
Implementation Issues of Slackened Memory Dependence Enforcement
Technical Report

Alok Garg, M. Wasiur Rashid, and Michael Huang
Department of Electrical & Computer Engineering

University of Rochester
{garg, rashid, michael.huang}@ece.rochester.edu

Abstract

An efficient mechanism to track and enforce memory de-
pendences is crucial to an out-of-order microprocessor. The
conventional approach of using cross-checked load queue
and store queue, while very effective in earlier processor
incarnations, suffers from scalability problems in modern
high-frequency designs that rely on buffering many in-flight
instructions to exploit instruction-level parallelism. In this
paper, we make a case for a very different approach to dy-
namic memory disambiguation. We move away from the
conventional exact disambiguation strategy and adopt an
opportunistic method: we allow loads and stores to access
an L0 cache as they are issued out of program order, hoping
that with such a laissez-faire approach, most loads actu-
ally obtain the right value. To guarantee correctness, they
execute a second time in program order to access the non-
speculative L1 cache. A discrepancy between the two exe-
cutions triggers a replay. Such a design completely elimi-
nates the necessity of real-time violation detection and thus
avoids the conventional approach’s complexity and the as-
sociated scalability issue. We show that even a simplistic
design can provide similar performance level achieved with
a conventional queue-based approach with optimistically-
sized queues. When simple, optional optimizations are ap-
plied, the performance level is close to that achieved with
ideally-sized queues.

1 Introduction

Due to their limited ability of buffering in-flight instruc-
tions, current out-of-order processors fail to hide very long
latencies such as those of off-chip memory accesses. This
limitation stems from the fact that scaling up buffering
structures usually incur latency and energy penalties that un-
dermine the overall design goal. With the popularization of
multi-core products, the precious off-chip bandwidth will
be subject to more contention and in turn further exacerbate
memory latencies. Thus, latency tolerance will continue to
be an important design goal of microarchitecture.

In this paper, we focus on the memory disambiguation
and forwarding logic. To orchestrate the out-of-order ex-

ecution of a large number of in-flight instructions, an effi-
cient mechanism to track and enforce memory dependency
is imperative. The conventional approach uses age-based
queues – often collectively referred to as the load-store
queue (LSQ) – to buffer and cross-compare memory op-
erations to ensure that the out-of-order execution of mem-
ory instructions does not violate program semantics under a
certain coherence and consistency model. The LSQ buffers
memory updates, commits their effects in-order, forwards
values between communicating pairs of load and store, and
detects incorrect speculation or potential violation of coher-
ence and consistency. Due to the complex functionality it
implements and the fact that the address for a load or a store
needs to be matched against those of the opposite kind in an
associative manner and matching entries need to go through
time-consuming priority logic, the LSQ is perhaps the most
challenging microarchitectural structure to scale up.

We propose a novel design that moves away from the
conventional load-store handling mechanism that strives to
perform most accurate forwarding in the first place and
proactively detect and recover from any dependence vio-
lation. Instead, we adopt a very passive, “slackened” ap-
proach to forwarding and violation detection. First, we use
an L0 cache to perform approximate, opportunistic mem-
ory forwarding at the execution stage, hoping that most
loads would actually get correct data. In this stage, there
is minimum interference to instruction execution. Second,
we also avoid relying on proactive monitoring to detect vi-
olation. Our correctness guarantee comes from an in-order
re-execution of memory accesses. Discrepancy between the
two different executions triggers a replay. Such a decoupled
approach not only makes it easier to understand, design, and
optimize each component individually, it is also effective.
Without any associative search logic, in a processor that can
buffer 512 in-flight instructions, even a naive implementa-
tion of our design performs similarly with a traditional LSQ-
based design with optimistically-sized queues. The perfor-
mance is further improved by using optional optimizations
and approaches that of a system with ideally-scaled LSQ:
on average, about 2% slower for integer applications and
4.3% slower for floating-point applications. Furthermore,
both naive and optimized design scale very well.
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The rest of the paper is organized as follows: Section 2
recaps the basics of the memory dependence logic and high-
lights recent optimization proposals; Section 3 describes
the basic design and optional optimization techniques; Sec-
tion 4 describes the experimental methodology; Section 5
provides some quantitative analysis; and Section 6 con-
cludes.

2 Background and Related Work

Out-of-order processors strive to maximize instruction-level
parallelism (ILP) by aggressively finding future ready in-
structions to execute. To maintain sequential program se-
mantics, data dependences have to be preserved. While
register-based dependences are tracked explicitly via phys-
ical register IDs, memory-based dependence tracking is
much less straightforward because without calculating the
effective address, it is almost impossible for the hardware to
figure out the dependence relationship. To make things even
more complicated, an execution order of loads and stores
different from the program order may result in a different
outcome of a parallel program even though from one proces-
sor’s perspective, the reordering does not appear to violate
sequential semantics. On the other hand, strictly enforcing
program order for memory instructions would significantly
hamper an out-of-order processor’s capability of extracting
ILP. Thus, most implementations allow load store reorder-
ing, allow load’s execution in the presences of unresolved
earlier stores, and employ a dynamic mechanism to ensure
that the execution order preserves program semantics.

2.1 Conventional Queue-Based Mechanism

In a typical out-of-order core, the result of a store instruc-
tion is not released to the memory hierarchy until the store
commits so as to easily support precise exception. A load
instruction, on the other hand, is allowed to access the mem-
ory hierarchy as soon the address is available. In a unipro-
cessor system, this speculative (potentially premature) ac-
cess will return correct data as long as no in-flight stores
earlier than the load will modify any part of the data being
loaded. If there is a store with the same address as the load,
then there are the following three possibilities by the time
the load executes and accesses the cache: 1. Both the ad-
dress and the data of the store are available. The load can
then use the data directly (called load forwarding), ignoring
the data fetched from the cache. 2. Only the address of the
store is available. Then the load has to wait until the store
data is available for forwarding. 3. The address of the store
is unknown yet. Then the fact that the data in the cache is
stale can only be detected at a later time when the store’s
address is known. (Alternatively, to avoid dealing with this
situation, the load can be held off until the addresses of all
prior stores are resolved, which can unnecessarily delay in-
dependent and otherwise ready loads.) The hardware has to
handle all these possibilities correctly.

In current implementations, this is done using a circuitry
generally referred to as the Load-Store Queue (LSQ), which
is usually divided into a separate load queue (LQ) and a
store queue (SQ). When a load executes, parallel to the
cache access, its address is checked against those of older
stores in the SQ. Among all the matches, the youngest store
is the producer and its data, if available, should be for-
warded to the load. If the data is not available, the load is
rejected and retried later [22]. Conversely, when a store exe-
cutes, the address is checked against those of younger loads
to find out if any has executed prematurely. All premature
loads and all their dependents need to be squashed and re-
executed. In a practical design, the processor squashes all
instructions from the oldest premature load (or even from
the triggering store) onward. This is often called a re-
play [7].

Though conceptually straightforward, current designs of
(age-based) LSQ are complex and hard to scale. A number
of factors hinder the scalability. First, the queues are prior-
ity CAMs. Not only is an address used to search through the
queue in a fully associative manner, the match results also
have to go through a priority logic in order to pin-point the
oldest or the youngest instance. Second, the searches in the
store queue are on the timing critical path of load execution,
limiting its latency. Furthermore, unlike in a set-associative
cache where a virtually-indexed, physically-tagged design
can be easily implemented to hide the address translation
latency, the search in the fully-associative SQ is serialized
with address translation. Third, the design is further com-
plicated due to the handling of coherence and consistency
with other processors or I/O devices, or corner cases such
as partial overlaps of operands.

