sometimes speed up the
code: when the working set is small enough to fit in the filter cache,
the faster access allows quicker recovery on branch mispredictions.

We do not maintain inclusion between the filter and L1 instruc-
tion caches. A read access to the filter cache takes 1 cycle and con-
sumes 386 pJ, compared to 2 cycles and 2022 pJ to access the fully-
pipelined L1. We model the filling of cold caches.

Phased Cache Mode (PCache). A phased cache is a set-
associative cache where an access first activates only the tags [10].
If there is a match, only the matching data array is subsequently
activated, reducing the amount of bitline activity and sense amplifi-
cation in the data array. Consequently, a phased cache saves energy
at the cost of extra delay.

In our processor, the 2-way set-associative L1 data cache can
work as a normal or as a phased cache. Based on our analysis, in
phased mode, a cache hit consumes 974 pJ, a 45% reduction over the
1763 pJ consumed in a normal mode hit. However, the hit takes two
extra cycles to complete. Cache misses save even more energy and
do not add latency. Note that there is overhead in switching between
the two modes. Specifically, when the phased mode is activated, the
cache buffers the signal to the data array for two cycles. When the
cache is restored to normal mode, the cache blocks for two cycles to
drain the pipeline. All these transition overheads are fully modeled.

Reduced Number of ALU Units (RALU). Wide-issue proces-
sors typically have many functional units (FUs). Since few applica-
tions need all the FUs all the time, processors typically clock-gate
unused FUs. Our Wattch-based simulator models the normal clock-
gating of unused FUs by reducing the energy consumed by FUs to
10% of their maximum consumption when they are unused.

With the RALU LPT, we go beyond this reduction. In our pro-
cessor, the FUs are organized into a master and a slave cluster. Each
cluster has two FP, two integer, and one load/store unit. The mas-
ter cluster also has a branch unit. When this LPT is deactivated,
both FU clusters can be used, and clock gating proceeds as indi-
cated above. When this LPT is activated, the slave FU cluster is
made inaccessible. This allows us to save all the clock distribution
energy in the slave cluster. As a result, we save most of the remain-
ing 10% dynamic power in the FUs of the cluster. For multi-cycle
FUs, we can only activate this LPT after the FU pipeline is drained.
This effect is modeled in our simulations. Overall, this LPT can

only have a modest energy-savings effect.

4.4 Applications

To assess positional adaptation on different kinds of workloads,
we run multimedia, integer, and floating-point applications. In se-
lecting these applications, we try to include a diverse set of high-
level behaviors. In particular, we include programs where the av-
erage dynamic subroutine is very short (30 instructions in MCF)
or very long (35,000 instructions in HYDRO). The applications are
compiled with the IRIX MIPSPro compiler version 7.3 with -O2.

Table 4 lists the applications. Each application has an input set
used for the off-line profiling runs (Profiling), and one for all other
experiments (Production). Recall from Section 2 that positional
adaptation has the advantage that it optimizes the adaptations glob-
ally: each configuration is activated in the globally best section of
the program. Therefore, to fully demonstrate the effectiveness of
positional adaptation, we need to simulate the applications from the
beginning to the end. Unfortunately, the full ref SPEC input sets are
too large for this. Consequently, as the production input sets for the
SPEC applications, we use a reduced reference input set (reduced
ref), which enables us to run the simulations to completion. With
these inputs, simulations take from several hundred million to over
2.5 billion cycles. For all applications, we have verified that these
reduced input sets running on our simulator produce similar cache
and TLB miss rates as the ref inputs running natively on a MIPS
R12000 processor. We have also verified that the relative weight of
each subroutine does not change much. For additional verification,
one experiment in Section 5.3 compares executions with reduced ref
and ref input sets.

Suite Application Profiling Input Production Input

SPECint2000

BZIP

Test Reduced ref
CRAFTY
GZIP
MCF
PARSER

SPECfp95
HYDRO

Test Reduced ref
APSI

Multimedia
MP3D 128kbps joint 160kbps joint HQ
MP3E 24kbps mono 128kbps joint

Table 4. Applications executed.
Due to space limitations, we do not show the breakdown of the

energy consumed in the different components of our architecture as
we run these applications. However, our results broadly agree with
other reports [5]. As expected, energy consumption is widely spread
over many components. Therefore, it is unlikely that a single LPT
can save most of the energy.

