
Enhancing Effective Throughput for Transmission Line-Based Bus
∗

Aaron Carpenter†, Jianyun Hu, Ovunc Kocabas, Michael Huang, and Hui Wu
Dept. of Electrical and Computer Engineering

University of Rochester
{jianyun.hu, ovunc.kocabas, michael.huang, hui.wu}@rochester.edu

†Binghamton University
carpente@binghamton.edu

Abstract
Main-stream general-purpose microprocessors require a
collection of high-performance interconnects to supply the
necessary data movement. The trend of continued increase
in core count has prompted designs of packet-switched net-
work as a scalable solution for future-generation chips.
However, the cost of scalability can be significant and es-
pecially hard to justify for smaller-scale chips. In contrast,
a circuit-switched bus using transmission lines and corre-
sponding circuits offers lower latencies and much lower
energy costs for smaller-scale chips, making it a better
choice than a full-blown network-on-chip (NoC) architec-
ture. However, shared-medium designs are perceived as
only a niche solution for small- to medium-scale chips.

In this paper, we show that there are many low-cost
mechanisms to enhance the effective throughput of a bus
architecture. When a handful of highly cost-effective tech-
niques are applied, the performance advantage of even
the most idealistically configured NoCs becomes vanish-
ingly small. We find transmission line-based buses to be
a more compelling interconnect even for large-scale chip-
multiprocessors, and thus bring into doubt the centrality of
packet switching in future on-chip interconnect.

1 Introduction
Main-stream general-purpose microprocessors already in-
tegrate a handful of high-performance cores and thus re-
quire a collection of high-performance interconnects to
supply the necessary data movement. The trend of con-
tinued increase in core count has prompted the design of
packet-switched networks (sometimes called network-on-
chip or NoC) as a solution to provide scalable through-
put1 for future-generation chips. However, this scalability
comes with costs. First of all, a packet-switched network
is an energy-intensive solution as routing, switching, and
relaying packets all incur non-trivial energy overheads that
add up quickly. Secondly, packet switching does not ad-

∗This work is supported in part by NSF under the grants 0901701,
0829915, and 0747324, and by the NSFC under grant 61028004.

1To avoid ambiguity, we use throughput to refer to the data rate (mea-
sured in bytes/second) of links and networks, and bandwidth (measured in
Hz) for the 3dB frequency response of the medium.

dress the fundamental issue of wires, but instead adds to
the overall communication latency while taking up signifi-
cant chip area. These overheads can be high and especially
hard to justify for smaller-scale chips.

An alternative to the architecture-level packet switch-
ing for throughput boosting is to employ a more sophis-
ticated signaling chain at the circuit level. Faster device
speed enables practical design of energy-efficient, high-
performance (analog) communication circuits that allows
efficient use of an underlying communication channel.
Properly engineered on-chip transmission lines can provide
excellent communication channels, allowing speed-of-light
signal propagation [15] without the technological hurdles
of optical interconnects. Together, these elements create a
different type of data links than conventional repeated digi-
tal wires. With these transmission line links, even a simple
global bus architecture can deliver a significant amount of
throughput, sufficient for a moderately sized system (e.g.,
16 cores) [11]. Without any packet switching or relay, such
a bus keeps the latency and energy benefits of the links.

Despite all the advantages of transmission line based
buses, the simple bus structure does impose a through-
put limit and does not readily support a large-scale chip-
multiprocessor (CMP). If we can increase bus throughput
to support a larger number of (e.g., 64) cores, the bene-
fit is clear: for chips of that scale, no packet switching is
needed; the communication substrate design will be greatly
simplified; the bus design provides unique opportunities to
simplify and optimize the shared-memory coherence sub-
strate. Even if future chips grow much beyond that scale,
they are likely to be used in virtualized server environments
with logical partitions with the size of 32 to 64 cores. Hav-
ing packet-switching-free partitions still offers tremendous
benefits.

In this paper, we explore a number of approaches to im-
prove the overall throughput of a transmission line based
bus and analyze the cost of achieving higher throughput.
The analysis shows a rather straightforward path to sup-
porting a large number of cores with bus architectures. As
such, packet switching is not a central or even necessary
element of on-chip interconnect. Instead of only focusing

1

on further improving NoC, we should also explore packet-
switching-free interconnect and designs of low-cost packet
switching that serves only as an auxiliary mechanism.

The rest of the paper is organized as follows. Sec-
tion 2 discusses background and related work. Section 3
briefly summarizes the baseline bus design. Section 4 dis-
cusses techniques for increasing effective throughput. Sec-
tion 5 presents the experimental analysis of these tech-
niques. Section 6 concludes.

2 Background and Related Work
With the integration of multiple cores on a single die, pro-
posals of advanced interconnection have emerged. These
proposals range from networks-on-chip (NoC) [5, 19, 24,
35,38,43] to optical interconnects [16,23,30,31,40,42,45]
or RF interconnects [6,12–14]. Even with the use of circuit-
or device-level support for optics or RF circuitry, many
designs still rely on packet-switching at the architecture
level [6, 12–14, 16].

Recently, bus designs have started to gain more atten-
tion as a supplement or alternative to pure packet-switched
networks. Conventional digital buses are being explored as
part of the interconnect design [20, 41]. These designs still
rely on packet-switching to connect multiple buses either
explicitly through routers [20] or implicitly via hubs con-
necting multiple bus segments [41]. With only buses in the
system, it is argued that the coherence substrate can switch
to a snoopy protocol that helps reduce transaction hops and
thus overall latency. Transmission lines are used with wide-
band communication circuits to provide a bus design with
low latencies and high overall throughput, which in turn al-
lows the bus to be the only fabric in a CMP and a purely
circuit-switched fabric [11]. Such a design is intended for
a small- to medium-sized CMP and becomes a bottleneck
for demanding applications in a large-scale chip. The low
propagation delay of transmission lines has also been ex-
ploited to speed up access to remote L2 banks [6, 7] or
remote nodes in a mesh network [12, 13], or to build a
fast barrier mechanism [36]. Finally, using transmission
lines for communication is a well-established technique in
mixed-signal and analog systems. There is no need to rely
on future development for devices and technologies, as in
on-chip optical interconnect.

In addition to leveraging transmission lines, packet la-
tency can be reduced via various optimizations in a packet-
switched interconnect. New topologies, such as flattened
butterfly, use higher radix routers to reduce network diam-
eter and thus the average number of hops [29]. Wiring be-
tween routers can also be optimized with customized siz-
ing to trade off among latency, throughput density, and en-
ergy [33, 34].

3 Basic Transmission Line-Based Bus
We first establish a baseline design of the bus. Like a typ-
ical bus-based multiprocessor system with a narrower ad-

dress bus and a wider data bus, we assume two separate
logical buses. One for control messages, such as requests
(which we call the meta bus), and the data bus for cache-
line size data responses. A central pipelined arbiter is used.
To minimize receiver power, only the intended receiver is
woken up by the arbiter. This system allows point-to-point
communication between a transmitter and a receiver node.
Circuit design: On the circuit level, we use differential
analog transceiver circuitry and on-off keying (OOK) en-
coding. Our results show that such a setup (in 32nm tech-
nologies) can deliver over 25Gbps on a single pair of dif-
ferential coplanar strip transmission lines. The transceiver
circuits are designed and laid out at the transistor level
and characterized using detailed circuit and EM simula-
tions (see Section 5.1 for details). Impedance matching is
accomplished using shunt resistance to terminate the trans-
mission lines, minimizing reflection. The key specs of our
baseline bus are summarized in Table 1. While more de-
tailed analyses of the link design and implementation could
be helpful, they are beyond the scope of this paper and have
been dealt with in some prior works [26, 27, 32, 39] . We
have also taped out a test chip (Figure 1) to further vali-
date the circuit parameters obtained from our circuit simu-
lations. In general, multidrop, global on-chip transmission
line links could reliably operate at 10s of Gbps in current
and future technologies.