2.2 Highlight of Optimized and Alternative Designs

Recognizing the scalability issue of the LSQ, many different
proposals have emerged recently. Due to the complex nature
of the technical detail and the size of the body of work, we
only attempt to highlight the solutions here, rather than to
discuss the nuances. We will contrast this body of work and
our proposal later in Section 3.3.

A large body of work adopts a two-level approach to
disambiguation and forwarding. The guiding principle is
largely the same. That is to make the first-level (L1) struc-
ture small (thus fast and energy efficient) and still able to
perform a large majority of the work. This L1 structure
is backed up by a much larger second-level (L2) structure
to correct/complement the work of the L1 structure. The
L1 structure can be allocated according to program order
or execution order (within a bank, if banked) for every
store [1, 8, 23] or only allocated to those stores predicted
to be involved in forwarding [3, 16]. The L2 structure is
also used in varying ways due to different focuses. It can
be banked to save energy per access [3, 16]; it can be fil-
tered to reduce access frequency (and thus energy) [1, 18];
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or it can be simplified in functionality such as removing the
forwarding capability [23].

In general, if the L1 structure handles a large portion
of the task without accessing the L2, then the energy con-
sumption and latency of the L2 structure is certainly less
critical. However, unlike a cache hierarchy, a disam-
biguation/forwarding logic has an important difference that
makes a hierarchical structure less effective. The L1 struc-
ture does not have a fundamental filtering effect for the L2
structure: to perform exact disambiguation, one needs to
check all in-flight stores, even if there is a match in the L1.
A notable exception is when entries in L1 are allocated ac-
cording to program order. In that case, a matching store in
the L1 “shields” all other stores in the L2. Unfortunately,
this requirement can prevent optimizations that maximize
the hit rate of L1.

Another body of work only uses a one-level structure (for
stores) but reduces check frequency through clever filtering
or prediction mechanisms [15, 18]. In [18], a conservative
membership test using bloom filter can quickly filter out ac-
cesses that will not find a match. In [15], only loads pre-
dicted to need forwarding check the SQ. The safety net is
for stores to check the LQ to find mis-handled loads at the
commit stage.

Value-based re-execution presents a new paradigm for
memory disambiguation. In [6], the LQ is eliminated al-
together and loads re-execute to validate the prior exe-
cution. Notice that the SQ and associated disambigua-
tion/forwarding logic still remain. Filters are developed to
reduce the re-execution frequency [6, 17]. Otherwise, the
performance impact due to increased memory pressure can
be significant [17].

Research has shown that dependence relationship be-
tween static load and store instructions shows predictabil-
ity [13, 14]. Prediction allows one to focus on a smaller
set of stores in the disambiguation and forwarding logic.
In [19], if a producer can be pin-pointed, the load forwards
directly from the store’s SQ entry. If there are several poten-
tial producers, however, another predictor provides a delay
index and instructs the load to wait until the instruction indi-
cated by the delay index commits. In [20], loads predicted
to be dependents of stores are delayed. When allowed to
execute, it accesses a store forwarding cache (SFC) and a
memory dependence table. This design avoids the need to
exactly predict the identity of the producer as memory ad-
dresses help to further clarify the producer.

Finally, software analysis is shown to be effective in
helping to reduce disambiguation resource pressure [10].

3 Slackened Memory Dependence
Enforcement (SMDE)

In an attempt to simplify the design of memory dependence
enforcement logic, we adopt a different approach from con-

ventional designs and recent proposals. Instead of achiev-
ing the two goals of high performance and correctness by
encouraging a highly out-of-order execution of memory in-
structions and simultaneously imposing a proactive moni-
toring and interference of the execution order, we use two
decoupled executions for memory instructions, each tar-
geting one goal: a highly out-of-order front-end execution
with little enforcement of memory dependency to keep the
common-case performance high, and a completely in-order
back-end execution (with no speculation) to detect viola-
tions and ensure program correctness. Separating the two
goals allows a much more “relaxed” implementation (hence
the name) which not only mitigates the escalating micro-
processor design complexity, but can lead to opportunities a
more sophisticated and proactive approach can not provide.
For example, our design can effortlessly allow an arbitrarily
large number of in-flight memory instructions. Such bene-
fits can offset the performance loss due to the simplicity of
the design.

In the following, we first describe the basic architectural
support to ensure functional correctness of the design. This
results in a naive, simplistic design that is hardly efficient.
Yet, as we will show later, due to the ability to allow any
number of memory instructions to be in-flight at the same
time, even this naive version of SMDE can perform simi-
larly as a system with optimistically-sized LSQ (but is oth-
erwise scaled up to buffer more in-flight instructions). We
then discuss simple, optional optimization techniques that
address some of the performance bottlenecks. With these
optimizations, the design can perform close to idealized
LSQ.

3.1 A Naive Implementation of SMDE

Figure 1 is the block diagram of the naive design, which
shows the memory hierarchy and high-level schematic of
the processor pipeline. For memory instructions, a front-
end execution is performed out of program order like in
a normal processor at the execution stage. However, in a
naive SMDE, memory instructions are issued entirely based
on their register dependences. No other interference is im-
posed. As a result, it is possible to violate memory depen-
dences and this makes the front-end execution fundamen-
tally speculative (and it is treated as such). Thus the L0
cache accessed in the front-end execution does not propa-
gate any result to L1. To detect violations, memory accesses
are performed a second time, totally in-order at the commit
stage of the pipeline. Any load that obtains different data
from the two executions will take the result of the back-end
execution and trigger a squash and replay of subsequent in-
structions.

From one perspective, the only execution in our design
that is absolutely required is the back-end execution. In the-
ory, therefore, any front-end execution scheme would work
(even if it only returns garbage values). This relieves the
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L2 and the rest of the
memory hierarchy

Execution (out−of−order)

Front−end execution

L1

Fetch/Decode/Dispatch

L0

Commit

Back−end execution

Figure 1. Diagram of the pipeline and memory hier-
archy of the proposed design.

design burden to maintain correctness for the front-end ex-
ecution, effectively relegating it to a value predictor. When
we simply issue memory instructions based on the register
dependences and completely disregard their memory depen-
dences, the front-end execution effectively becomes a slow
but very accurate value predictor: on average, about 98% of
loads obtain a correct value.

From another perspective, the front-end execution can af-
ford to simplify the memory dependence enforcement logic
because the back-end execution provides a safety net for
incorrect speculation. We push that simplification to the
extreme by completely eliminating any enforcement logic.
Such a laissez-faire approach works for normal programs
as our empirical observation shows that about 99% of loads
happen in the “right” time, that is, after the producer has
executed, but before the next writer executes.

The primary appeal of SMDE is its simplicity. The en-
tire framework is conceptually very straightforward and it
is rid of the conventional LSQ using priority CAM logic or
any form of memory dependence prediction, thus avoiding
the scalability problem or circuit complexity issues. Fur-
thermore, the two execution passes are entirely decoupled,
making the design modular. The dedicated back-end exe-
cution offers a large degree of freedom to the design of the
front-end execution. Any rare incidents such as race condi-
tions, corner cases, or even concerns for soft errors can be
completely ignored for design simplicity. We will discuss
examples later.