5 Evaluation

To evaluate subroutine-based positional adaptation, we first char-
acterize our algorithms (Section 5.1), then evaluate their impact
(Section 5.2), and finally show why the subroutine is a good granu-
larity (Section 5.3).

5.1 Characterization

Table 5 shows the result of running our static and dynamic
Instrumentation algorithms. Recall that our algorithms identify
the major subroutines in the code and instrument their entry and



exit points. At run time, non-major subroutines are automatically
lumped in with their caller major subroutines. Also, the main code
in the program plus any non-major subroutines that it dynamically
calls form one other “major subroutine”. For comparison, the table
also shows data on all the subroutines in the applications.

Stat Instrum Dyn Instrum All Subroutines in Application
Applic

N T (µs) N T (µs) N
Size/Invocation

Time (ns) Instruc

APSI 14 8.8 19 6.1 93 200.1 272.3
BZIP 4 2612.0 5 275.9 54 71.4 108.5
CRAFTY 5 2.6 10 11.6 113 49.6 58.9
GZIP 6 2368.0 11 955.1 69 152.7 202.2
HYDRO 8 2530.0 15 407.6 111 51349.4 34784.1
MCF 3 20.3 6 5.0 50 50.4 28.4
MP3D 5 3.5 9 5.4 65 928.9 1411.5
MP3E 7 35.4 24 8.5 151 178.5 280.3
PARSER 7 28.7 62 976.4 267 37.6 39.2

Average 6.5 845.5 17.9 294.6 108.1 5890.9 4131.7

Table 5. Characterizing the static and dynamic Instrumenta-
tion algorithms. In the table, N is the number of major sub-
routines, while T is the time between instrumentation points.

The data shows that our algorithms identify only a handful of
major subroutines to drive LPT activation/deactivation. On average,
the number is about 7 and 18 for the static and dynamic algorithms,
respectively. This suggests that the structures needed to manage
adaptation information are small (e.g. a 32-entry Call Cache in
DIDD). Static and dynamic algorithms select a different number of
subroutines because they work differently.

The table also shows the average time between instrumentation
points, as they are found dynamically at run time. The time ranges
from a few µs to thousands of µs. This is the average time between
potential adaptations. Within one algorithm, this time varies a lot
across applications, which indicates a range of application behav-
ior. On average, these time values are roughly of the same order of
magnitude as the intervals in temporal schemes (Table 3). They are
long enough to render various overheads negligible (Appendix A).

We now characterize the activation of our LPTs. In a series of ex-
periments, we activate each LPTj on each subroutine i and record
the resulting total energy saved in the program (∆Eij) and total
program slowdown (∆Dij). With these values, we compute the ef-
ficiency score (Section 3.1.2) of each subroutine-LPT pair. We then
rank the pairs from higher to lower efficiency score and accumu-
late the total energy and total delay. The result is the Energy-Delay
Tradeoff curve of the application.

Figure 4-(a) shows such a curve for BZIP. The origin in the fig-
ure corresponds to a system with no activated LPT. As we follow the
curve, we add the contribution of subroutine-LPT pairs from most
to least efficient, accumulating energy reduction (Y-axis), and exe-
cution slowdown (X-axis). Finally, the last point of the curve has
all the LPTs activated all the time. As an example, in Figure 4-(a),
we show the contribution of a subroutine-LPT pair that saves ∆Eij

and slows down the program ∆Dij .
The curve can be divided into three main regions. In the Always

apply region, the curve travels left and up. This region contains
subroutine-LPT pairs that both save energy and speed up the pro-
gram. An example may be a filter cache in a small-footprint subrou-
tine with many mispredicted branches. The filter cache satisfies the
average access faster and with less energy than the ordinary cache.
Overall, we always enable the pairs in this region.

∆
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Figure 4. Energy-delay tradeoff curve for BZIP (a) and for
all the applications (b).

In the E-D trade-offs region, the curve travels right and up. This
region contains pairs that save energy at the cost of slowing down
the program. This is the most common case. Starting from the left,
we apply the pairs in this region until the accumulated application
slowdown reaches the allowed slowdown (slack).