Tile structure 5mm× 5mm tiles forming a 2cm× 2cm chip
Cache coherence Directory-based, MESI protocol

Power per bit-line: 17.7mW
Transceiver circuit Latency: 817ps; Encoding: OOK, 26.4Gbps

Area per bit-line: 820µm2

Total area for all transceivers: < 0.2% of chip area
Co-planar strips, 7.5mm meandering line

Transmission lines 45µm pitch (10µm wide, 10µm spacing)
56 lines, 440ps max propagation delay (29ps per hop)

Table 1: Key specs of the baseline transmission line bus
circuitry. For more details, see [10, 11]

ILO1

ILO2

Transmission Line

Test
PRBS

Test
Driver

Test
Receiver

Test TLine1

Test
TLine2

Tr
an

sm
is

si
on

 L
in

es

Tr
an

sm
is

si
on

 L
in

es

Tx1

Tx4

Rx3

Rx2

Rx5

Rx6

Rx7

Rx8

Figure 1: Test chip of transmission line links.

2

Central arbiter: In theory, any central arbiter has a scala-
bility limit. In practice, we find that the central arbiter is not
a concern before we reach the saturation of the bus itself.
This is to a large extent due to the simplicity of design – it
is essentially just a priority encoder for, say, 16 bits in a 16-
node system. Larger, far more complex priority encoders
are used in the timing-critical store-forwarding circuit in-
side the core. Furthermore, when we use techniques such
as segmentation (discussed later) to improve the through-
put of the bus, the scale of the arbiter actually decreases as
each segment is smaller. We have measured a straightfor-
ward, unoptimized synthesis of a 16-node arbiter and com-
pared it to the synthesized router used in a packet-switched
interconnect [37]. The router’s overall delay is 4.3x that
of the arbiter (1.65ns vs 0.38ns). The router is also much
larger (10x), consumes far more power (20x), and is used
more frequently (per flit-hop).

The request and grant signals are transferred over trans-
mission lines similar to those used to build the bus. Such
transfers take additional latency (modeled faithfully in this
study) that will only be exposed when the bus is lightly
loaded.
Coherence protocol: Traditionally, a bus-based system
uses a snoopy coherence protocol. However, such an as-
sociation is not fundamental and is perhaps inappropriate
for a transmission line based implementation: First, lever-
aging analog circuit and transmission lines, a bus can sup-
port a rather large number of processor cores. Fanning out
snooping requests to a large number of cores incurs signif-
icant energy overhead in cache controllers and is undesir-
able. Second, while a conventional digital bus can support
broadcast primitives in a straightforward (but costly) way,
broadcast operations are more demanding on analog trans-
mission line designs, especially if the fan-out is large.

Of course, both issues can be addressed. Snooping over-
head can be mitigated by incorporating elements similar to
a directory-based protocol that filters out nodes known to
be unrelated to the current transaction. Special broadcast-
capable bus can be demanded from the circuit layer. It
is unclear whether these fixes are more cost-effective than
avoiding broadcast with a directory-based protocol. In this
study, we opt to assume a directory-based protocol in the
baseline design.

4 Increasing Effective Bus Throughput
Given a basic design, we can increase the throughput of the
bus via a number of simple techniques at the circuit or ar-
chitecture level, or with a combination of both. It is worth
noting that some optimizations are a unique result of the
shared-memory chip multiprocessor environment, includ-
ing its traffic properties, and are not necessarily applica-
ble to bus topology in general. The proposed techniques
can be broadly categorized into three groups (a) increasing
the underlying supply of raw throughput, (b) improving the
utilization efficiency, and (c) co-optimization with protocol

layer to reduce traffic demand. Of course, sometimes a par-
ticular mechanism defies exact categorization and can fall
into more than one group.

4.1 Increasing Raw Link Throughput
Perhaps the first thought that comes to mind about increas-
ing the throughput of a bus is to increase the raw through-
put of each individual link. Intuitively, these approaches
are more or less brute force approaches that are less effi-
cient than others in achieving the goal. Nevertheless, we
analyze some options and evaluate their efficiency later in
Section 5.

The potential of link throughput is high, thanks to
the well-controlled on-chip environment and the relatively
short distances of on-chip transmission lines, the inherent
channel bandwidth of the transmission line is quite high.
Figure 2 illustrates an experiment to determine the aggre-
gate bandwidth and potential throughput provided by an
array of transmission lines.

Figure 2: Aggregate baseband bandwidth and theoretical
capacity for transmission lines (coplanar strips).

In this experiment, we limit the total pitch of the trans-
mission lines to 2.5mm but vary the width, gap (between
the pair of differential lines), and spacing (between two
neighboring pairs) of the transmission lines. The length
of the lines are set to 7.5cm, assuming a meandering shape
going through the centers of sixteen 5mm × 5mm tiles
forming a 2cm × 2cm chip. We then use EM and circuit
simulators (see Sec. 5.1 for details about the tools) to esti-
mate the 3dB bandwidth of the transmission lines and ag-
gregate the bandwidth for the entire array. We also model
noise coupled from neighboring aggressor lines and power
supply noise in transceiver circuitry and estimate overall
signal-to-noise ratio (SNR). This can give us the theoreti-
cal limit on the channel capacity.

Note that this experiment provides an approximate un-
derstanding of the potentials and cannot be used as a bound:
in practical operating environments, the presence of ther-
mal noise creates the noise floor that is not captured by the
analysis of SNR. On the other hand, the bandwidth limit

3

Serializer Amp

D
A

C

D
e-

Se
ria

liz
er

PDR

Amp

A
D

C

Serializer Amp
fi

D
e-

Se
ria

liz
er

PDR

Amp Filter fi

Figure 3: Block diagram of links using 4-PAM and FDM.

can be overcome, to a certain extent, using various cir-
cuit techniques. The bandwidth can also be expanded us-
ing multi-band designs. Nevertheless, this analysis shows
that on-chip transmission lines do possess relatively abun-
dant bandwidth and can support a substantial amount of
throughput.