3.1.1 Front-end execution

Central to our architectural support is an unconventional,
speculative L0 cache. As explained earlier, at the issue time
of a load, we simply access this L0 cache. Meanwhile, we
also allow stores to write to this L0 cache as soon as they
execute. Since the L0 cache is used to handle the com-
mon cases, we want to keep its control extremely simple.
No attempt is made to clean up the incorrect data left by
wrong-path instructions. When a line is replaced, it is sim-
ply discarded, even if it is dirty. And in fact, no dirty bit is
kept, nor is the logic to generate it. Keeping track of and un-
doing wrong-path stores and preventing cast-outs undoubt-
edly complicate the circuitry and undermine the principle of

keeping the common case simple and effective.
Initially, it would appear that such an unregulated L0

cache may be quite useless as load may access the cache
before the producer store has written to the cache or after
a younger store has, and the data could be corrupted in nu-
merous ways: by wrong-path instructions, due to out-of-
order writes to the same location, and due to lost updates
by eviction. However, our value-driven simulation shows
that an overwhelming majority (98% on average) of loads
obtain correct value. Upon closer reflection, this is not as
surprising as it appears. First, compilers do a good job in
register allocation and memory disambiguation. This means
that close-by store-to-load communications are infrequent
in normal programs. Far apart store-load pairs are very
likely to execute in the correct order. Second, write-after-
read (WAR) violations are also infrequent: a load followed
closely by a same-location store are very likely to be part
of a load-operate-store chain, whose execution order will be
enforced by the issue logic. Third, data corruptions in the
L0 cache are not permanent – they are naturally cleansed by
new updates and evictions.

Recall that in a conventional LSQ, forwarding data from
SQ needs associative search followed by priority selection.
Additionally, the virtual address needs to be translated be-
fore used to search the SQ, otherwise, the forwarding can be
incorrect due to aliasing. However rare it is, a partial overlap
(where a producer store only writes part of the loaded data)
has to be detected. Therefore the logic has to be there and
it is invoked every time the queue is searched. In stark con-
trast, the L0 is simply accessed like a cache. As mentioned
before, thanks to the back-end execution, the concern about
these corner case situations is that of performance, not of
correctness, and we can safely ignore them in the front-end.

3.1.2 In-order back-end execution

In-order re-execution to validate a speculative execution is
not a new technique [6, 9]. However, the extra bandwidth
requirement for re-execution makes it undesirable or even
impractical. Prior proposals address this issue by monitor-
ing the earlier, speculative execution order, reasoning about
whether a re-execution is necessary, and suppressing unnec-
essary re-executions [6, 9, 17].

A small but crucial difference between our design and
this prior approach is that we do not rely on avoiding re-
execution. Instead, our dual-cache structure naturally and
easily provides the bandwidth needed for the re-execution.
Although misses from L0 still access L1 and thus increase
the bandwidth demand, this increase is (at least partly) offset
by the fact that most wrong-path loads do not access L1 for
back-end execution.

The benefit of faithful reload without any filtering is con-
crete, especially in enforcing coherence and consistency.
For modern processors, cache coherence is a must (even in
uniprocessor systems, as requiring the OS to maintain cache
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coherent with respect to DMA operation is undesirable).
Regardless of how relaxed a memory consistency model the
processor supports, cache coherence alone requires careful
handling to ensure store serialization: if two loads access-
ing the same location are re-ordered and separated by an
invalidation to that location, the younger load must be re-
played. Hence the memory dependence enforcement logic
needs to heed every invalidation message, not just those that
reach the L1 cache (as cache inclusion does not extend to
in-flight loads). Faithfully re-executing every memory ac-
cess in-order greatly simplifies coherence and consistency
considerations.

Memory operation
sequencing queue

Back−end execution pointer

L0 Cache

L1 Cache

Load−store unit

Figure 2. In-order back-end execution via the mem-
ory operation sequencing queue.

Figure 2 shows the relationship of the logical structures
involved in back-end execution. An age-ordered memory
operation sequencing queue (MOSQ) is used to keep the
address and data of all memory operations generated dur-
ing the front-end execution. During back-end execution, the
recorded address is used to access the L1. Note that the
back-end execution is not a full-blown execution, but only a
repeated memory access. There is no re-computation of the
address, hence no need for functional units or register access
ports. For loads, the data returned from the L1 is compared
to that kept in the MOSQ. A difference will trigger a replay.
A successful comparison makes the load instruction ready
for commit. For stores, the data kept in the MOSQ is writ-
ten to the L1 cache when the store is committed. The back-
end execution is totally in-order, governed by the execution
pointer shown in Figure 2. Note that for store instructions,
re-execution can only happen when they are committed. Es-
sentially, when pointing to a store, the back-end execution
pointer (BEEP) is “clamped” to the commit pointer. For
load instructions, however, BEEP can travel ahead of the
commit pointer allowing reload to happen before commit.

3.1.3 Scope of replay

The scope of instructions to be replayed is similar to that in
a conventional design [7] with an important difference. We
do not re-execute the load instruction that triggers the re-
play. Instead, we only re-execute instructions younger than
the load. The reason is two-fold (we can and we must).
First, unlike in a conventional system where the detection of
a memory order violation merely suggests that the load ob-
tained potentially incorrect data without providing the right

result, in our system, the value from the reload is always
correct and can be used to fix the destination register of the
load instruction. Second, it is necessary not to re-execute
the load to avoid the rare but possible infinite loop. When
a load is replayed in a conventional system, it will eventu-
ally become safe from further replay (e.g., when it becomes
the oldest in-flight memory instruction). Therefore, forward
progress is always guaranteed. In our system, we do not
place any constraint on the front-end execution and thus can
not expect any load to be correctly processed regardless of
how many times it is re-executed. Furthermore, a replay is
triggered by the difference between two loads to two dif-
ferent caches at different time. Fundamentally, there is no
guarantee that the two will be the same. In the pathological
scenario, disagreement between the two can continue indef-
initely. For example, when another thread in the parallel
program is constantly updating the variable being loaded.

The replay trap is handled largely the same way as in a
conventional design [7]. The only additional thing to per-
form is to fix the destination register of the triggering load.

3.1.4 L0 cache cleanup

In addition to the basic operation of replay, we can perform
some optional cleanup in the L0 cache. We emphasize again
that we do not require any correctness guarantee from the
front-end execution, so the difference between cleanup poli-
cies is that of timing, not correctness.

Intuitively, by the time a replay is triggered, the L0 cache
already contains a lot of future data written by in-flight
stores that will be squashed. Thus we can invalidate the
entire cache and start afresh. This eliminates any incorrect
data from the L0 cache and reduces the chance of a future re-
play. The disadvantage, of course, is that it also invalidates
useful cache lines and increases the cache miss rate. This
has its own negative effects, especially in modern proces-
sors, which routinely use speculative wakeup of dependents
of load instructions. When a load misses, this speculation
fails and even unrelated instructions may be affected. For
example, in Alpha 21264, instructions issued in a certain
window following a mis-speculated load will be squashed
and restart the request for issue [7]. Thus, whole-cache in-
validation can be an overkill.

A second alternative, single-flush, is to only flush the line
accessed by the replay-triggering load. The intuition is that
this line contained incorrect data at the time the load exe-
cuted and probably still contains incorrect data. This ap-
proach stays on the conservative side of L0 cleanup and
thus will incur more replays than whole-cache invalidation.
However, it does not affect the cache miss rate as much and
it is simpler to implement.

