
Redundant Memory Array Architecture for
Efficient Selective Protection

Ruohuang Zheng Michael C. Huang
University of Rochester

{ruohuang.zheng,michael.huang}@rochester.edu

ABSTRACT
Memory hardware errors may result from transient particle-induced
faults as well as device defects due to aging. These errors are an
important threat to computer system reliability as VLSI technologies
continue to scale. Managing memory hardware errors is a critical
component in developing an overall system dependability strategy.
Memory error detection and correction are supported in a range
of available hardware mechanisms. However, memory protections
(particularly the more advanced ones) come at substantial costs in
performance and energy usage. Moreover, the protection mecha-
nisms are often a fixed, system-wide choice and can not easily adapt
to different protection demand of different applications or memory
regions.

In this paper, we present a new RAIM (redundant array of in-
dependent memory) design that compared to the state-of-the-art
implementation can easily provide high protection capability and the
ability to selectively protect a subset of the memory. A straightfor-
ward implementation of the design can incur a substantial memory
traffic overhead. We propose a few practical optimizations to mit-
igate this overhead. With these optimizations the proposed RAIM
design offers significant advantages over existing RAIM design at
lower or comparable costs.
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1 INTRODUCTION
A memory hardware error occurs when a memory cell loses its
state or supplies a wrong value to the processor. Memory errors
are sometimes caused by temporary environmental factors such as
particle strikes from radioactive decay and cosmic ray-induced neu-
trons [29, 35, 52, 53, 55]. These errors, called transient errors, do
not persist and are correctable by software overwrites or hardware
scrubbing. Other errors are caused (at least partially) by inherent
manufacturing defect, insufficient burn-in, or device aging [5]. These
errors are often non-transient in that they tend to cause repeating
symptoms as the deterioration is often irreversible. Memory errors
and bit corruptions are an important threat to computer system re-
liability, as demonstrated by high-profile incident reports (e.g., for
Sun Microsystems servers [42] and Amazon cloud computing fa-
cility [2]). Past case studies [33, 44] further suggested that these
errors are significant contributing factors to whole-system failures.
Managing memory hardware errors is an important component in
developing an overall system dependability strategy.

Memory error detection and correction are supported in a range
of available hardware mechanisms such as SECDED (single-error
correction, double-error detection) ECC, memory scrubbing, Chip-
kill [9], active memory mirroring [12, 16], and redundant array of
independent memory (or RAIM, in IBM zEnterprise system) [30].
Memory error protection carries potentially substantial costs in mem-
ory space, performance, and energy usage. For instance, the Chipkill
mechanism was shown to reduce the effective memory bandwidth by
40% [10]. Furthermore, Chipkill and certain flavors of RAIM [30]
spread data over multiple channels which dilutes the locality at the
DRAM core and multiplies the number of banks and associated
interface elements to activate (hence energy costs).

A memory error that escaped hardware memory protection is
exposed to the software level. However, its corrupted memory value
may or may not be consumed by software programs. Even if it is con-
sumed, the software system and applications may continue to behave
correctly if such correctness does not depend on the consumed value.
In principle, different software memory areas may have unequal
criticality or susceptibility to memory hardware errors. For instance,
the reliability of the system software (operating system or virtual
machine hypervisor) is more critical than that of application software
(which may be restarted without affecting other applications in the
system). Certain data such as media may be inherently more toler-
ant to errors and allow natural graceful degradation. In such a case,
terminating the application upon detecting an uncorrectable error
is not only unnecessary but counterproductive. In general, a fixed,
system-wide policy to protect memory regardless of application need
is inefficient in resource expenditure and suboptimal in effects. This
is especially so as we move towards the cloud environment where
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a diverse collection of workloads are consolidated on to the same
servers.

In this paper, we propose hardware mechanisms to support selec-
tive, non-uniform memory protection. The proposed design builds
on an existing proposal of RAIM (redundant array of independent
memory) architecture (which will be referred to as RAIM-3). While
the existing RAIM-3 architecture provides superb error protection
capabilities, the cost of protection is high in both storage and energy
consumption. Furthermore, the architecture requires a large number
of memory channels. We propose a different organization of the
RAIM design (which will be referred to as RAIM-5) to more easily
facilitate selective protection, paying storage overhead only when
needed and can be easily implemented in a lower-end system with a
moderate number of memory channels. Additionally, we investigate
a number of optimizations to reduce the high memory traffic over-
head as a result of our RAIM organization. These optimizations are
practical and effective, lowering the memory traffic overhead to a
comparatively insignificant level.