There are many coding strategies to increase the raw
throughput. For on-chip communication, however, we are
likely limited to simpler variations. We first turn to 4-PAM
(Pulse Amplitude Modulation) which doubles the data rate
compared to OOK. The additional circuit includes a digital-
analog converter (DAC) for the transmitter and an analog-
digital converter (ADC) for the receiver (Figure 3). These
elements not only increase energy but also add latency on
the packet transmission path. In order to minimize the la-
tency impact, we use it only for data packet buses.2

Second, we investigate Frequency Division Multiplexing
(FDM). FDM allows us to use higher frequency bands on
the same physical media. The attenuation in these bands
can be high and it increases with frequency. When used as
global buses, the higher-frequency bands quickly become
too lossy and thus inoperable. A simple calculation can il-
lustrate the problem. Assume we have a 10GHz channel
spacing and use 6 such channels [13], Figure 4 shows the
frequency response of our transmission lines in the needed
spectrum (between dc and 50GHz). At 50GHz, the atten-
uation is around 9dB. Furthermore, mixers introduce non-
trivial noise figure (or degradation of SNR), especially for
high-frequency operations. Even with bipolar designs, the
noise figure can be around 10dB per mixer [25]. The com-
bined effect of two mixers and the transmission line itself
can amount to 29dB (800x), not to mention the filter’s loss.
A rough interpretation is that in the 50GHz channel, the
power of the transmitter and the sensitivity of the receiver
need to increase a combined 800 times to achieve the same
SNR as when using the baseband without mixers, which
takes about 30 times more power on each side. Clearly, the
higher frequency channels are exceedingly expensive to use

2One can even use global intelligence about traffic conditions to bypass
4-PAM when traffic demand is low in order to further minimize latency and
energy overhead. This part of the design space is not explored.

Figure 4: Transmission line frequency response. As the fre-
quency approaches the boundaries of the spectrum, there
are noticeable noises due to artifacts of the simulation
setup.

in long on-chip transmission lines. They are intended for
much shorter communications [13].

For this study, we use only two bands. The circuit sup-
port includes mixers for both the transmitter and the re-
ceiver side and a filter for the receiver side (Figure 3). Ac-
curately estimating the power costs of the supporting cir-
cuitry is challenging. These non-trivial analog components
need to be designed, tested, and fine-tuned to work at the
required specifications. For this study, we use a simplify-
ing analysis to estimate the minimum power cost to sup-
port frequency-division multi-band transmission. We use
the design similar to [13] but adapted to the baseline sys-
tem design.

4.2 Increasing the Utilization Efficiency
While the underlying global transmission lines support a
very high data rate, using them to shuttle around short pack-
ets found in a shared-memory system can cause significant
under-utilization. First, the relatively long line means that
a packet can take a long time to “drain” from the transmis-
sion line (the worst case propagation delay in our bus is
440 ps). A simple arbitration scheme that waits for the bus
to drain is one source of under-utilization. Second, packets
destined for a near neighbor are a poor match to the global
line structure. A number of techniques can address these
issues.
Partitioning: A most straightforward option is to partition
the same number of underlying links into more, narrower
buses. In a narrower bus, longer serialization reduces the
waste due to draining. To minimize extra transmission de-
lays due to packet serialization, we can limit serialization
to the data bus, and use critical-word-first data marshaling.

An interesting side effect of partitioning the wide data
bus into narrower buses is that the finer granularity allows
us to better balance the load of the two types of buses. In-
stead of using 1-flit-wide meta bus and a 4-flit-wide data

4

Figure 5: Two independent waves transmitting simultane-
ously.

bus, we can partition the five 1-flit-wide buses into any
combinations of meta buses and data buses. Such parti-
tioning can even be done at runtime, based on individual
applications’ traffic pattern. In this paper, we use a fixed
configuration that achieves the best average performance.
It has two meta and three data buses, which best matches
the average traffic pattern.3

Wave-based arbitration: Another mechanism to reduce
the impact of draining latency is to allow waves to coexist
on the transmission lines. When waves meet, they travel on
without impacting each other, only creating a superposition
where they meet. In the example shown in Figure 5, two far
apart nodes send each other a pulse train. The two trains
cross each other over inactive nodes and do not interfere
with each other when they reach their respective receiver.

In theory, we can send multiple pulse trains on the links
so long as no two trains cross over at an active receiver or
transmitter. In practice, we send at most two such trains
and use a simple rule to pick a second pair of transmitter
and receiver (Tx1 and Rx1) that do not interfere with the
already-selected first pair (Tx0 and Rx0). In this case, the
distance between Tx0 and Tx1 and between Rx0 and Rx1

need to be larger than half the total length of the bus. We
tested the design of such an arbiter and found that it does
not affect cycle-level performance.
Segmentation: In addition to increasing the temporal ef-
ficiency of the bus, we can improve its spatial utilization.
One benefit of packet-switched interconnect is that multiple
transmissions can happen simultaneously at different parts
of the fabric. A similar effect can be achieved if we divide
the transmission line into a few segments. When a node
is communicating with another node within the same seg-
ment, it only needs to arbitrate for the segment of the bus,
leaving other segments free for other independent trans-
missions. When the communication crosses multiple seg-
ments, the transmitter needs to obtain permissions for all
segments and the segments will be connected to act as a
single transmission line.

Note that such electrical segmentation is fundamentally
different from buffered buses which are essentially ring in-
terconnects. Our segmentation does not change the archi-
tectural model of a global bus: delivery of a packet about

3In our setup, about 41% of packets are data packets. With narrow
buses, the longer data packets utilize raw bus throughput more efficiently
(4 flits in 6 cycles compared to 1 flit in 3 cycles for meta packets). Thus,
the total effective throughput demand for data packets is about 58%.

Figure 6: The chip layout with 4 segments. Each segment
is connected by either a pass-gate switch or an amplifier
pair.

an address does not overlap with that of another packet on
the same address. Those packets are globally serialized.
Maintaining such feature allows significant simplification
of the coherence protocol [22] and other optimizations.

Electrically, the segments can be connected in two ways,
as in Figure 6. First, a pass-gate can be used to form a
passive, bi-directional connection. In this case, the pass-
gate adds a little bit of attenuation and signal distortion.
We find the impact to be acceptable when the number of
segments is low.

Second, two separate uni-directional amplifiers can be
used to connect neighboring segments. The cost of this ap-
proach is the power consumption for the amplifiers. How-
ever, with these amplifiers, the source transmitter power
can be lowered somewhat since the signal travels at most
the length of one segment and is essentially repeated at the
segment boundary.

For arbitration, we use one local arbiter for each seg-
ment. Each arbiter has request and grant ports to all local
nodes as well as to other arbiters. Intra-segment arbitration
is completely local to the segment arbiter. Inter-segment
communication requires two-stage arbitration, where the
sender’s local arbiter request for the use of other segments.
Local links: In shared-memory programs, there are intrin-
sic reasons behind near-neighbor communications that re-
sult in local packets. An extreme form of that locality is
nearest-neighbor communication. A globally-shared bus
topology delivers 100% of it total bandwidth as its bisec-
tion throughput.4 This allows the bus to have a much lower
total throughput compared to alternatives and yet still sat-
isfy real workloads competently. But a global bus is a
poor match for nearest-neighbor communication patterns.
Adding dedicated links just for neighbor communication is
one way to mitigate the problem.

We avoid any packet switching and the associated com-
plexities on these local links. Furthermore, since these
links are not intended to suit all traffic patterns, we sim-
ply use a ring. Such links can be built with just digital links
since the distance is relatively small. If transmission lines
are used for local links, the pitch needed is much smaller
than that of the global lines.

4Compared to 1/6, 1/4, and 1/3 for (2D) mesh, torus, and flattened but-
terfly topologies in a 4× 4 network.