A third alternative, which we call selective flush, comes
in between the two extremes. In addition to flushing the
line that triggered the replay, we can invalidate all the cache
lines written to by the squashed stores. This can be done by
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traversing the MOSQ and use the address of the stores that
have finished execution to perform the invalidation.

For implementation simplicity we use single-flush. Note
that not flushing any line is also an option, but the replay rate
is much higher than single-flush, which makes its unattrac-
tive. We will show relevant statistics of different replay
strategies in Section /refsec:eval. As we will see, single-
flush actually outperforms other alternatives.

3.2 Performance Optimizations

In the naive implementation of SMDE, we select the most
straightforward implementation in each component. Such
a simplistic design leaves several opportunities for further
optimization. We discuss a few techniques here.

3.2.1 Reducing replay frequency with the fuzzy
disambiguation queue

Although an incorrect load using the L0 cache will not af-
fect program correctness, it does trigger a replay which can
be very costly performance-wise. Hence, simple mecha-
nisms that help reduce replay frequency may be desirable.
Our analysis shows that a large majority of replays are trig-
gered directly or indirectly (a replay rolls back the processor
and thus leaves some future data in the L0 cache which can
cause further replay) by violation of read-after-write order-
ing. In these cases, oftentimes, while the data of the pro-
ducer store is unavailable, the address is ready. In other
words, if we keep track of address information, we can re-
ject some premature loads as in a conventional design [22]
and reduce the replay rate. For this purpose, we introduce a
Fuzzy Disambiguation Queue (FDQ).

>

AgeAddrReject

=

=

Age

Addr Age Valid bit Sticky bit

load probe port invalidation port

QR

S

QR

S

Figure 3. The fuzzy disambiguation queue. For clar-
ity, the figure shows one entry of the queue with one
load probe port and one invalidation port.

Each entry of the FDQ contains the address of a store and
the age of the instruction (Figure 3). A straightforward rep-
resentation of the age is the ROB entry ID plus one or two
extra bits to handle the wrap-around1. Since we only keep
track of stores between address generation and execution,

1Although one bit is sufficient, a two-bit scheme is easier to explain.
The most-significant two bits of the age get increased by 1 every time the
write pointer of the ROB wraps around. When comparing ages, these two
bits follow: 0 < 1, 1 < 2, 2 < 3, and 3 < 0.

we allocate an entry at address generation and deallocate it
when the data is written to the L0 cache.

When a load executes, it sends the address and the age
through one load probe port to probe the FDQ. Out of all
the valid entries, if any entry matches the address of the load
and has an older age, we reject the load (Figure 3), which
will be retried after a certain delay. At the same time a sticky
bit is set to prevent the displacement of the matching entry.
We do this because given limited space, we want to max-
imize the number of “useful” entries in the queue. When
we allocate an entry in the FDQ, if there is no invalid entry,
we randomly evict a valid entry to make room for the new
store. If all entries have the sticky bit set, no entry is allo-
cated. When a store executes, it attempts to deallocate its
FDQ entry, if any. This is done by sending its age through
the invalidation port to clear the valid bit of any matching
entry (Figure 3). When a branch misprediction is detected,
we can flash-clear all valid bits to eliminate orphan entries
(entries whose owners have been squashed). These orphan
entries must be eliminated because once they match a load,
they will perpetually reject the load causing a deadlock. We
note that for a slightly more complex circuit, we can use the
age of the mispredicted branch to selectively invalidate only
entries younger than the branch. This invalidates all the or-
phan entries but keeps other entries intact. Finally, if during
issue, stores also probe the FDQ, we can similarly reject
“premature” stores to prevent write-after-write violations.

Note that an FDQ differs significantly from an SQ in nu-
merous ways. An FDQ does not have a priority logic: We
are only interested in whether there is an older store to the
same location pending execution, not which store. There is
no data forwarding logic in an FDQ either. Data is provided
by the L0 cache alone (no multiplexer is involved). Since
FDQ is an optional filtering mechanism, it is not subject
to the same requirements of an SQ for correctness guaran-
tee and hence there is quite a bit of latitude in its design.
There is no need to try to accommodate all stores and there-
fore there is little scalability pressure. Thanks in part to
the shorter life span of an entry (from address generation
of a store to actual writing to the L0 cache), a small queue
is sufficient for reducing the replay rate. The address used
does not need to be translated nor is it necessary to use all
address bits.

In contrast to prediction-based memory dependence en-
forcement [19,20], our FDQ-based mechanism, though per-
haps less powerful, is much more straightforward. First,
the operation remains entirely address-based. With the ad-
dresses, dependence relationship is clear and unambiguous,
thus we only need one structure. Memory dependence pre-
diction, on the other hand, requires a multitude of tables,
some of which very large and fully associative and many
tables have a large number of ports. Second, while it is
relatively easy to predict the presence of dependence, it is
more challenging to pin-point the producer instruction [14].
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Thus, to ensure accurate communication, additional predic-
tion mechanisms [19] or address-based mechanisms [20]
are used. Third, once a dependence is predicted, it still
needs to be enforced. Memory dependence prediction de-
signs [14, 19, 20] depend on the issue logic to enforce the
predicted memory-based dependence in addition to the reg-
ister dependence. We use the simpler rejection and retry
method to keep the design less intrusive and more modular.

In summary, the intention of using FDQ is not to rival
sophisticated prediction or disambiguation mechanisms in
detecting and preventing dependence violations. It is meant
as a cost-effective mechanism to mitigate performance loss
in an SMDE system.

3.2.2 Streamlining back-end execution

When a load reaches the commit stage, even if it has fin-
ished the front-end execution, it may still block the stage
if it has not finished the back-end execution (reload). This
will reduce the commit bandwidth and slow down the sys-
tem. Ideally, the back-end execution pointer (BEEP) should
be quite a bit ahead of the commit pointer, so that reload
and verification can start early and finish before or when the
instruction reaches the commit stage. Unfortunately, a store
can only execute when the instruction is committed. This
means, every time BEEP points to a store instruction, the
back-end execution will be blocked until the commit pointer
“catches up”.

To streamline the back-end execution, we can employ the
oft-used write buffer to allow stores to start early too, which
indirectly allows loads to start early. If the processor already
has a write buffer (to temporarily hold committed stores to
give loads priority), then the buffer can be slightly modi-
fied to include a “not yet committed” bit that is set during
back-end execution and cleared when the store is commit-
ted. Naturally, the write buffer has to provide forwarding to
later reloads. Also, when handling memory synchronizers
such as a write barrier or a release, the content of the write
buffer has to be drained before subsequent reload can pro-
ceed. In our design, L0 cache fills do not check the write
buffer (for simplicity).

Write buffering always has memory consistency impli-
cations. The sequential semantics require a reload to reflect
the memory state after previous stores have been performed.
A load must also reflect the effects of stores from other pro-
cessors that according to the consistency model, are ordered
before itself. In a sequentially consistent system, stores
from all processors are globally ordered. Therefore, when
an invalidation is received, it implies that the triggering store
(from another processor) precedes all the stores in the write
buffer and transitively precede any load after the oldest store
in the write buffer. Thus, if BEEP has traveled beyond the
oldest store, we need to reset it to the oldest store entry in
the MOSQ and restart from there. In a processor with a
weaker consistency model, stores tend to be only partially

ordered, relaxing the need to roll back BEEP. For example,
in a system relying on memory barriers, when we receive
an external invalidation, we only need to roll back BEEP to
restart from after the oldest memory barrier.