In the rest of the paper, we will discuss background and related
work (Sec. 2), the architectural design (Sec. 3), the experimental anal-
ysis (Sec. 4), a case study of applying selective protection (Sec. 5),
and conclusions (Sec. 6).

2 BACKGROUND AND RELATED WORK
Memory errors are relatively rare events that require large amount of
observation and/or special mechanisms to study. Many past studies
have brought insights to the problems [8, 24, 25, 35, 36, 40, 41, 51,
54]. Some general observations include that memory errors are a
non-trivial phenomenon and are likely to be caused by transient as
well as more permanent fault mechanisms. The understanding has
also led to numerous proposals of protection mechanisms.

Protection mechanisms and their costs: One category of mem-
ory errors are due to storage. In these cases, a storage cell may
become defective or temporarily lose its state due to noise (energy).
Another category of errors are due to the datapath from the inter-
connect fabric to the interface circuitry on the memory chip. All
these elements can have transient or permanent errors that prevent
correct data at the storage cells from reaching the processor core.
Computer systems, especially high-end servers, use a whole host of
protection mechanisms to combat these errors: error-correcting code
(ECC) on the memory arrays, cyclic redundancy code (CRC) for the
interconnect fabric, spare circuits inside memory chips and spare
chips, and dynamic controls such as retry and scrubbing. SECDED
uses parity-check code to support single-error correction and double-
error detection. Chipkill ECC is designed to tolerate word-wise
multi-bit errors such as those that occur when an entire memory
device fails [9]. It can be implemented using wider ECC codes to
detect and correct errors involving more bits, or by marshaling bits
such that only one bit from each memory device is used to form
a word. The active memory mirroring [16] stores identical data on
a pair of DIMMs. If an uncorrectable error occurs in one, the data
will be retrieved from the mirrored DIMM. The IBM zEnterprise
system employs redundant array of independent memory (RAIM)
architectures [30]. This particular implementation of RAIM is simi-
lar to RAID 3, and uses five memory channels to store data logically
striped across four memory channels. Each channel also uses extra

storage for ECC (8 chips for data, 1 for checksum). This system can
correct a variety of errors such as that resulting from a failure of an
entire memory channel plus two extra memory chips [30].

Error protection measures come with non-trivial costs in circuit,
performance, and energy, some obvious, others subtle. For instance,
memory mirroring provides very strong protection against various
forms of errors—any error localized to one memory channel—but
comes at 100% overhead in memory capacity. The RAIM implemen-
tation in [30] stores 13 parity symbols1 for the original data of 32
symbols, carrying a 40% storage overhead.

We further recognize that stronger ECC mechanisms (with higher
reliability) typically incur higher costs. For instance, modern DRAM
DIMMs invariably use chips that each provide multiple (say, 4) bits
per access (referred to as x4 chips). Thus, these bits share single-
point-of-failures in the the access circuitry of the chip and may
become erroneous simultaneously. A less powerful correction code
such as SECDED will fail to correct it. Indeed, the more bits to
correct, the more costly the ECC circuitry is. A Chipkill ECC [9],
which can correct an error involving an entire chip failure, is often
implemented by spreading the data across multiple chips and mul-
tiple memory channels. This design, however, has significant costs
of its own. Having to send the same command to multiple channels
to fetch the same cache line, there is significantly more downstream
traffic (to DRAM) and less efficient use of the upstream bandwidth
due to shorter burst lengths. The result can be a 40% reduction of the
effective throughput [10]. Furthermore, spreading data over multiple
channels further dilutes the locality at the DRAM core and multiplies
the number of the banks and associated interface elements to activate
(and hence energy costs).