5

4.3 Optimizations on the Use of Buses
Unlike its off-chip counterpart, an on-chip interconnect is
not subject to certain interface requirements such as those
dictated by the pins of the chip. Evaluating a bus only as
a backward-compatible, drop-in replacement for a packet-
switched interconnect would underestimate its potential to
help optimize the entire stack. Given the bus’s unique prop-
erties, we can convey certain information much more effi-
ciently.
Invalidation acknowledgement omission: A first exam-
ple is the opportunity to omit invalidation acknowledge-
ments. In a coherent shared-memory system, the knowl-
edge of store completion is needed in implementing mem-
ory barriers or write atomicity (our system supports Alpha
consistency model with write atomicity). With a packet-
switched network, protocols rely on explicit invalidation
acknowledgements to provide the knowledge of comple-
tion. If the interconnect offers certain capability to help
infer the delivery, an explicit acknowledgement can be
avoided [22]. A traditional bus is one such case. Proto-
cols rely on the commitment of carrying out received in-
validation requests instead of acknowledgement [18]. In
other words, the nodes ensure that the invalidation will be
logically ordered before any out-going transactions and this
commitment effectively serves as an implicit, instantaneous
acknowledgement.

Note that interconnects such as the Element Interconnect
Bus for IBM Cell processors [4] are essentially rings, de-
spite the name. These “buses” relay packets and cannot
omit invalidation acknowledgements. Our system always
delivers packets end-to-end in an atomic bus transaction.
This is true even with the segmentation discussed earlier,
since the segments are electrically joined into a single bus
before the packet is transmitted in an atomic transaction.
Limited multicasting: While transmission lines are most
often used for point-to-point communications, they can be
designed to allow multicast operations. In our system, sup-
porting a small number of simultaneously operating re-
ceivers is relatively easy. Our circuit simulation shows that
if two receivers are turned on, there is a tolerable 5% ad-
ditional attenuation for the signal at the more distant re-
ceiver. Multicasting finds natural usage in sending out in-
validations to multiple nodes. We find that on average, 40%
of invalidations are directed at multiple nodes. We choose
to support 2-way multicasting only. While the traffic re-
duction due to 2-way multicasting may not be dramatic, it
drastically cuts the latency and queuing delays during traf-
fic bursts resulting from invalidations of widely held data.
Fuzzy invalidation: We can send shortened messages to
convey invalidation addresses. One approach is to use lossy
compression that reduces the precision about the lines to
invalidate. Taken to an extreme, our design uses 1 bit to
represent a group of special lines. We find that a sizable
fraction of cache lines are used only immediately after they
are brought in and never again until eviction or invalidation.

If a line shows this behavior consistently, it is a candidate
for such imprecise or fuzzy invalidation (FI or φ) as the
risk of invalidating the line prematurely is low. We model
a simple implementation that only identifies lines not ac-
cessed again after being brought in. When such a line is
evicted, with a certain probability (25% in our case) the
cache will notify the directory about its φ-readiness. When
a φ-line is fetched to L1 cache, the line’s φ-bit will be set.
The cache controller uses this bit to flash-invalidate all φ-
lines upon receiving a fuzzy invalidation command. When
the directory serves a write request to a φ-line, it send the
φ-command by sending a pulse over a special broadcast
transmission line.
Boolean bus: Similar to fuzzy invalidation, we can build a
narrow specialized bus to support transfers of boolean val-
ues (0s and 1s), which are commonly used in synchroniza-
tions. To simplify the design, the boolean bus is only used
to send a data reply when the line is boolean, i.e., all but
the least significant bit are zero. Our software library that
implements locks and barriers spaces the synchronization
variables into single-word lines and uses load-link instruc-
tions to suggest the hardware to send special boolean re-
quests. When serving such a request, a simple 0-test is per-
formed to decide whether the boolean bus is used to send
the reply.

4.4 Interactions Between Techniques
The aforementioned three groups of techniques are largely
orthogonal as they target different sources of performance
gain: increasing the raw supply of throughput, reducing the
throughput that has gone to waste, and reducing the number
of messages. Within each group, there is a varying degree
of overlap between techniques.

di
sta
nc
e	

time	

di
sta
nc
e	

time	

di
sta
nc
e	

time	

(a)	

(c)	

(b)	

(d)	

di
sta
nc
e	

time	

Figure 7: Illustration of throughput utilization of different
configurations. The shaded area shows the pulse train prop-
agates along the bus in time. The baseline configuration (a)
leads to under-utilization. Segmentation (b), partitioning
(c), which serializes a data packet into a multicycle pulse
train, and wave-based arbitration (d) reduce idle time in
different ways.

Let us first look at the group of techniques that increase
utilization efficiency. When we send a pulse train on the
bus, we wait until it propagates beyond the ends (absorbed

6

into the impedance-matched terminators) before allowing
another pulse train on the bus. Because the propagation de-
lay is significant compared to the length of the pulse train,
any point on the bus is actually “silent” most of the time.
In other words, the duty cycle of the bus is rather low, as il-
lustrated in Figure 7-a. Techniques in Section 4.2 improve
the duty cycle in different ways (Figure 7). In general, im-
plementing one technique reduces the potential of another.

The group of techniques which optimize the usage of the
buses (Section 4.3), on the other hand, have less overlap in
their effects as they tend to reduce different types of traffic:
some reduce packets for invalidations and others packets
for acknowledgements. Of course, in the end, when mul-
tiple techniques are applied (regardless of their target), we
can reach diminishing returns.

5 Experimental Analysis
5.1 Experimental Setup
Sonnet [1] and Advanced Design System (ADS, from Agi-
lent Technologies) were used to perform circuit and physi-
cal simulations of the transmission line links. Sonnet is an
EM simulator which we used to characterize transmission
lines at the physical level, taking material and dimensions
into account. It provides S-parameters for the transmission
lines that feed into ADS simulations. ADS is a widely used
electronic design automation software for RF, microwave,
and high-speed digital applications. Using schematic de-
signs, ADS has time-domain and frequency-domain analy-
sis to evaluate such digital circuits using both global com-
ponents and technology specific models, like the ones used
for transistors. In this case, a 32-nm predictive technology
model (PTM) is used for the transistor modeling [3].

Processor core
Fetch/Decode/Commit 8 / 5 / 5
ROB 128
Issue Q/Reg. (int,fp) (32, 32) / (112, 112)
LSQ(LQ,SQ) 64 (32,32) 2 search ports
Branch predictor Bimodal + Gshare
- Gshare 8K entries, 13 bit history
- Bimodal/Meta/BTB 4K/8K/4K (4-way) entries
Br. mispred. penalty at least 7 cycles
Process spec. Feature size: 32nm, Freq: 3.3 GHz, Vdd: 1 V
Memory hierarchy

L1 D cache (private) 16KB, 2-way, 32B line, 2 cycles, 2 ports
L1 I cache (private) 32KB, 2-way, 64B line, 2 cycles
L2 cache (shared) 128KB slice/core, 8-way, 64B line, 15 cycles, 2 ports
Intra-node fabric delay 3 cycles
Main memory at least 250 cycles, 8 memory controllers
Network packets Flit size: 72-bits

data packet: 4 flits, meta packet: 1 flit
NoC interconnect 4 VCs; 2-cycle router; buffer: 5x12 flits

wire delay: 1 cycles per hop [33]
Transmission line link (each node)

Bit Rate 26.4 Gb/s, 8 bits per CPU cycle
Transmission latency 2 cycles (worst-case)
Outgoing queue 12 packets
Overhead 2 cycles each for (de)serialization, 30ps propagation

delay per hop, 1 cycle for token request, 1 cycle for
token grant/wake-up

Arbiter Arbitration latency: 1 cycle
Request/grant propagation delay: 120ps (max)

Table 2: System configuration.