3.2.3 Other possibilities of replay mitigation

While the FDQ successfully addresses the largest source of
replays (Section 5.2), there are other techniques to further
reduce replay frequency or to mitigate their performance
impact. Some of these can be quite effective in reducing
replays. It is also possible to use a write buffer without for-
warding capabilities and stall a reload where the write buffer
potentially contains an overlapping store. We discuss these
possibilities here and show some quantitative analysis anal-
ysis later in Section 5.5.

Replay suppression When a replay is triggered, the common
practice is to discard all instructions after the triggering in-
struction. This may throw out a lot of useful work unneces-
sarily. Within the instructions after the triggering load, only
the dependents (direct or indirect) need to be re-executed.
Therefore a selective replay is conceivable. We modeled se-
lective replay and found that it is useful on top of the naive
design. When replay frequency is reduced by optimization
techniques, however, the benefit naturally reduces as well.
In current microarchitectures, it is not easy to support selec-
tive replay. However, there is one degenerate case of it that
could be supported: when the triggering load has no in-flight
dependents, we only need to fix the destination register and
the replay can be suppressed. Our simulations show that
such load instructions are not rare: about 14% on average,
and can be as high as 100%. Intuitively, it makes sense to
detect these cases and avoid replays.

It is quite easy to track which load instruction has no in-
flight dependents: At register allocation, we can maintain
a bit vector, each bit corresponding to one physical register
to indicate whether there is an in-flight instruction sourcing
from it. Every instruction upon renaming will set the bits
corresponding to the (renamed) source registers. When a
load instruction is decoded, we reset the bit corresponding
to the load’s destination physical register. When a load trig-
gers a replay and its destination register’s bit is not set, we
know there is no dependents in-flight and we can suppress
the replay.

Age-based filtering of L0 cache When the processor recovers
from a branch misprediction or a replay, the L0 cache is not
proactively cleansed to remove pollution left by squashed
instructions. This results in a period when the front-end ex-
ecution is very likely to load a piece of incorrect data, trig-
gering a replay. One option to mitigate the impact is to filter
out some of the pollution by keeping track of the age of the
data in the L0 cache: A store updates the age of the cache
line and a load checks the age. If the age of the cache line
is younger than that of the load, it is probable that the data
is left by stores squashed due to misprediction or replay. In
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that case, going directly to the L1 cache may be a safer bet
than consuming the presumably polluted data. With a FDQ,
we are already generating age IDs for memory operations.
So tracking the age in the L0 requires only minimal extra
complexity.

The age-tracking of L0 cache works as follows. The L0
cache’s tag field is augmented with an age entry. A store
instruction updates the cache line’s age, whereas a load in-
struction compares its age with the age stored in the cache
line at the same time tag comparison is being done. When
the age of the load is older, we simply “fake” an L0 cache
miss and access the L1. Note that here the age tracking is
only a heuristic, therefore the tracking is not exact. The
granularity is at the cache line level and we do not enforce
the age to monotonically increase. Indeed, when out of
order stores happen, age can decrease. Recall that we do
not require any correctness guarantee from the front end,
so we conveniently choose any tracking to reduce complex-
ity. However, since we are using a finite number of bits to
represent age, we need make sure that an old age ID is not
misinterpreted as a new one in the future – otherwise, we
may incur too many unnecessary misses in the L0. This can
be easily achieved: When we extend the ROB ID by 2 bits
to represent age, we reserve a coding of the 2-bit prefix as
“old”. For example, we can cyclically assign 1, 2, and 3
as the prefix for age and reserve prefix 0. An age ID with
prefix 0 is older than another age with a non-zero prefix.
Thus, when the commit pointer of ROB wraps around, we
know that all instructions with a certain prefix (say 2) have
committed and that prefix 2 will be recycled for a later time
period, we then reset those entries whose age have a prefix
of 2 to 0. Thus, these entries will not be incorrectly treated
as pollution. When a cache line is brought in by a load, its
age prefix is also set to 0.

3.3 Differences Between SMDE and Other
Approaches

Recently, many techniques were proposed to address the
LSQ scalability issue in one way or another. While most,
if not all, techniques focus on providing a scalable alterna-
tive design that rivals an ideally scaled LSQ, our main focus
is to reduce the conceptual and implementation complexity.
Besides the difference in focus, the mechanisms we use in
the speculation and the recovery from mis-speculation also
differ from this prior work.

In a two-level disambiguation approach [1, 3, 8, 16, 23],
the fundamental action is still that of an exact disambigua-
tion: comparing addresses and figuring out age relationship
to determine the right producer store to forward from. The
speculation is on the scope of the disambiguation: only a
subset of the stores are inspected. In contrast to these, in
our front-end execution, we allow the loads to blindly ac-
cess the cache structures. Our speculation is on the order
of accesses: if left unregulated, the relative order of loads

and stores to the same address is largely correct (same as
program order).

Two recent designs eliminate fully-associative LQ and
SQ [19,20]. They rely on dependence prediction to limit the
communication of load to only a few stores. This is still a
form of scope speculation – the scope of the stores commu-
nicating to a particular load is reduced to the extreme of one
or a handful. Although both this approach and ours achieve
an LSQ-free implementation, the two styles use very differ-
ent design tradeoffs. While memory dependence is found to
be predictable, pin-pointing the exact producer of a load in-
struction, on the other hand, is very ambitious and requires
numerous predictor tables. Such a design also requires sup-
port from the issue logic to enforce the predicted depen-
dence. Our design performs a different speculation and thus
does not require the array of predictors or the extra depen-
dence enforcement support from the issue logic.

The use of a small cache-like structure in architecture
design is very common. However, the way our L0 cache is
used is very different from prior proposals. In [20], great
care is taken to maintain the access order of cache, so that
no corruption will take place, even under branch mispredic-
tions. In [14], the transient value cache is intended to reduce
bandwidth consumption of stores that are likely to be killed.
It contains only architecturally committed stores and is fully
associative. In contrast to both these small caches, our L0
cache is fundamentally speculative. No attempt is made to
guarantee the absence of data corruption. Indeed, corrup-
tions of all sorts are tolerated in our L0 cache: out of order
updates, wrong-path updates, lost updates due to eviction,
virtual address aliasing, or even soft errors due to particle
strikes.

For mis-speculation detection and recovery, we use an
existing technique: in-order re-execution [6, 9]. However,
the extra bandwidth consumption is a problem associated
with this technique [17]. While prior approaches rely on re-
ducing re-access frequency [6,17,19], our dual cache struc-
ture lends itself well to provide that extra bandwidth demand
effortlessly, thereby avoiding the problem.

Finally, we note that two-pass execution is also used in
entirely different contexts such as for whole-program spec-
ulation [21] and for fault-tolerance [2]. Our design shares
the same philosophy of relying on another independent exe-
cution to detect problems. However, because of the different
context, we do not re-execute the entire program nor attempt
to repair all the state.

In all, our SMDE design employs novel speculation
strategies and structures and uses existing techniques with
new twists to solve problems in a simpler way. As we show
in Section 5, although our target is design simplicity, the
performance of an optimized version comes very close to
that of an idealized LSQ system.
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4 Experimental Setup

To conduct experimental analyses of our design, we use a
heavily modified SimpleScalar [5] 3.0d. On the processor
model side, we use separate ROB, physical register files,
and LQ/SQ. We model load speculation (a load issues de-
spite the presence of prior unresolved stores), store-load re-
play [7], and load rejection [22]. A rejected load suppresses
issue request for 3 cycles. When a store-load replay hap-
pens, we model the re-fetch, re-dispatch, and re-execution.
When simulating a conventional architecture, unlike what is
done in the original simulator, we do not allocate an entry
in the LQ for prefetch loads, i.e., loads to the zero register
(R31 or F31).