A number of novel protection mechanisms have been proposed
to improve the cost benefit ratio. Udipi et al. propose to spread
parity code around different chips to handle single chip failure in
systems with larger symbols [47]. A later proposal also separate
codes needed for detection and for correction, also targeting systems
with DRAM chips providing more bits [46]. COP uses memory
compression to free up space for ECC overheads [37]. Bamboo uses
a novel coding architecture to provide strong protection with low
storage overhead. Multidimensional parity code is another example
of efficient coding [13]. Parity Helix maps ECC words in a helix
fashion in 3D die-stacked DRAMs so that an entire dimensional
failure can be protected against with a low cost [14]. In addition
to better error-correction codes, other proposals include techniques
to remap defective cells [19, 34] and a novel hashing-based error
detection mechanism [6].

Selective error protection: While most existing mechanisms uni-
formly protect memory areas in the system, limited support for
selective error protection also exists. For example, the active mem-
ory mirroring [16] can be applied to a selective memory region.
However, due to a lack of software error susceptibility information,
its practical use is confined to protecting the IBM POWER system
hypervisor in a coarse-grained fashion. Mehrara and Austin worked
on selective placement of critical data for partial memory protec-
tion [31]. They analyze data read/write phases to identify the “live”
time when a transient memory error would be read by the software.

11 parity symbol per data channel, 9 for the parity channel.
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Khudia and Mahlke have proposed a completely automated analy-
sis to partition computation into different categories with different
protection requirements [18]. These past works complement our
work by providing policies for selective protection whereas our work
provides the mechanisms.

The most closely related proposal to ours is virtualized ECC [49]
where the OS explicitly maps space for redundancy into physical
storage. Our work offers a simpler organization of redundancy infor-
mation based on RAIM and provides even stronger protection when
needed.

Selective protection of CPU processing errors has also been ad-
dressed in the past [7, 26, 39, 43, 45]. CPU error protection, however,
focuses on the identification of critical instructions in the code, rather
than data in memory, that are most susceptible to catastrophic error
consequences. These techniques cannot assess the impact of mem-
ory errors through execution (and, in particular, propagation), and
therefore they cannot be directly utilized to support non-uniform
memory protections. Finally, there are proposals to leverage locality
to be selective in cache memory protection as a means to reduce
the (storage) cost [20, 21, 50]. In these proposals, the ECC code
word or the shadow copies of the more recently used cache lines
are kept—displacing those from the less recently used lines. As a
result, a small storage investment can protect those lines that cover a
disproportionately high access frequency.

A recent study of data-intensive applications found that differ-
ent regions have different tolerance to errors and that non-uniform
memory protection can be effective [28]. Automated methodologies
for evaluation and for software-based error recovery are also being
studied [15, 27]. Finally, selective protection can help DRAM timing
optimization proposals [17, 23, 38].

3 ARCHITECTURE SUPPORT AND
OPTIMIZATIONS

We start with a state-of-the-art error-correcting memory architec-
ture and explain its disadvantages in supporting selective protection
(Sec. 3.1). We then describe an alternative architecture that more
easily supports selective protection and discuss its costs (Sec. 3.2).
We then discuss microarchitectural optimizations that mitigate these
costs (Sec. 3.3).

3.1 Baseline ECC Architecture
We start with a baseline (non-adaptive) design similar to [30]. The
system applies RAID architecture with memory channels and is
naturally referred to as RAIM. In particular, the architecture adopted
is that of RAID-3 design, where a unit of protection (in this case a
cache line) is split into N chunks, each stored within an independent
memory channel. In addition, a parity chunk is simply the result
of bitwise XOR of the N data chunks and is stored in a separate
memory channel (Fig. 1). We will call this design RAIM-3.

When a cache line read occurs, all memory channels are simul-
taneously accessed to retrieve the individual chunks. This system
can correct a variety of errors such as that resulting from a failure
of an entire memory channel (including the storage devices and
the communication links) plus two extra memory chips from other
channels [30].

Such strong protection clearly comes with significant cost. For ex-
ample, the RAIM implementation in [30] uses storage for 45 symbols
for the original data of 32 symbols, carrying a 40% storage overhead.
Moreover, even this level of storage overhead is attained only with a
relatively large number of memory channels (five), which in itself
carries non-trivial costs: Modern chips are increasingly pin-limited.
Connecting a larger number of memory channels to a processor
often requires an intermediate buffer chip that communicates with
the processor chip with high-bandwidth-per-pin channels [48]. Such
design is more costly and also increases latency (by 11 nanosecs in
the case of the IBM AMB chip [48]) and energy for every access.