Architectural simulations of the proposed design were
performed using an extensively modified version of Sim-
pleScalar [9]. PopNet [2] is used to model the packet-
switched network, while extra support was added to model
the TLL bus. The details of the setup are listed in Table 2.

The cache coherence substrate for the architectural sim-
ulations is a directory-based MESI protocol with transients
faithfully modeled both at the L1 caches and at the direc-
tory controllers. The two state machines combined handle
a total of 13 transient states and 57 legal transitions (ex-
cluding deferred handling).

We use a set of diverse multi-threaded applications to test
the designs. These applications are compiled using a cross-
compiler to generate Alpha binaries. The limitation of the
cross-compiler prevents us from running certain applica-
tions. Table 3 lists the applications used. Abbreviations are
used in the data figures and listed in the table. Inputs for
each application are listed along with a brief description of
the application. Each application is fast-forwarded past the
initialization. To mimic data placement optimizations such
as placing private pages at the local node, cache misses are
sampled randomly at the rate of 0.1% offline. Data pages
with a dominant accessing node are mapped local to that
node. Other pages are allocated round-robin.

Splash-2 [44]
barnes (ba) n-body simulation (16K particles)
cholesky (ch) sparse matrix factorization (tk15.O)
fft (ff) complex 1-D fft computation (64K points)
fmm (fm) fast n-body simulation (16K particles)
lu (lu) matrix factorization

(512x512 matrix, 16x16 blocks)
ocean (oc) simulation of ocean currents

(256x256 matrix)
radix (rx) integer sort algorithm (1M integers)
raytrace (ry) 3-D rendering (car.env)
water-sp (ws) molecular dynamics (512 molecules)
Parsec [8]
blackscholes (bl) financial analysis/calculation (16K options)
fluidanimate (fl) animation (5 frames, 35K)
Other Benchmarks [17, 21]
em3d (em) electro-magnetic forces (1280 edges)
ilink (il) genetic analysis (40 alleles)
jacobi (ja) differential equation solver

(512x512 matrix, 10 iterations)
mp3d (mp) n-body simulation (40K molecules)
shallow (sh) shallow water dynamics

(512x512 matrix, 20 phases)

Table 3: Benchmarks used.

5.2 Application Characteristics
We first analyze the characteristics of the benchmarks. In
a first testbed, the 64-cores are clustered into 16 nodes, 4
cores each. The cores in the same cluster share the inter-
connect circuitry. It is worth noting that among our bench-
marks, some are already performing well on the baseline
TLL bus without any throughput enhancing techniques.
Since their performances already come close to running on
an idealized interconnect, there is little room for further
improvement. To more clearly understand the impact of
the techniques discussed so far, we have divided the bench-
marks into 3 groups (G1-G3) with increasing potential per-
formance benefits of throughput enhancement. This group-

7

ing is done by comparing the performance of applications
under three different types of interconnects: a baseline TLL
bus, a (concentrated) mesh NoC (with both a 2-cycle router
and an idealized 1-cycle router), and an ideal interconnect
modeling only the latency of aggressively configured metal
wires [33]. Figure 8 illustrates this classification.

bl ch fl lu sh G1 ba fm ry il ja ws G2 em ff mp oc rx G3 total
0

20

40

60

80

100

R
e
l
a
t
i
v
e

P
e
r
f
o
r
m
a
n
c
e

(
%
)

NoC Ideal NoC TLL Bus

Figure 8: Performance of baseline TLL bus and NoC
(both 2-cycle and ideal 1-cycle routers) normalized to wire-
delay-only ideal interconnect. The 3 groups represent,
from left to right, the benchmarks with increasing room for
performance improvement for the TLL bus.

In G1, the benchmarks have low throughput demand that
is well met by the baseline bus and the performance comes
in at least 90% that of ideal interconnect. These applica-
tions will see little, if any, performance improvement from
optimizing just the interconnect.

In G2, even though there is a significant performance gap
between baseline bus and ideal, the bus still performs better
or within 10% of the NoC. In fact, the bus outperforms
the NoC on average. Only when we use the 1-cycle ideal
router do we see the NoC slightly outperforming the bus.
Clearly, the latency advantage of the bus is important. For
these applications, improving throughput will not help if it
comes at a significant cost of latency.

Finally, in G3, NoC clearly outperforms the bus,
suggesting ample room for improvement when the bus
throughput increases.

5.3 Performance Benefits
We have described many different ways of improving effec-
tive throughput. Which ones ought to be pursued in a prac-
tical design depends on many factors, some of which hard
to quantify. Below, we will first show these techniques’
impact on execution speed and on on traffic and effective
throughput when applied in isolation.

In Figure 9, we sort the techniques by decreasing mean
performance improvement. For brevity, we only show the
(geometric) mean and the range of relative performance.
As a frame of reference, we also include the result from the
ideal interconnect, which clearly shows the ample perfor-
mance headroom as well as significant variability among
applications. Two general observations can be made from
this summary figure, which we elaborate below: 1. raw

throughput is not as critical as intuitively expected; and 2.
even simple coherence optimizations can be fairly effec-
tive.

80

100

120

140

160

180

200

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce
 (

%
)

438%

4−Seg.Local
Links

Wave
Arb.

Multi−
cast

InvAck
Om.

Fuzzy
Inv.

RawIdeal Part.

Figure 9: The performance impact of the techniques dis-
cussed. The bars show the geometric mean of relative per-
formance over a baseline bus on all application, while the
I-beams show the range from all applications. Note that the
y-axis does not start at 0.

Importance of throughput: Throughput is a metric used
routinely to characterize a network’s performance. This
can be a misleading oversimplification in the context of on-
chip interconnect for CMPs. In a CMP, traffic is a direct
result of cache misses. Various data dependencies and lim-
its on buffers or outstanding requests constrain the packet-
level parallelism. This is different from, say, file transfers
where more throughput can always be readily leveraged.
Once over a certain threshold, throughput only has a sec-
ondary impact as it affects latency indirectly through queu-
ing and serialization delays. As a result, more throughput
supply is only beneficial when the latency impact of obtain-
ing more throughput is small.

We can see this effect in Figure 9. Increasing the raw
throughput (in this case doubling it via either 4-PAM en-
coding or 2-band FDM) provides similar benefits as the
techniques that merely try to incrementally improve the
utilization efficiency. These techniques (e.g., partitioning)
carry little latency and energy costs. In contrast, a NoC
achieves high throughput at a more significant latency cost
due to repeated packet relays. The high latency is then be-
ing mitigated with complex, speculative router designs that
further drive up energy cost. Eliminating or at least reduc-
ing the reliance on packet switching in on-chip interconnect
design is a direction that deserves more attention.
Effectiveness of simple coherence optimizations: An-
other set of techniques reduces traffic demand by lever-
aging the properties of a bus. These include invalidation
acknowledgement omission (IAO), fuzzy invalidation, and
multicasting. These techniques can make a non-trivial per-
formance impact (e.g., up to 1.3x for fuzzy invalidation),
although they do not directly increase the nominal through-
put of the interconnect. Note that in some cases, the bene-

8

fits will increase when programs start to use these underly-
ing mechanisms (e.g., boolean bus) for more purposes.
Interaction between techniques: Table 4 shows the tech-
niques’ impact on reducing traffic and improving bus uti-
lization. We define bus utilization as the ratio of actual
throughput over theoretical throughput under continuous
traffic. In other word, we exclude cycles when there is no
traffic demand. Under this definition, the baseline bus has
an average of 51% for the meta bus and 58% for the data
bus.