In the Never apply region, the curve travels right and down. This
region contains pairs that increase energy consumption and slow
down the program. These pairs should not be applied.

Figure 4-(b) shows the curves for all the applications. We see
that all the applications exhibit a similar behavior. The figure also
shows that if all LPTs are activated indiscriminately all the time
(rightmost point), the result is a very sub-optimal operating point.

Finally, we characterize how our algorithms use the three LPTs.
Figure 5 shows the percentage of time that each LPT is activated for
the different applications. Due to space constraints, we only show
data for SISD. The figure shows the results for a target application
slack set to 0.5% and 5% of the application execution time. Overall,
the figure shows that our algorithm activates all three LPTs for a
significant portion of the time in many applications. Moreover, LPT
selection varies across applications.

5.2 Effectiveness of Positional Adaptation

To evaluate the effectiveness of positional adaptation, we per-
form two experiments, where we want to save as much energy as
possible while trying to limit the performance penalty to no more
than 0.5% or 5.0%. We compare our three positional schemes
(SISD, SIDD, and DIDD) to the temporal algorithms in Table 3
(DEETM′1, DEETM′10, DEETM′100, Rochester, and Rochester′).
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Figure 5. Percentage of time that each LPT is activated in
each application under SISD. The data corresponds to two ex-
periments with different slacks.

For each algorithm, Figure 6 shows the reduction in energy in the
machine (upper bars) and the increase in execution time of the ap-
plication (lower bars). The energy includes the contribution of the
processor, caches, bus, and memory. The bars are separated into
two groups, corresponding to the 0.5% and 5.0% slack experiments.
Each bar is the average of our nine applications.

Note that the energy reduction bars are normalized to the energy
reduced by an ideal adaptation algorithm that serves as an upper
bound for a given slack. This algorithm adapts the processor every
1,000 instructions based on perfect knowledge of the impact of each
of our LPTs on these upcoming instructions. Moreover, the adap-
tation is overhead-free. We choose to show the bars relative to this
ideal scheme rather than to simply show the fraction of energy re-
duced by each scheme. The reason is that the latter depends on how
good our LPTs are as much as how good our algorithms are. Recall
that our algorithms are general and largely independent of the LPTs
used. With these LPTs, the ideal algorithm reduces energy use in
the machine by 8.7% and 11.6% for the 0.5% and 5.0% slack exper-
iments, respectively. Our bars show how close we get to this ideal
reduction.
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Figure 6. Energy reduction in the machine and program ex-
ecution time increase for different algorithms.

Consider the 0.5% slack experiments first. In energy savings, the
positional schemes are significantly more effective than the tempo-
ral ones. On average, positional schemes are 70% as effective as the
ideal scheme, while temporal schemes are only 38% as effective.
Positional schemes are more effective because they are able to pre-
dict code behavior more accurately. As discussed in Section 2, the
accuracy is greater for two reasons: (1) in the testing period, they
test all configurations on different invocations of the same code, and
(2) in steady state, they make the adaptation decisions for an upcom-

ing interval based on the behavior of a previous instance of the same
interval.

Among positional schemes, SISD saves about 80% of the energy
that the ideal scheme saves, and does not slow down the program
much beyond the target slack. It is, therefore, the preferred scheme
if it is possible to use it. Both SIDD and DIDD save less energy
and mispredict past the 0.5% slack. In particular, DIDD mispredicts
significantly, mostly because of lack of global information at run
time. With such a slowdown, DIDD manages higher energy savings
than SIDD. In normal conditions, we would expect the opposite.

For the 5% slack case, the positional schemes are again more ef-
fective than the temporal ones: on average, they save 75% of the en-
ergy that the ideal scheme saves, while temporal schemes save 50%.
Among the positional schemes, there is a more gradual change in
behavior. The smoother shape appears because positional schemes
can now identify good subroutine-LPT pairs to apply more easily
than in the 0.5% slack experiment. To see why, note that we want
the pairs in Figure 4-(b) that are to the left of X=5% (instead of
those to the left of X=0.5% in the 0.5% slack experiment). The
wider range available lessens the impact of measurement inaccura-
cies, causing fewer selections of pairs beyond the target range, as it
happened for DIDD in the 0.5% slack experiment. Overall, the dif-
ferences in the resulting SISD, SIDD, and DIDD bars now broadly
reflect the difference in accuracy between the schemes.