In addition to the significant storage overhead and the requirement
of a large number of memory channels, the hardware may also spend
significant time recovering from an error. For instance, one type of
recovery process (called tier-2 recoveries) can take approximately
150 µsecs, or about 1 million cycles [30]. During this period, the
loss of access to a memory channel degrades error correction capa-
bility and an otherwise correctable error may cause the access to be
delayed after the recovery.

The issue with such a design is not cost per se. After all, robust-
ness of mission critical application is far more valuable compared
to the costs. The issue, however, is that such protection is fixed for
the system regardless of the protection demand of the application,
leading to not only waste but even lower quality of service. Indeed,
depending on the data, the application may be able to proceed with
an alternative approach of tolerating an error providing an equally
acceptable response at a much lower latency and therefore provide a
higher level of overall system robustness.

Memory Controller
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B0

C0
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W
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CN-1

ChN

…
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Bp

Cp

(a) RAIM-3

Memory Controller

P0

Ch0

R
W

Ch1 ChN

…P1 PN
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Figure 1: Operational differences between the two RAIM im-
plementations. In RAIM-3, a cache line A is striped over mul-
tiple channels (A0 to AN−1). Reads and writes involve all chan-
nels, albeit with shorter bursts (indicated by short arrows). In
our RAIM-5, a page (e.g., P0) stays in one channel. The initial
read involves only one channel (with a longer burst), but may
encounter an uncorrectable error that requires additional ac-
cess of remaining channels (dashed arrows). A writeback of a
cache line involves reading and writing the line and its parity
line. Parity pages are spread around all channels for load bal-
ancing.

3.2 Basic Architecture for Selective Protection
To give applications the choice of memory protection levels, it is
more convenient to organize parity protection groups at the level
of pages. A RAIM-5 architecture is a natural choice. In RAIM-5,
pages at the same offset in different channels form a group (e.g., P0
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Table 1: Trade-offs between RAIM-3 and RAIM-5 architectures.

RAIM-3 RAIM-5
Selective protection Not very meaningful (overhead already paid for full protection) Full flexibility in selective protection
Protection strength Very high: can tolerate multiple chip failures and channel failures Similar to RAIM-3
Num. of mem. ch. Very limited choice (essentially just 4+1 channels) Flexible (anything greater than one)
Cache line size Smaller line sizes can lead to energy costs and wastes DRAM bandwidth Not an issue
Overhead Fixed overhead in storage, traffic, and energy. High energy overhead due to

spread of access to all channels
Proportional to protection fraction, but high over-
head for writes in an unoptimized design

.. PN in Fig. 1). The N +1 pages in the same group can form a parity
group and be exposed to software as N RAIM-protected pages or
be exposed as N +1 pages without RAIM protection. The operating
system will provide an interface for applications to allocate pages
either in protected or unprotected mode. The protection mode is kept
in page tables as well as in TLB entries to direct cache controller.

With the same underlying memory system, our page-level RAIM-
5 organization differs from the baseline RAIM-3 design in a few
ways. First, the 1N space overhead at the channel level is fixed in
the RAIM-3 design whereas in our system the overhead applies only
to protected pages. Second, RAIM-3 spreads a single line over N
channels, essentially constraining N to power of 2. In practice, the
choice is perhaps even more limited: having three channels (2+1)
implies a 50% space overhead, which is probably too high. In con-
trast, RAIM-5 can choose any number greater than 1. Considering
that RAIM will only be selectively applied, even a small channel
number is acceptable. Third, when reading a line from the memory,
a RAIM-3 system typically accesses all channels and carries a fixed
1N bandwidth overhead. In our system, a read to an unprotected page
is the same as a system without RAIM protection. Even for a read to
a protected page, the operation can still be overhead-free in the com-
mon, error-free cases. Only when the built-in error detection from a
single channel (e.g., SECDED for the memory storage) detects an
uncorrectable error will the RAIM protection be invoked to correct
errors.2 In summary, the design provides more cost-proportionality
(in reads) by “taxing” only protected pages.