Utilization Improvement Traffic Reduction
Technique Average Maximum Average Maximum

Partition 1.08x (M) 1.16x (M) - -1.51x (D) 1.70x (D)

4 Segments 1.24x (M) 1.30x (M) - -1.29x (D) 1.56x (D)
Local Links 1.07x (D) 1.37x (D) 32% (D) 89% (D)
IAO - - 12% (M) 25% (M)
Fuzzy Inv. - - 4% (M) 22% (M)
Multicast - - 2% (M) 5% (M)

Table 4: The utilization improvement and traffic reduction
for meta buses (M) and data buses (D) for each technique.

To a first degree of approximation, performance im-
provement is correlated with the degree of traffic reduc-
tion or utilization improvement. Also, the overlap between
different techniques is not significant. For instance, parti-
tioning and segmentation improve data bus utilization by
1.51x and 1.29x respectively. When combined, the utiliza-
tion improves by 1.65x to 96%. Similarly, when the traffic-
reduction techniques are applied together, the effect is close
to additive, though some techniques (such as multicasting)
have small contributions.

5.4 Costs
The costs of these techniques include extra circuit support
and runtime energy expenditure. The techniques can be
grouped based on these costs:
• Little to no cost: Partitioning and IAO require only a

different way of organizing resources and need no new
circuits.

• Some circuit cost: Multicasting, fuzzy invalidation,
and wave-based arbitration require some support from
the circuit, but there is no run-time energy cost.

• With circuit and energy costs: The remaining tech-
niques incur some circuit costs and energy costs.

In segmentation, the energy cost depends on the im-
plementation of the bridges: a bridge with a pass gate
incurs very little energy overhead itself but attenuates
the signal a little bit. We conservatively assume a more
costly amplifier-based bridge, each consuming about
90% of the transmitter’s power. On average, we ob-
serve about 40% of the packets cross the bridge in 2
segments, and about 65% cross one or two bridges in
4 segments.

Local links implemented with transmission lines do
not add any energy overhead and in fact use less pow-

erful drivers. They do require slightly more area to
be devoted to transmission lines even though each
link uses narrower transmission lines. Conservatively,
we assume local links using digital wires that do not
take metal area for the global transmission lines. Our
synthesis results show that factoring in the controller,
transmitting over local digital links costs about 4 times
the energy as that over the global buses. On aver-
age, about 35% of data traffic is off-loaded to the local
links.

Finally, providing raw throughput, especially through
FDM, is a more energy intensive option. We estimate
the PAM design to double the energy per bit of an
OOK link. FDM requires an increase in the transmitter
and receiver power in order to compensate for the in-
creased attenuation on the higher frequency band and
the noise figure, introduced by mixers. We assume a
noise figure of 5dB per mixer, a 6dB increase in atten-
uation, and thus a compensation of 8dB on both trans-
mitter and the receiver side.

5.5 Comparison of Cost Effectiveness
We now summarize the high-level cost benefit analysis of
each individual mechanism. This analysis does not tease
out the synergy or overlap between multiple techniques
when deployed together. But the analysis still gives a rea-
sonable picture of what some of the first steps we should
take to increase effective throughput.

Net Energy Total Energy Total EDP
80

100

120

140

160

180

200

R
el

at
iv

e
D

el
ay

/E
ne

rg
y/

E
D

P
 (

%
)

InvAckOm
Fuzzy Inv.
Multicast
Partition
Wave Arb.
4 Segments
4−PAM
Local Links
FDM

246%

Figure 10: The relative network energy, chip energy, and
energy-delay product of applying each technique discussed
in a 64-core, 16-node system.

Figure 10 shows energy-related metrics for each individ-
ual technique applied in isolation, all normalized to base-
line bus. From left to right, the bars are ordered by increas-
ing network energy. The first five techniques have very
little energy overhead and in fact some save network en-
ergy by sending fewer packets. Starting with (4-way) seg-
mentation, the last four techniques have noticeable energy
increases in the network. But the performance benefit re-
duces energy spending elsewhere in the system (e.g., clock
distribution), so the chip wide energy is actually reduced.

9

5.6 Example Design Points
Given this array of the techniques, a chip designer can put
together a set of them to suit the needs of the chip. In Fig-
ure 11, we show four such configurations. The first con-
figuration combines partitioning and IAO. These two tech-
niques not only have little costs, but have significant perfor-
mance impacts. The next configuration adds multicasting
and fuzzy invalidation. At this point, there is no change in
the nominal throughput of the bus and no increase in energy
of the network. The performance is already 1.22x that of
the baseline bus, 1.17x faster than a mesh NoC, and higher
than a mesh NoC with idealized 1-cycle routers.

50

100

150

200

250

300

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

NoC Ideal
NoC

Part.+
IAO

FIMP FIMP+
4Seg

IdealFIMP+
4S+4Pam

339% 348% 438%

(a)

Net Energy Total Energy Total EDP
50

75

100

125

150

R
el

at
iv

e
P

er
f/

E
ne

rg
y/

E
D

P
 (

%
)

Part+IAO
PI+MC+Fuzzy
FIMP+4Seg
FIMP+4Seg+4PAM

(b)

Figure 11: The effect of a few configurations. FIMP is
short for the combination of fuzzy invalidation, IAO, multi-
casting, and partitioning. (a) The relative performance with
geometric mean and range from all applications. An ideal
interconnect is shown as a reference. (b) The relative net-
work energy, total chip energy, and energy-delay product.

In the next two configurations, we progressively add seg-
mentation and 4-PAM. The system performance improves
to 1.39x. An ideal interconnect is only 1.06x faster. While
the network energy is much higher, the faster speed com-
pensates partly and the chip energy is still comparable to
the baseline bus. Note that these results are the average of
all applications. Within G3 applications, the benefits are
much more obvious: 1.89x speedup at an average of 7%
less energy.

Clearly, the effectiveness of these techniques is highly
dependent on the application behavior. As we already saw,
G1 applications will not see much performance gain even

if the interconnect is ideal. Therefore, it would be helpful
to have some dynamic adjustment to turn on power-hungry
communication mechanisms only when there is significant
performance benefit to be gained.
Comparison with NoC: As we have shown, with some en-
hancements, the effective throughput can be increased with
low energy costs. Compared to the bus, a NoC solution
starts from a high-throughput design point. But the high
throughput comes at the expense of energy intensity (NoC’s
network energy is 15x that of baseline bus) and higher la-
tency and may not necessarily translate to high application
performance. Figure 12 shows the experiment that uses in-
jected traffic (uniform random) to measure packet latency
in different configurations. We can see that techniques dis-
cussed significantly extend the saturation point of the bus
without increasing packet latency at low load. While NoC
has a higher saturation point, the common-case latency is
worse.

Note that the uniform random traffic patterns show the
best cases for the NoC configurations, whereas a bus archi-
tecture is much less sensitive to the traffic pattern. When
we use execution-driven simulations, the benefits becomes
much more obvious. In G3 applications, where the baseline
bus lags significantly behind NoC in performance (0.75x),
the improved bus now is 1.4x times faster than NoC.