As for the temporal schemes, the differences in energy and slow-
down between them appear to be modest. We note that each scheme
has its own strengths. Specifically, Rochester and Rochester′ can
vary the size of the interval between adaptations dynamically, which
improves their effectiveness. On the other hand, the DEETM′

schemes have the ability to apply any given LPT for only a fraction
of a macrocycle [12], if they estimate that full application would re-
sult in exceeding the slack. The result is that all the schemes have
roughly similar effectiveness.

Overall, we derive two main conclusions. First, positional
schemes are more effective than temporal ones. They boost the en-
ergy savings over temporal schemes by an average of 84% and 50%
in the two experiments performed. Moreover, they are relatively
more effective in the small slack experiment, where accurately se-
lecting the best adaptation is harder.

The second conclusion results from the observation that the en-
ergy savings of the ideal and SISD schemes are quite close (on aver-
age, SISD saves 83% of ideal). Recall that the ideal scheme selects
the best LPTs every 1,000 dynamic instructions without overhead,
while SISD can only attempt to select at major subroutine bound-
aries. Such boundaries occur every several hundred µs on average
(Table 5). Consequently, we infer that the behavior of the code ex-
ecuted inside each of these subroutines appears quite homogeneous
to our LPTs.

5.3 Insights into Subroutine-Based Adaptation

Finally, we present data to help understand why subroutine-
based positional adaptation is effective. Specifically, we discuss
its accuracy in the testing (Section 5.3.1) and steady-state (Sec-
tion 5.3.2) periods. We also discuss the influence of different input
sets (Section 5.3.3). Appendix A discusses its overheads.
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Figure 7. Variation of Energy Per Instruction (EPI) and IPC across testing intervals without actually applying any LPTs. Chart (a)
uses the usual input sets for the applications, while Chart (b) changes the input sets of the SPEC applications to be ref.

5.3.1 Accuracy in the Testing Period

The accuracy of an adaptation algorithm is affected by how ac-
curately the different configurations are calibrated during the testing
period. Recall that, in that period, each configuration is activated
for one interval. Then, the impact of the different configurations
are compared to each other. Since each configuration is tested on a
different interval, the more stable the code behavior is across these
intervals, the more accurate this comparison is.

To estimate code stability across testing intervals, we measure
the average energy per instruction (EPI) and IPC of each testing
interval without actually applying any LPTs. Then, we compute the
variation of these metrics in the testing period.

Figure 7 shows the resulting variation of the EPI and IPC for dif-
ferent algorithms. For positional adaptation, we consider the static
(SI) and dynamic (DI) Instrumentation algorithms. For these al-
gorithms, the testing intervals are the first few invocations of each
major subroutine. For DEETM′, the testing intervals are the first
few microcycles in each macrocycle. We compute the average on a
macrocycle basis and then average out for all macrocycles. Finally,
for Rochester and Rochester′, every phase change is followed by
several testing intervals. Consequently, we compute the average on
a phase-change basis and then average out for all phase changes.

The figure is divided in two parts. Consider first Figure 7-(a),
which uses default parameters. We see that the subroutine-based
positional algorithms have lower EPI and IPC variations. This
suggests that they test configurations during more stable execution
conditions and, therefore, achieve a higher accuracy in calibrating
LPTs. The reason is that they test all configurations on the same
code section.

Recall that to fully evaluate our positional schemes, we need to
run applications to completion and, therefore, had to reduce the in-
put sets for the SPEC applications. To see if using a bigger input set
affects the results, Figure 7-(b) repeats the experiments using the ref
input sets for the SPEC applications. The programs run for a win-
dow of 4.1 billion cycles after the initialization, and then stop. In
this case, only the temporal schemes can be evaluated fairly. From
the figure, we see that using the bigger input sets reduces the varia-
tion in the temporal schemes only slightly.