We also extended the simulator to model data values
in the caches. Without modeling the actual values in the
caches, we will not be able to detect incorrectly executed
loads. We model the value flow very faithfully. For exam-
ple, when a load consumes an incorrect value due to mis-
speculation and load from wrong address, its pollution in
the L0 cache is faithfully modeled. When a branch con-
sumes a wrong value and arrive at a wrong conclusion, we
force the simulator to model the (spurious) recovery.

We also increased the fidelity in modeling the scheduler
replay [7, 11]. A scheduler replay is related to speculative
wakeup of dependent instructions of a load [12]. In the Al-
pha 21264 scheduler logic, when the load turns out to be a
miss, all instructions issued during a so-called shadow win-
dow are pulled back to the issue queue. We model after
Alpha 21264: there is a two-cycle shadow window in the
integer scheduler, but in the floating-point issue logic, this is
handled slightly differently. Only dependents of loads need
to be pulled back [7].

Our consistency model is after that of the Alpha21264
processor as well. Since we are simulating sequential appli-
cations with no write barriers and there is no bus invalida-
tion traffic, the only thing to note is that at the time a store
is committed, if it is a cache miss, we keep the data in the
SQ (in the conventional configurations) or the write buffer
(if any, in the SMDE configurations) and allow the store to
be committed from the ROB [7]. Note that in a naive SMDE
implementation, there is no write buffer, so the store is not
committed until the cache miss is serviced.

Our quantitative analyses use highly-optimized Alpha
binaries of all 26 applications from the SPEC CPU2000
benchmark suite. We simulate half a billion instructions
after fast-forwarding one billion instructions. The simu-
lated baseline conventional processor configuration is sum-
marized in Table 1. To focus on dynamic memory disam-
biguation, we size the ROB and register files aggressively,
assuming optimization techniques such as [24] are used.

Processor core
Issue/Decode/Commit width 8 / 8 / 8
Issue queue size 64 INT, 64 FP
Functional units INT 8+2 mul/div, FP 8+2 mul/div
Branch predictor Bimodal and Gshare combined
- Gshare 1M entries, 20 bit history
- Bimodal/Meta table/BTB entries 1M/1M/64K (4 way)
Branch misprediction penalty 7+ cycles
ROB/Register(INT,FP) 512/(400,400)
LSQ(LQ,SQ) 112(64,48) - 1024(512,512), 2 search ports

1 cycle port occupancy, 2-cycle latency
Memory hierarchy

L0 speculative cache 16KB, 2-way, 32B line, 1 cycle, 2r/2w
L1 instruction cache 32KB, 2-way, 64B line, 2 cycles
L1 data cache 64KB, 2-way, 64B line, 2 cycles, 2r/2w
L2 unified cache 1MB, 8-way, 128B line 10 cycles
Memory access latency 250 cycles

Table 1. System configuration.

5 Experimental Analysis

5.1 Naive Implementation

We start our experimental analysis with the comparison of
IPCs (instruction per cycle) achieved in a baseline con-
ventional system (with LSQ) and in a naive implementa-
tion of SMDE. We use a baseline conventional design with
optimistically-sized queues: 48 entries in SQ and 64 entries
in the LQ. Note that, in a high-frequency design, supporting
a large number of entries in LQ and SQ is indeed challeng-
ing. Even the increase of the SQ size from 24 to 32 in Intel’s
Pentium 4 processor requires speculation to ease the timing
pressure [4].
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Figure 4. Comparison of IPCs in the baseline con-
ventional system (CONV) and a naive SMDE system.

From Figure 4, we see that on average, the naive SMDE
system performs slightly worse than the baseline. While
naive SMDE suffers from performance degradation due to
replays, it does not have any limit on the number of in-
flight memory instructions and this can offset the perfor-
mance degradation due to replays. In general, floating-point
applications tend to benefit from a large number of in-flight
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instructions and thus tend to perform better in an SMDE sys-
tem than in a conventional one. Bear in mind that Figure 4
shows the naive design, which, though functional, is hardly
an efficient implementation of an SMDE paradigm. Yet, we
can see that even this simplistic design achieves an accept-
able performance level. Given its simplicity, this result is
very encouraging.

In the above and the following discussion, we use a
single-flush policy because of its simplicity (Section 3.1.4).
In Section 5.5, we show some details about the different
flush policies.

5.2 Effectiveness of Optimization Techniques

Although the naive design eliminates any stall time due to
LSQ fill-up, it introduces other performance degradation
factors. We now look at the effect of the mitigation tech-
niques.

Back-end execution bottleneck Recall that in the back-end
execution of the naive implementation, a store blocks the
advance of the execution pointer until commit. This makes
the latency of subsequent reloads more likely to be exposed,
reducing commit bandwidth. In Figure 5, we show the per-
formance improvement of using the write buffer described
in Section 3.2.2. We also included a configuration with
an idealized back-end execution where the latency and L1
cache port consumption of re-executing loads and stores are
ignored. (Of course, replays still happen.) In this configu-
ration, only the baseline processor’s commit bandwidth and
whether an instruction finishes execution limit the commit.
All performance results are normalized to the naive SMDE
configuration (without a write buffer).
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(b) Floating-point applications.

Figure 5. Performance impact of using an 8-entry
write buffer in the back-end execution and of having
an ideal back-end execution.

The first thing to notice is that there is a very significant
difference between the naive and the ideal implementation

of the back-end execution. For example, in the case of apsi,
when removing the restriction placed by the back-end ex-
ecution, the performance more than doubles. Second, an
8-entry write buffer is able to smooth out the re-execution
of loads and stores and provide a performance improvement
of 10-15%, very close to that of an ideal implementation.
Although for a few applications, such as bzip2 and mesa,
there is still room for significant improvement.

Replay frequency reduction Figure 6 shows the frequency
of replays before and after enabling a 16-entry FDQ (Sec-
tion 3.2.1). We also use FDQ to detect and reject out-of-
order stores to prevent write-after-write (WAW) violations.
In this study, all configurations have an 8-entry write buffer
in the back-end.
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(b) Floating-point applications.

Figure 6. Replay frequency under different configu-
rations.

The replay frequency varies significantly from applica-
tion to application and can be quite high in some applica-
tions. After applying the FDQ, the replay frequency dras-
tically reduces for many applications. In wupwise for ex-
ample, the frequency changes from about 97.7 replays per
10,000 instructions to no replays at all in the 500 million
instructions simulated. We see that using the FDQ to de-
tect WAW violations have a much smaller impact and can,
in some cases, lead to a slight increase in the replay rate.
However, the overall effect is positive. In the following,
when we use FDQ, by default we detect WAW violations
too.