The aforementioned benefits come at a cost: writebacks are more
expensive. When a cache line belonging to RAIM-protected pages
needs to be written back, we need to update the corresponding line
in the parity page. This requires calculation of the new parity in one
of two ways: recalculating the parity from scratch or calculating
incremental change due to the write. We refer to these two styles
simply as RAIM-5a and RAIM-5b.

• RAIM-5a: Upon a writeback of a cache line, all lines be-
longing to the same parity group will be fetched so as to
calculate the new parity. Some of these lines may already
be on-chip in the cache and thus do not need to be fetched
from the memory. Note that for simplicity of model, we
only consider cache lines that are the same with their mem-
ory counterpart, i.e., they are not dirty. Under this model,
the best case scenario is when all lines are on-chip and

2However, this approach relies on error detection built into a single memory channel
(e.g., SECDED). If the built-in detection is unable to detect the error, then this low-
overhead mode of RAIM-5 will not use RAIM to correct the error, and thus provide a bit
less protection than RAIM-3. In order to achieve the same level of protection, RAIM-5
can be operated in a mode where it accesses all channels upon a memory request just
like RAIM-3.

thus the cost for a writeback is just two writes (one for the
original writeback and the other for writing the new parity).
The worst case involves reading N−1 (N being the number
of data lines in a parity group) lines and writing two.

• RAIM-5b: Upon a cache line writeback, we fetch the old
copy of the line from memory; calculate the delta between
the two versions (assuming the RAIM parity is simple
XOR); apply the delta to the parity line by a read-modify-
write operation. This approach always requires two memory
reads and two memory writes.

The drawback is clear: writebacks incur several times the original
cost. Even though they are not on the critical path and writebacks
are much less frequent than reads, the extra energy and bandwidth
overhead is still significant. As we will show later in Sec. 4, both
models can increase overall memory traffic by several times. A
simple hybrid that chooses the less expensive mode between RAIM-
5a and RAIM-5b for every line only marginally reduces the overhead.
We need effective optimizations to address the issue. Fortunately,
there are a few practical optimizations that are very effective. But
before delving into the details of the optimizations, we recap the
different trade-offs between the two different RAIM architectures in
Table 1.

3.3 Optimizations
To reduce writeback-induced overheads, we can reduce the frequency
of writebacks and/or the cost for each occurrence. We discuss three
approaches that turn out to be very effective. We will briefly mention
mechanisms or variations that turn out to be ineffective (at least in our
experimental framework). Quantitative analyses will be presented
later in Sec. 4.

Gang writeback: The minimum overhead for a cache line write-
back in our RAIM-5 is to write back the new parity line. This already
amounts to 100% overhead in memory traffic. One way to save this
overhead is to write back more than one cache line (belonging to
the same parity group) together. This way, the update to parity is
amortized over multiple lines.

Perhaps the most straightforward way to do such “gang writeback”
is simply to write back all dirty lines in the parity group when one
dirty line is being evicted. In such a design, the amount of memory
accesses remains the same if we use RAIM-5a, as can be seen in
Fig. 2. In short, if we do not write back the dirty lines, we would
have to read their old version in order to calculate the new parity,
which results in the same amount of traffic.

Note that this does not mean gang writeback is always for free – it
is only so in RAIM-5a. The mode with the lowest overhead depends
on the number of different types of lines and may be different from
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Figure 2: Illustration of cache line reads and writes needed in
RAIM-5 with and without gang writebacks (GW). The lines of
the parity group are organized from left to right into the dirty
victim (V) causing the writeback, other dirty lines present (D),
clean lines present (C), lines not present (dashed boxes), and the
parity line (P). The up/down arrows indicate a read/write of the
corresponding line. The overhead per useful writeback is also
shown. Nu is the number of useful writebacks.

parity group to parity group. Furthermore, if we can accurately
predict which write will be useful, we can selectively write back
only those lines in RAIM-5b. In other words, there is no simple
formula to get the lowest overhead. Nevertheless, we can make some
general observations: empirically, the number of useful writebacks
is high enough that we can make a simplistic policy of always doing
gang writeback. Furthermore, if we manage to make cache lines
with similar access behaviors stay in the same parity group, then
the right times to write each line back will be highly correlated and
thus more of the writebacks will be useful. This makes the next idea
synergistic with gang writeback.