5.3.2 Accuracy in the Steady-State Period

Adaptation algorithms identify steady-state periods where a con-
figuration is kept unchanged from one interval to the next. Code
conditions are stable, and the algorithm predicts that the current

configuration will have a similar impact in the next interval. Con-
sequently, the steady-state accuracy of an algorithm will be greatest
when the impacts of a configuration on two intervals that belong to
the same steady state are most similar.

To estimate the accuracy, we identify, for each algorithm, the
set of intervals that it considers to be in a given steady state. For
positional algorithms, these are successive invocations of the same
subroutine in steady state; for temporal algorithms, they are con-
tiguous intervals not separated by phase changes. We then apply
one LPT to all these intervals and record the changes in energy con-
sumption and execution speed. Then, we compute the variation of
this change across all these intervals. The smaller this variation is,
the more accurate the scheme is in steady state. Finally, we average
out all the steady states.

Figure 8 shows the variation for different algorithms. For
brevity, we only show the average of all three LPTs. From the fig-
ure, we see that the subroutine-based positional algorithms have a
lower variation. The impact of LPTs across intervals in steady state
is more stable. Consequently, these algorithms can more accurately
predict the impact of an LPT on an upcoming interval in steady state.
This low variability is a result of executing the same code section.
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steady-state intervals. The “SI Across” bars on the right show,
for SI, the variation of the impact across different subroutines.
In all cases, the data is the average for IFilter, PCache, and
RALU.

For comparison, the “SI Across” bars on the right of Figure 8
show, for SI, the variation of the impact across different subroutines.
We can see that, for SI, the variation across different subroutines
is much higher than that across different invocations of the same
subroutine. This data shows that code behavior across subroutines
is relatively heterogeneous.



5.3.3 Influence of Different Input Sets

To gain insights into the influence of using different input sets
for profiling and production runs in SI, we perform the following
experiment. We run an application and measure the average impact
of a given LPT on a given subroutine. We perform this experiment
for four different input sets: test, train, ref, and reduced ref. Figure 9
shows the variation observed across these four runs. In the figure,
the data is grouped by application, averaging out all the subroutines
and all the LPTs.

    0

    2

    4

    6

APSI BZIP CRAFTY GZIP HYDRO MCF MP3D MP3EPARSER Average

V
ar

ia
tio

n 
(%

)

EPI

IPC

Figure 9. Variation of the average impact of an LPT on a
subroutine across different input sets.

Overall, the average impact of an LPT on a subroutine is quite
stable across different input sets. In fact, if we compare the figure
to the SI bars in Figure 8, we see that the variation across different
input sets is even smaller than the variation across invocations of the
subroutine inside a single program execution. This suggests that, to
predict the average impact of an LPT on a subroutine, it can be more
accurate to use the average impact measured with a training input
than to use the impact measured on one invocation using the same
input. Therefore, using profiles is a viable solution for subroutine-
based positional adaptation.

6 Related Work

There are many proposals for adaptive hardware mechanisms
targeted at performance or energy optimization [1, 2, 4, 6, 7, 8, 9,
12, 13, 15, 19, 21]. They adapt a variety of aspects of the proces-
sor, including cache organization, issue width, issue window size, or
voltage and frequency. The majority of these schemes use Temporal
adaptation [1, 2, 4, 7, 8, 9, 12, 19, 21]: the testing of the LPTs and
the activation of the chosen LPTs are related to time. In our paper,
we introduced Positional adaptation, where both the testing and the
application are tied to a code section. Our approach exploits the fact
that the behavior of the program at a given time is directly related to
the code it is executing. This idea is also exploited in [23].

The scheme in [13, 22] performs a form of positional adaptation
for multimedia applications composed of repeating frames. The
scheme uses the best adaptation for the past frames to predict the
adaptation to perform in the next frame. The adaptation is posi-
tional because each frame simply uses a different data set to execute
the same code. Overall, this work is different than ours in that it
requires user knowledge of the frame-based structure of the code.
Furthermore, it is specialized for the multimedia domain. Our work
applies to general-purpose code and exploits its subroutine struc-
ture.