In Figure 7, we present another view of the effect of us-
ing various optimization techniques: the breakdown of re-
plays into different categories. A replay is caused by load-
ing a piece of incorrect data from the L0 cache. This can
be caused by memory access order violations (RAW, WAW,
and WAR) in the front-end execution. A replay can also
be caused by L0 cache pollution when the execution is re-
covered from a branch misprediction or a replay, or due to
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a cache line eviction. A replay can have multiple causes.
For the breakdown, we count a replay towards the last cause
in time. Therefore, when a technique eliminates a cause
for one load, it may still trigger a replay due to a different
cause and increase the number of replays in another cate-
gory. However, this effect is small. In this experiment, we
start from the naive design and gradually incorporate all the
optimization techniques. Since there is overlap between the
effects of different techniques, the result of applying multi-
ple techniques is not additive, and the techniques introduced
later on tend to demonstrate diminishing returns. For clar-
ity, we only show the average of the number of replays per
10,000 committed instructions for integer applications and
for floating-point applications.
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Figure 7. The breakdown of the number of replays
into different categories. From left to right, the three
bars in each group represent different systems: Naive
(N), with write-buffer but without the FDQ (Naive +
Write-buffer: N+W); with the FDQ to detect RAW vi-
olations (N+W+F) and with FDQ to also detect WAW
violations (N+W+F+W), and finally, adding age-based
filtering (+A) (on top of N+W+F+W). The stacking or-
der of segments is the same as that shown in the leg-
end. Note that the two bottom segments are too small
to discern.

The first interesting thing to note is that when write buffer
is introduced to the system, replay frequency is significantly
reduced. For example, in integer code, the average replays
per 10,000 committed instructions reduce from about 67 to
50 in integer programs and from 40 to 31 in floating-point
programs. This may appear puzzling initially since the write
buffer is not designed to reduce replay frequency. However,
as we can see, the reduction is primarily due to that of re-
play pollution. Indeed, as we speed up the back-end of the
processor, we can detect a replay more quickly and prevent
too many stores from leaving future data in the L0 cache.
In application bzip2 for example, without write buffer, ev-
ery replay squashes 46 stores. With the write buffer, this
number reduces drastically to 13.

Next, we see that in a system without FDQ (N+W), the
two main direct sources of replays are branch (mispredic-
tion) pollution and RAW violation. Of the two, RAW is the

larger source by a small margin in integer applications and
by a large margin in floating-point applications. As replays
leave the L0 cache in a state with many “future” data, they
are likely to trigger replays again. Such secondary replays
account for an average of 40% of all replays. In both groups
of applications, FDQ is capable of preventing a large major-
ity (75% to 80%) of RAW violation-triggered replays. As a
result, the number of secondary replays also reduces signifi-
cantly (by an average of 55% and 73% in integer or floating-
point applications respectively). We can also see that when
FDQ is also used to prevent WAW violations, the number of
WAW pollution-triggered replays indeed goes down, though
the overall impact is quite small.

Finally, we can see that although in floating-point appli-
cations, FDQ can cut down the replays by about 75% to
a small 7 per 10,000 instructions, in integer applications,
there are still about 20 replays left. These replays are mainly
due to branch pollution, directly or indirectly. With the age-
based filtering, we are able to filter out a large portion of
pollution due to replay and branch misprediction recovery
in both groups of applications: 95% (FP) and 84% (INT).
The reduction in branch pollution is smaller, but still signif-
icant: 60% in both groups of applications.

5.3 Putting it Together

We now compare the performance of several complete sys-
tems which differ only in the memory dependence enforce-
ment logic. We take the naive design, add an 8-entry write
buffer and a 16-entry FDQ. We call this design Improved.
We compare Naive and Improved to the baseline conven-
tional system, which uses the conventional disambiguation
logic with a 64-entry LQ and a 48-entry SQ, and to an ideal-
ized system where we set the LQ and SQ size equal to that of
the ROB. In Figure 8, these results are shown as minimum,
average, and maximum for the integer and floating-point ap-
plication groups as before. (The per-application detailed re-
sults are listed in Table 2.) We see that there are applications
that perform dramatically worse in the naive design than in
the baseline but there are others that achieve significant im-
provements as well. On average, the naive design performs
only slightly worse than the baseline (5.3% and 2.7% slower
for INT and FP applications, respectively). We point out
that with a combined LSQ capacity of 112 entries, even the
baseline is optimistically configured. (A smaller but more
realistic 32-entry SQ with 48-entry LQ would slow down
the system by an average of 11% when executing floating-
point applications). Undoubtedly, the naive design is much
more complexity-effective.

The Improved design is significantly better than Naive
and comes very close to the ideal configuration. Individual
applications’ slowdown relative to the ideal configuration
can be as high as 15.6%. However, except for 3 applica-
tions, all others are within 10% of Ideal. In fact, Improved
actually outperforms the ideal configuration in seven appli-
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Figure 8. Performance improvement of Naive and
Improved (Imp) design over the baseline conventional
system. Adding age-based filtering on top of Improved
(Imp+A) and an ideal conventional system are also
shown.

cations, most notably gcc and equake. This is not unrea-
sonable: Our design turns the transistors used in building
LSQ or predictor tables into a small L0 cache than can cache
more data and provide the data to the execution core faster.
If we apply additional techniques, such as age-based filter-
ing to reduce the replay frequency, a few more applications
would run faster in an SMDE design than in Ideal. Indeed,
adding age-based filtering on Improved, we have a system
that outperform an ideal LSQ-based system on average (Fig-
ure 8).

Overall, comparing Improved with Ideal, the average
slowdown is only 2.0% for integer applications and 4.3%
for the floating-point applications. Although practicality
prevents a pair-wise comparison study with the numerous
LSQ-optimization designs, we note that these results (both
average and worst-case) come very close to those reported
previously, for example, in [19].

Finally, to understand the effect of the age-based filtering
(Section 3.2.3), we add it to Improved and show the effect
in Figure 8. We can see the notable effect of age-based L0
cache filtering, especially on integer application. Indeed,
with this filtering, the average performance improvement
over baseline is actually higher than that with ideal LSQ.

5.4 Scalability

Perhaps more interesting than the actual performance is the
scalability trend. In this paper, we perform a limited ex-
periment scaling the system to a 1024-entry ROB. We scale
the size of the register files and the issue queues propor-
tionally but keep the disambiguation logic exactly the same
as in Figure 8 for the baseline conventional system and the
SMDE designs (Naive and Improved). In other words, the
size of the L0 cache, the write buffer, and the FDQ remains
the same. The LQ and SQ in the ideal conventional sys-
tem, however, are scaled together with the ROB. We again
normalize to the baseline conventional configuration. We
also “scale up” the branch predictor by randomly correcting
75% of mispredictions in the simulator. We show the result

in Figure 9.
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Figure 9. Scalability test for SMDE configurations
(Naive and Improved) and the ideal conventional con-
figuration.

First, we see that the naive design gains ground against
the baseline for floating-point applications. This is ex-
pected. Without any limit on the number of in-flight in-
structions, the naive approach can easily use the enlarged
ROB to exploit long-range ILP. This benefit adds to that of
better branch prediction in the scaled-up system. For the
baseline conventional system however, the large ROB has
no effect due to the limit of the LSQ. The benefit almost en-
tirely comes from better branch prediction in the scaled-up
system. Thus, naive SMDE’s performance improves rela-
tively to the baseline.

Second, the improved SMDE design continues to track
the ideal conventional configuration well. This is a key ben-
efit in addition to the simplicity of the SMDE design: Once
the design is in place, hardly any resource scaling is needed.

Finally, age-based filtering shows more benefit in the
scaled up configuration. However, the difference is not dra-
matic. If the underlying microarchitecture changes and the
cost of replay is higher, then it may become a more useful
mitigation technique.