Memory interleaving: Recall that when all cache lines belonging
to the same parity group are present, we can calculate the new parity
when we have to write back one line. This gives the least traffic
overhead. Ideally, we will like to find the group to be complete
when a writeback is needed. If we map memory address in a page-
interleaved fashion among the memory channels, then a particular
line will be in a parity group with N − 1 other lines (of the same
offset) each from a different physical page. Intuitively, there is still
some spatial locality/correlation among nearby pages, but the locality
is perhaps not as strong as that between lines within a page. To
quantify this locality, we use group complete probability (GCP).
GCP is the probability of dirty victim lines belonging to a complete
group, i.e., all the lines belonging to the parity group of the victim
are in cache. GCP measures how often we can generate the new
parity without additional reads from memory.

One thing worth noting here is that other lines in the group may
be dirty too, which implies the main memory’s version of the line is
different from the cache version. In that case, we have two choices:
(a) treat the line as not in cache, which makes the group incomplete
(and base on the number of lines present pick either RAIM 5a or
5b); and (b) write back the line so that both cache and memory
versions are the same. While we will discuss details later in Sec. 4.3,
some general observations can be made. When parity groups are
formed from lines in different pages, the GCP is, at about 21%,
understandably low. When lines from the same page are used to
form group, GCP improves more than 3x to average around 63%.

A0

…
AFS-1

B0

…
BFS-1

A0⨁A1

…
BFS-2⨁BFS-1

Physical Address Space

A0

A1

A3

A2

B0

B1

B3

B2

A0⨁A1

B0⨁B1

A2⨁A3

B2⨁B3

BFS-2⨁BFS-1 AFS-1BFS-1

Channel0 Channel1 Channel2

…
Figure 3: Mapping of physical lines to channels with corre-
sponding parity group formations. FS stands for frame size
(measured in number of lines). Each box represents a physical
line. On the right, we show the physical address space; while
on the left we show how lines are actually distributed in DRAM
channels. A0 through AFS−1 and B0 through BFS−1 form two
frames, and the shaded boxes form the third frame for parity
data. Within a frame, A0 and A1 form a parity group; A2 and
A3 form a parity group; and so on.

To make lines from the same page be part of a parity group,
we need them to be in different channels (for errors to be more
independent). We do this by offsetting each subsequent line by
one channel and wrap around in a helix-like fashion (Fig. 3). For
convenience of discussion we refer to consecutive lines in one of the
strands a frame. For example, in Fig. 3, A0 to A3 form a frame (of 4
lines long).

As with line interleaving, in our mapping, neighboring lines in
physical address space are spread across different channels, balanc-
ing load. But, importantly, unlike line interleaving, where n channels
of space is essentially merged together to create one address space,
our mapping preserves n frames allowed by n channels. This allows
the operating system the flexibility to either expose all pages for
software access or maintain some for parity purposes. The physical
address space mapping only depends on frame size. If the frame size
is set to M lines, then the first M lines in physical address space (0 to
M−1) will be in frame 0, and line M will be the 0th line of frame 1.
Note that as long as the frame size is a multiple of an OS page size,
there is no other constraints for our purpose and it can even be the
entire capacity of a channel. However, if we set M to be a multiple
of N (number of data lines in a parity group), the address calculation
is simpler.

Given physical line number pln (physical address right-shifted
to eliminate line offset), and frame size FS (the number of lines
in a frame, which is both a multiple of the number of lines in a
page and a multiple of N), we can express pln as frame ID f id and
frame offset f o, then a line is mapped into channel f id + f o%N +1.
The physical line number of other lines in the same protection is
simply ⌊plnN⌋∗N + i, i = 1,2..,N −1. The physical line number of
the parity line is pln− pln%N + f id%N +1+N − f id%N +1×FS.
Note that the seeming complexity of the formula can be misleading.
For instance, the last part of the formula (N− f id%N+1×FS) is only
to set the address to a fixed frame where the parity lies. If N is, say,
4, then this part merely dictates setting the last two bits of the frame
id to binary “11”.
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In summary, frame is a logical concept merely used to construct
the mapping function. For simplicity, we choose a frame size to be
both a multiple of page size, and the number of lines in a parity
group. For example, in 3+1 configuration, assuming 4K page size,
then a good frame size will be 12KB.3

Cache interleaving: In addition to memory interleaving, there
is also the issue of cache bank interleaving. Conventionally, cache
banks use line interleaving to avoid hot spot. With a typical interleav-
ing, the member lines in a parity group will be distributed among N
cache banks. Even if the group is complete, a single cache controller
does not have the knowledge until it polls other cache banks. A more
convenient configuration is to do parity group interleaving, keeping
the entire parity group in one bank of the last level cache. Fig. 4
illustrates the difference. When both memory and cache interleaving
are applied at the same time, we call it HGM (high GCP mapping).