The scheme in [6] is based on a temporal scheme with variable-
sized intervals [4]. Calibrations and applications of adaptations are

performed in intervals tied to time (number of instructions). How-
ever, the scheme collects working-set signatures for the code exe-
cuted in each interval and saves the configuration used. When the
algorithm sees a signature similar to one seen before, it applies the
saved configuration. This is done to eliminate the overhead of an-
other testing period. Reusing adaptations when the code may be
similar gives the algorithm an interesting positional aspect.

The temporal scheme in [15] also has an aspect of positional
adaptation: reconfiguration is only attempted in some known sec-
tions of the code. In these sections, the system tests several adapta-
tions in time sequence to identify the best configuration — making
the scheme intrinsically temporal.

The temporal scheme in [7] improves the accuracy of the testing
period for temporal schemes by using “mimic” counters that can
predict the effect of multiple configurations without trying them out
one by one. However, like other temporal schemes, the algorithm
exploits the similarity of behavior across consecutive time intervals.
Moreover, it is not clear that this approach of using counters can be
exploited for all LPTs.

Performing adaptations at subroutine boundaries was considered
in [4]. However, after comparing it to performing adaptations at
periodic intervals, the latter was selected, largely due to simplicity.

7 Conclusions and Future Work

This paper has presented Positional adaptation, a new approach
where both the testing of configurations and the application of
the chosen configurations are associated with particular code sec-
tions. We use subroutines as the granularity for such code sec-
tions. We have also designed three very general implementations of
subroutine-based positional adaptation, which correspond to differ-
ent choices in the tradeoff between general applicability and effec-
tiveness. To evaluate these implementations, we selected several ex-
ample dynamic LPTs. Overall, all three implementations are more
effective than temporal adaptation schemes. On average, they boost
the energy savings of applications by 50% and 84% over temporal
schemes in two experiments. In general, of course, the absolute en-
ergy savings are highly dependent on the LPTs used. Intuitively,
subroutine-based positional adaptation is effective because the sys-
tem becomes highly predictable: different invocations of the same
subroutine usually have similar code behavior, and react similarly
to the same adaptation.

While we have used positional adaptation in a low-power envi-
ronment, we can also apply it to performance-centric designs. In this
case, the designer’s toolkit could include a set of High Performance
Techniques (HPTs) instead of LPTs. The goal would be to adapt the
processor by activating each HPT at the best point in the program,
such that the program runs as fast as possible without increasing en-
ergy consumption beyond a certain limit. Other environments can
also use positional adaptation.

Our finding that the behavior of different invocations of the
same subroutine is very predictable can be exploited in many ways.
Specifically, it can be used to reduce the overhead of costly oper-
ations by intelligently applying them to only one of several execu-
tions that we expect to behave similarly. These costly operations
can be dynamic optimization, cycle-by-cycle architectural simula-
tion, or evaluation of various time-consuming optimizations.
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[8] D. Folegnani and A. González. Energy-Effective Issue Logic. In Inter-
national Symposium on Computer Architecture, pages 230–239, May
2001.

[9] T. Halfhill. Transmeta Breaks x86 Low-Power Barrier. Microproces-
sor Report, 14(2):1,9–18, February 2000.

[10] A. Hasegawa, I. Kawasaki, K. Yamada, S. Yoshioka, S. Kawasaki,
and P. Biswas. SH3: High Code Density, Low Power. IEEE Micro,
15(6):11–19, December 1995.

[11] M. Huang, J. Renau, and J. Torrellas. Profile Based Energy Reduction
for High-Performance Processors. In 4th ACM Workshop on Feedback-
Directed and Dynamic Optimization, December 2001.

[12] M. Huang, J. Renau, S. Yoo, and J. Torrellas. A Framework for Dy-
namic Energy Efficiency and Temperature Management. In Interna-
tional Symposium on Microarchitecture, December 2000.

[13] C. Hughes, J. Srinivasan, and S. Adve. Saving Energy with Archi-
tectural and Frequency Adaptations for Multimedia Applications. In
International Symposium on Microarchitecture, pages 250–261, De-
cember 2001.

[14] Intel Corporation. Mobile Power Guidelines 2000, Rev 1.0, 1998.

[15] A. Iyer and D. Marculescu. Power Aware Microarchitecture Resource
Scaling. In Design, Automation and Test in Europe, pages 190–196,
March 2001.