5.5 Other Findings

Finally, during the design and evaluation of SMDE, we
performed many quantitative experiments. We summarize
some of the findings here.

Replay suppression When a replay is triggered, there are
times when no in-flight instruction is a dependent of the trig-
gering load. Depending on the exact configuration, the per-
centage of such cases vary but remains non-negligible. For
example, in the Improved configuration, on average, there
are about 20% of replay-triggering loads in floating-point
applications that do have any in-flight dependents. In certain
applications this rate can be as high as 100%. Therefore, in
an SMDE design, we do not need to trigger an actual replay
of subsequent instructions. However, the end performance
implication is rather limited in this configuration: about 1%.
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bzi cra eon gap gcc gzip mcf par pbm two vor vpr amm app aps art eqk fac fma gal luc mes mgr six swi wup
1 -14.6 -2.8 -24.0 -25.4 14.0 -18.1 -1.7 -3.4 6.1 8.0 5.7 -7.8 -0.7 25.0 -44.3 19.9 -25.8 -0.1 4.4 4.7 -7.1 -15.0 23.4 -23.3 20.2 -19.8
2 -2.5 2.0 0.9 9.4 10.7 0.5 2.9 1.8 15.4 4.3 19.5 9.6 15.1 39.2 1.0 17.6 6.6 41.4 6.8 5.6 -0.8 20.2 41.1 4.5 30.3 35.9
3 1.5 7.0 10.4 11.1 10.4 10.4 3.8 5.1 16.6 4.8 20.6 9.9 15.6 42.9 1.9 18.2 19.1 41.4 8.0 5.6 -0.8 20.2 41.3 5.6 38.2 27.3
4 11.3 10.4 6.2 11.8 1.9 1.2 3.6 1.7 16.2 4.1 24.8 9.0 19.3 48.5 19.6 31.7 4.8 41.1 0.9 7.0 1.5 32.2 46.2 9.7 42.3 37.8

Table 2. Performance improvement (in %) of Naive (1), Improved (2), Improved with age-based filtering of L0 cache
(3), and Ideal (4) design over the baseline conventional system.

Flush policy When handling a replay, we can perform some
L0 cache cleaning. We emphasize again that this is purely
an optimization to reduce the chance of more replay and
does not affect correctness in any way. Among the possible
policies, we compared no flushing (F0), flush the line that
triggered the replay (F1), selective flushing (FS) by walk-
ing through the MOSQ to flush all the lines belonging to
the to-be-squashed stores, and finally, flush the entire L0
cache (FA). It is not hard to see that F0 and F1 are fairly
straightforward to implement, while FA and especially FS
can be complex in circuit and expensive in energy at run-
time, though they definitely reduce the replay rate.

In Table 3, we show the percentage of loads triggering
replay in the Improved design if we use different flushing
policies. We can see that as we flush more data from the L0,
naturally, the replay frequency reduces. However, L0 cache
miss rate increases as we flush more data. An L0 cache miss
not only delays the execution of dependents of the load, it
also disrupts the execution of instructions scheduled in the
vicinity of the load due to scheduling replay. As we can
see, all other policies give lower average performance when
compared to F1. (The effect of FS is very close to that of
F1.) Fortunately, unlike FS, F1 is very easy to implement.

INT FP
Max Avg Min Perf. Max Avg Min Perf.

F0 218 54 1 -7.43 80 18 0 -5.51
F1 45 20 1 0 27 9 0 0
FS 27 12 1 0.99 24 5 0 -1.49
FA 28 9 1 -2.35 23 4 0 -3.25

Table 3. Number of loads triggering replay per 10,000
instructions in Improved under different L0 cache
flushing policies (shown in maximum, average, and
minimum of the entire group of applications), and
their average performance impact (Perf.) in percent-
age compared to the single-line flush policy (F1).

Understanding the write buffer The write buffer we use
serve three purposes. First, it buffers write misses. When a
store instruction is being committed but misses in the cache,
depending on the design of the memory subsystem, the pro-
cessor may not be able to remove the instruction from the
ROB and continue to commit other instructions. In Al-
pha [7], for example, the instruction is removed from the
ROB, whereas the data is kept in the SQ in order to prop-
erly forward to load instructions. In SMDE, without a SQ,

we can either stall commit when there is a write miss, or if
there is the write buffer, we can keep the data in the write
buffer and retire the instruction. Note that at the execution
time for the store instruction, processors typically prefetch
the cache line. Thus, write miss at commit time is quite rare.
A second functionality of the write buffer is to improve the
utilization of cache port. When a store being committed
compete with a load for the cache ports, the write buffer al-
lows both to proceed by time-shifting the store’s usage of
cache port to a later cycle. Finally, the third functionality
is to allow the BEEP pointer to travel ahead with respect to
the retirement pointer of the ROB so as to hide the latency
of back-end execution of load instructions.

To understand the effect of all three functions, we incre-
mentally add them to the Naive system and measure their ef-
fect in terms on performance improvement on top of Naive
(without a write buffer). Table 4 shows this experiment. As
we can see, hiding load latency in the back-end execution
is the most important contribution of the write buffer, but
the other functionalities also contribute non-trivial amount
of improvement.

INT FP
WB holding write misses only 2.15% 5.75%

Also time-shift cache ports 4.47% 7.69%
All three functions 15.95% 16.08%

Table 4. Effect of different functionalities of the write
buffer.

Membership test As we saw earlier, the effect of even a
small write buffer is quite substantial. However, the for-
warding capability from a small write buffer is not neces-
sarily critical. In fact, we found that only 3-4% of loads for-
ward from this write buffer on average. Therefore it is con-
ceivable to have a non-forwarding write buffer and provide
a simple and quick membership test to detect any address
overlapping and stall the load until the conflicting store is
drained out of the buffer. We performed a limited study
using an ideal membership test to study the performance
impact of having to delay conflicting loads. We found that
the average performance degradation is about 0.5% for both
groups of applications and the maximum slowdown is only
about 2% in any single application.
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6 Conclusions

In this paper, we have presented a slackened memory depen-
dence enforcement (SMDE) approach aimed at simplifying
one of the most complex and non-scalable functional blocks
in modern high-performance out-of-order processors. In an
SMDE design, memory instructions execute twice, first in
a front-end execution where they execute only according
to register dependences and access an L0 cache to perform
an opportunistic communication. They then access mem-
ory a second time, in program order, accessing the non-
speculative L1 cache to detect mis-speculations and recover
from it.

A primary advantage of SMDE is its simplicity. It is
also very effective. We have shown that even a rudimen-
tary implementation rivals a conventional disambiguation
logic with optimistically sized LQ and SQ. When two op-
tional optimization techniques are employed, the improved
design offers performance close to that of a conventional
system with ideal LSQ. Another advantage of the design
is that when scaling up the in-flight instruction capacity, al-
most no change is needed and yet the performance improves
significantly.

The SMDE approach is distinct in several ways from
conventional design and recent proposals. First, it is signif-
icantly more decoupled between the forwarding and moni-
toring/verification component. This allows for modular de-
sign, verification, and optimization. Second, the forward-
ing component, working at core execution speed has mini-
mal external monitoring or interference. There is no need
to communicate with front-end predictors either. There is
even no need for address translation. Third, the verification
component is straightforward and handles all cases: mis-
speculation or coherence/consistency constraints. By pro-
viding a separate cache, we avoid the bandwidth consump-
tion problem of re-execution.
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