0

5

10

15

20

25

30

35

40

0 5 10 15

La
te

nc
y

(c
lo

ck
 c

yc
le

s)

Offered Load (flits/cycle)

Baseline
FIMP+4Seg
FIMP+4Seg+4Pam
Mesh NoC
Flattened Butterfly

Figure 12: Packet latency vs offered traffic of various in-
terconnect configurations. Note that the model of flattened
butterfly assumes no increase in router delay.

Of course, there are optimizations to improve the latency
of the router and to minimize network diameter. But these
come at even higher energy costs and can have limited ef-
fectiveness. For example, when we idealize the router de-
lay to 1 cycle, the improved bus still shows a speedup of
1.19x over all applications (Figure 11-b). It is only when
we use a flattened butterfly topology with the idealized 1-
cycle router, that the NoC is outperforming the improved
bus by 1.04x.

In practice, these speculative, look-ahead routers can
only achieve 1-cycle routing delay in the best case. And us-
ing higher radix routers (to enable topologies like flattened

10

butterfly) do not fundamentally change the total routing de-
lays, but only reduces hop at the expense of increasing per-
hop router delay [28]. Our models of NoC, especially with
flattened butterfly topology, are only capturing the benefits
not the performance costs – nor any energy costs. These
models are providing an increasingly loose upper-bound
for their performance potentials.

5.7 Scaling Up
It is a little tricky to study the impact of these techniques
in an even larger system. The parallelism of the applica-
tions, the simulation environment, and the data set all start
to reach or pass their fidelity limit and will contribute sig-
nificant noise towards the measurements. So instead of try-
ing to simulate more cores and threads, we do the following
two things to escalate only the traffic on the network. First,
we turn off the data placement optimization. Second, we
make each core a standalone node. We hope to use this en-
vironment only to shed some light on the techniques’ im-
pact in a larger scale environment, not to predict precise
performance or energy gains.

1.0

1.5

2.0

2.5

3.0

5.5

6.0

6.5

R
e
l
a
t
i
v
e

P
e
r
f
o
r
m
a
n
c
e

NoC Partition+
InvAckOm.

PI+4Seg PI+4Seg+
Boolean Bus

Ideal

Figure 13: The performance of various configurations un-
der escalated traffic environment, all normalized to baseline
bus.

Figure 13 shows the comparison of the NoC, bus, and a
few configurations of improved bus. All results are shown
as normalized to baseline bus. In such an environment, the
baseline bus is under far more pressure and, at less than
half of the performance of ideal interconnect, it is signifi-
cantly slower than NoC on average. The several improved
bus designs all outperform the NoC, while using 9-15x less
energy in the network.

With these analyses, including the limited scaling study,
some insights can be obtained:

1. A bus architecture can be augmented with various
techniques to be a viable solution even for large-scale
CMPs.

2. Sometimes, these techniques come at a non-trivial cost
in interconnect energy efficiency. Nevertheless, com-
pared to the NoC approach, the energy cost is still
much smaller.

3. Applications demonstrate a diverse set of behaviors
that call for an adaptive control mechanism that can

increase throughput on demand at the cost of extra en-
ergy overhead. NoC, to the opposite, operates at a
point that provides high throughput at a significant cost
of energy and latency.

6 Conclusions
In this paper, we have discussed an array of techniques to
enhance throughput of transmission line buses via increas-
ing the utilization efficiency, leveraging the bus properties
and transmission line capabilities to reduce traffic demand,
and to directly increase the raw link throughput. Among
these techniques, those that increase the raw throughput of-
ten carry a higher energy cost for the same performance
benefit. Even so, the energy cost is still far lower than that
of using a NoC.

In a 64-core, 16-node system, when a number of tech-
niques are applied, the performance of the system is im-
proved by 1.39x and is 1.34x faster than the same sys-
tem using an mesh NoC. This performance improvement
is achieved with a 2x increase in interconnect energy, but
a decrease of 5% of chip energy compared to the baseline
bus thanks to faster execution. Compared to the mesh NoC,
the network energy is still 8x lower, while the chip energy
is reduced by 7%. In a limited scaling study where inter-
connect traffic is escalated, the throughput-augmented bus
continues to outperform NoC almost consistently across all
benchmarks.

In summary, transmission line-based links are a read-
ily available mechanism to provide high-speed low-power
communication. Using these links to build bus structures
is a compelling alternative to NoC and other technologies
such as on-chip photonics, which are far from being practi-
cal in the near term. The effective throughput of bus can be
significantly increased with simple, practical designs. As a
result, a bus architecture can support chip-multiprocessors
at the scale of 64 cores competently with a much better en-
ergy profile than NoC. These findings bring into doubt the
necessity of heavy-duty packet switching for on-chip inter-
connect in the foreseeable future.

References
[1] http://www.sonnetsoftware.com/.

[2] PoPNet. http://www.princeton.edu/∼peh/orion.
html.

[3] Predictive Technology Modeling. http://ptm.asu.edu/.

[4] T. Ainsworth and T. Pinkston. Characterizing the Cell EIB On-Chip
Network. IEEE Micro, 27(5):6–14, 2007.

[5] J. Balfour and W. J. Dally. Design Tradeoffs for Tiled CMP On-Chip
Networks. In Proc. Int’l Conf. on Supercomputing, pages 187–198,
June 2006.

[6] B. Beckmann and D. Wood. TLC: Transmission Line Caches. In
Proc. Int’l Symp. on Microarch., pages 43–54, December 2003.

[7] B. Beckmann and D. Wood. Managing Wire Delay in Large Chip-
Multiprocessor Caches. In Proc. Int’l Symp. on Microarch., pages
319–330, November 2004.

[8] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC Bench-
mark Suite: Characterization and Architectural Implications. In Proc.

11

Int’l Conf. on Parallel Arch. and Compilation Techniques, September
2008.

[9] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0.
Technical report 1342, Computer Sciences Department, University of
Wisconsin-Madison, June 1997.

[10] A. Carpenter, J. Hu, M. Huang, H. Wu, and P. Liu. A Design Space
Exploration for of Transmission-Line Links for On-Chip Intercon-
nect. In Proc. Int’l Symp. on Low-Power Electronics and Design,
pages 265–270, August 2011.

[11] A. Carpenter, J. Hu, J. Xu, M. Huang, and H. Wu. A Case for Globally
Shared-Medium On-Chip Interconnect. In Proc. Int’l Symp. on Comp.
Arch., June 2011.

[12] M. Chang, J. Cong, A. Kaplan, C. Liu, M. Naik, J. Premkumar,
G. Reinman, E. Socher, and S. Tam. Power Reduction of CMP Com-
munication Networks via RF-Interconnects. In Proc. Int’l Symp. on
Microarch., pages 376–387, November 2008.

[13] M. Chang, J. Cong, A. Kaplan, M. Naik, G. Reinman, E. Socher,
and R. Tam. CMP Network-on-Chip Overlaid With Multi-Band RF-
Interconnect. In Proc. Int’l Symp. on High-Perf. Comp. Arch., pages
191–202, February 2008.

[14] M. Chang, E. Socher, S. Tam, J. Cong, and G. Reinman. RF Intercon-
nects for Communications On-chip. In Proc. Int’l Symp. on Physical
Design, pages 78–83, April 2008.