[16] R. Joseph and M. Martonosi. Run-Time Power Estimation in High
Performance Microprocessors. In International Symposium on Low
Power Electronics and Design, August 2001.

[17] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure. International Symposium on Mi-
croarchitecture, pages 184–193, December 1997.

[18] G. Magklis, M. Scott, G. Semeraro, D. Albonesi, and S. Dropsho.
Profile-based Dynamic Voltage and Frequency Scaling for a Multiple
Clock Domain Processor. In International Symposium on Computer
Architecture, June 2003.

[19] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating: Specula-
tion Control for Energy Reduction. In International Symposium on
Computer Architecture, pages 132–141, July 1998.

[20] A. Nannarelli. Low Power Division and Square Root. PhD thesis, Uni-
versity of California, Irvine, Department of Electrical and Computer
Engineering, June 1999.

[21] D. Ponomarev, G. Kucuk, and K Ghose. Reducing Power Require-
ments of Instruction Scheduling Through Dynamic Allocation of Mul-
tiple Datapath Resources. In International Symposium on Microarchi-
tecture, pages 90–101, December 2001.

[22] R. Sasanka, C. Hughes, and S. Adve. Joint Local and Global Hard-
ware Adaptations for Energy. In International Conference on Archi-
tectural Support for Programming Language and Operating Systems,
pages 144–155, October 2002.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally Characterizing Large Scale Program Behavior. In International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 45–57, October 2002.

[24] S. Wilton and N. Jouppi. CACTI: An Enhanced Cache Access and
Cycle Time Model. IEEE Journal on Solid-State Circuits, 31(5):677–
688, May 1996.

Appendix A: Positional Adaptation Overheads

Our algorithms have both steady-state and initialization overheads. The
former occur when activating/deactivating LPTs in steady state, and have
three sources.

The first source is extra instructions to activate/deactivate LPTs in SISD
and SIDD. Upon entering an instrumented subroutine, we save the current
LPT mask and indirectly load the mask to apply from a table. Upon exiting
the subroutine, we restore the mask and check that we are not in initializa-
tion mode. Thus, depending on the implementation, entering or exiting an
instrumented subroutine adds 2-10 instructions. The frequency of such an
operation is shown in Table 5. In the worst-case application (CRAFTY), it
occurs once every 2.6 µs, although on average it occurs once every 845 µs
or 295 µs depending on the Instrumentation algorithm used. Consequently,
the resulting energy and time overhead is negligible.

The second source of overhead is the accesses to the Call Stack and Call
Cache in DIDD. Upon any subroutine entry, the Call Stack is updated and
the Call Cache is read. If this is a major subroutine, its LPT mask is activated
and, on subroutine return, the old mask is restored. On subroutine return, the
Call Stack is updated. In all these operations, the energy consumed is mod-
eled. For example, Table 3 shows that a Call Stack and a Cache Cache access
consume 56 pJ and 66 pJ, respectively. The energy consumed is included in
our simulations, and can be shown to be insignificant. Since these structures
consume very little energy, even in an environment where subroutine calls
are very frequent, this overhead will not become significant.

The third overhead of LPT activation/deactivation is some architectural
state transitions that depend on the particular LPT. These overheads are dis-
cussed in Section 4.3, and include buffering the signal to the data array (or
blocking the cache) for 2 cycles in PCache and filter cache misses in IFilter.
The impact of these overheads on performance and energy consumption is
included in our simulations.

Finally, the dynamic execution of the Instrumentation algorithm in DIDD
and the Decision one in SIDD and DIDD are initialization overheads. Such
overheads are in practice negligible because they occur only during the be-
ginning stages of the program. For example, the Decision algorithm invokes
a library n+1 times for each instrumented subroutine, where n is the number
of LPTs. Although many such invocations involve little more than reading
and saving the energy and performance counters, we estimate that the aver-
age invocation takes 100 instructions. Given that there are on average 7 or
18 instrumented subroutines per application (Table 5), the total cost of the
algorithm is less than 10,000 instructions. This is minuscule compared to
the program execution time. An analysis of the Instrumentation algorithm
shows that its overhead is also minuscule.