[15] R. Chang, N. Talwalkar, C. Yue, and S. Wong. Near Speed-of-Light
Signaling Over On-Chip Electrical Interconnects. IEEE Journal of
Solid-State Circuits, 38(5):834–838, May 2003.

[16] M. Cianchetti, J. Kerekes, and D. Albonesi. Phastlane: A rapid transit
optical routing network. In Proc. Int’l Symp. on Comp. Arch., pages
441–450, June 2009.

[17] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta,
T. Eicken, and K. Yelick. Parallel Programming in Split-C. In Proc.
Supercomputing, November 1993.

[18] D. Culler and J. Singh. Parallel Computer Architecture: a Hard-
ware/Software Approach. Morgan Kaufmann, 1999.

[19] W. Dally and B. Towles. Route Packets, Not Wires: On-Chip In-
terconnection Networks. In Proc. Design Automation Conf., pages
684–689, June 2001.

[20] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das. De-
sign and Evaluation of a Hierarchical On-Chip Interconnect for Next-
Generation CMPs. In Proc. Int’l Symp. on High-Perf. Comp. Arch.,
February 2009.

[21] S. Dwarkadas, A. Schaffer, R. Cottingham, A. Cox, P. Keleher, and
W. Zwaenepoel. Parallelization of General Linkage Analysis Prob-
lems. Human Heredity, 44:127–141, 1994.

[22] K. Gharachorloo, M. Sharma, S. Steely, and S. Van Doren. Archi-
tecture and design of AlphaServer GS320. In Proc. Int’l Conf. on
Arch. Support for Prog. Lang. and Operating Systems, pages 13–24,
November 2000.

[23] G. Hendry, J. Chan, S. Kamil, L. Olifer, J. Shalf, L. Carloni, and
K. Bergman. Silicon Nanophotonic Network-On-Chip Using TDM
Arbitration. In Hot Interconnect, pages 88–95, August 2010.

[24] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-GHz
Mesh Interconnect for a Teraflops Processor. IEEE Micro, 27(5):51–
61, 2007.

[25] V. Issakov, H. Knapp, M. Tiebout, A. Thiede, W. Simburger, and
L. Maurer. Comparison of 24 GHz low-noise mixers in CMOS and
SiGe:C Technologies. In European Microwave Integrated Circuits
Conference, pages 184–187, September 2009.

[26] H. Ito, J. Inoue, S. Gomi, H. Sugita, K. Okada, and K. Masu. On-
chip Transmission Line for Long Global Interconnects. In IEEE In-
ternational Electron Devices Meeting. IEDM Technical Digest, pages
677–680, December 2004.

[27] H. Ito, M. Kimura, K. Miyashita, T. Ishii, K. Okada, and K. Masu.
A Bidirectional- and Multi-Drop-Transmission-Line Interconnect for
Multipoint-to-Multipoint On-Chip Communications. IEEE Journal
of Solid-State Circuits, 43(4):1020–1029, April 2008.

[28] J. Kim, W. Dally, B. Towles, and A. Gupta. Microarchitecture of a
High-Radix Router. In Proc. Int’l Symp. on Comp. Arch., pages 420–
431, June 2005.

[29] J. Kim, C. Nicopoulos, D. Park, R. Das, Y. Xie, V. Narayanan, M. S.
Yousif, and C. R. Das. A Novel Dimensionally-decomposed Router
for On-chip Communication in 3D Architectures. In Proc. Int’l Symp.
on Comp. Arch., pages 138–149, June 2007.

[30] N. Kirman, M. Kirman, R. Dokania, J. Martinez, A. Apsel,
M. Watkins, and D. Albonesi. Leveraging Optical Technology in
Future Bus-based Chip Multiprocessors. In Proc. Int’l Symp. on Mi-
croarch., pages 492–503, December 2006.

[31] N. Kirman and J. Martinez. A Power-Efficient All-Optical On-Chip
Interconnect Using Wavelength-Based Oblivious Routing. In Proc.
Int’l Conf. on Arch. Support for Prog. Lang. and Operating Systems,
pages 15–28, March 2010.

[32] K. Miyashita, T. Ishii, H. Ito, N. Ishihara, and K. Masu. An Over-12-
Gbps On-Chip Transmission Line Interconnect with a Pre-Emphasis
Technique in 90nm CMOS. In Electrical Performance of Electronic
Packaging, 2008 IEEE-EPEP, pages 303–306, October 2008.

[33] N. Muralimanohar and R. Balasubramonian. Interconnect Design
Considerations for Large NUCA Caches. In Proc. Int’l Symp. on
Comp. Arch., pages 369–380, June 2007.

[34] N. Jouppi N. Muralimanohar, R. Balasubramonian. Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches With
CACTI 6.0. In Proc. Int’l Symp. on Microarch., pages 3–14, Decem-
ber 2007.

[35] B. Nayfeh, K. Olukotun, and J. Singh. The Impact of Shared-Cache
Clustering in Small-Scale Shared-Memory Multiprocessors. In Proc.
Int’l Symp. on High-Perf. Comp. Arch., pages 74–84, February 1996.

[36] J. Oh, M. Prvulovic, and A. Zajic. TLSync: Support for Multiple Fast
Barriers Using On-Chip Transmission Lines. In Proc. Int’l Symp. on
Comp. Arch., June 2011.

[37] L. Peh and W. Dally. A Delay Model and Speculative Architecture for
Pipelined Routers. In Proc. Int’l Symp. on High-Perf. Comp. Arch.,
pages 255–266, 2001.

[38] D. Sanchez, G. Michelgeannakis, and C. Kozyrakis. An Analysis of
On-Chip Interconnection Networks for Large-Scale Chip Multipro-
cessors. ACM Transactions on Architecture and Code Optimization,
7(1), 2010.

[39] J. Seita, H. Ito, K. Okada, T. Sato, and K. Masu. A Multi-Drop
Transmission-Line Interconnect in Si LSI. In Asia and South Pacific
Design Automation Conference, pages 118–119, January 2007.

[40] A. Shacham, K. Bergman, and L. Carloni. On the Design of a Pho-
tonic Network-on-Chip. In First Proc. Int’l Symp. on Networks-on-
Chip, pages 53–64, May 2007.

[41] A. Udipi, N. Muralimanohar, and R. Balasubramonian. Towards Scal-
able, Energy-Efficient, Bus-Based On-chip Networks. In Proc. Int’l
Symp. on High-Perf. Comp. Arch., pages 1–12, January 2010.

[42] D. Vantrease et al. Corona: System Implications of Emerging
Nanophotonic Technology. In Proc. Int’l Symp. on Comp. Arch., June
2008.

[43] D. Wentzlaff et al. On-Chip Interconnection Architecture of the Tile
Processor. IEEE Micro, 27(5):15–31, 2007.

[44] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In
Proc. Int’l Symp. on Comp. Arch., pages 24–36, June 1995.

[45] J. Xue, A. Garg, B. Ciftcioglu, J. Hu, S. Wang, I. Savidis, M. Jain,
R. Berman, P. Liu, M. Huang, H. Wu, E. Friedman, G. Wicks, and
D. Moore. An Intra-Chip Free-Space Optical Interconnect. In Proc.
Int’l Symp. on Comp. Arch., pages 94–105, June 2010.

12