0 A0 1 A1 2 A2 3 A3

Bank0 Bank1 Bank2 Bank3

… … … …
4 B0 5 B1 6 B2 7 B3

(a) Conventional cache line interleaving

0 A0 4 B02 A2 6 B2

Bank0 Bank1 Bank2 Bank3

… … … …
1 A1 5 B13 A3 7 B3

(b) Proposed parity group interleaving

Figure 4: Mapping of physical lines into last-level caches. This
figures illustrates a system with 4 banks. Each small box repre-
sents a cache line, and the number on the left is the line number
of the cache line. A0 and A1, A2 and A3, B0 and B1, and B2 and
B3 form four parity groups.

Note that mapping lines in a parity group to the same cache bank
does not necessarily reduce performance. The alternative (of cache
interleaving) trades locality for bank-level parallelism. Also note
that the serialized access is faithfully modeled in our simulation. We
find this serialization to have little performance impact.

In summary, our RAIM-5 design posts some constraints on the
address interleaving schemes. But the change is small and mostly
affects the path of writebacks and is thus not on the critical path.

Other techniques: We briefly discuss a few other techniques ex-
plored to reduce overhead.

• Improving group completeness: Recall that when the whole
parity group is present in cache, the writeback overhead is
low. One way to boost such completeness for groups with

3It is worth pointing out that when a frame is storing parity lines, its address range is
not visible to any process and thus no cache lines within that address range will be
requested. In other words, there are holes in the address space and they can make certain
sets in the cache to be underutilized. We can choose to ignore this problem or to select a
frame size to avoid the problem completely. If ignored, our empirical data suggest that
this problem will cause the number of misses to increase a few percent on average. To
completely eliminate this problem, we can add one more constraint to the frame size:
that it is a multiple of the size of a cache way (in LLC).

dirty data is to prefetch missing lines. However, prefetching
this way may not help cache hit rate. So we only prefetch
when a dirty line is becoming the next in line to be evicted
and there is only one line missing from the group. This
technique is effective in baseline mapping, noticeably re-
ducing traffic (by 22%). But with our proposed interleaving
dramatically improving the group complete probability, the
prefetch shows little impact and becomes unnecessary.

Another way to boost group completeness we tried is
to promote all member lines to the MRU position in their
respective sets when one line is written to. This also has
virtually no impact (improving by about 1%) with our pro-
posed interleaving scheme.

• Writeback before losing group completeness: If evicting a
clean cache line makes a group lose its completeness, then
we can take the opportunity to write back any dirty data in
the same group. This also has a very small impact.

• Reduce writebacks: We attempted to give dirty lines more
chances to stay in cache without being evicted, for example,
by making it twice as long to demote them. This does not
work and increases traffic.

3.4 Putting It All Together
Fig. 5 illustrates how software applications can utilize RAIM-5’s
selective protection feature and how virtual and physical memory are
managed by the OS. As can be seen, the actual memory management
and virtual to physical mapping are still based on pages, thus existing
MMU mechanisms remain largely unchanged.

User applications need to tell OS the protection requirement for
different data blocks at the granularity of frame size. One way to
implement this is to modify malloc() in user space and mmap() and
brk() in the kernel. For example, when calling malloc(), the user
also specifies the protection requirement. Upon requesting virtual
memory from the kernel, mmap() or brk() is invoked with the proper
protection flag. Another way is to simply introduce a new system
call for setting protection requirements for different blocks.

When OS allocates physical memory, the allocation granularity is
the size of a protection group, which consists of N +1 frames. For
a protected protection group, there are N data frames and 1 parity
frame; for an unprotected one, all N +1 frames are data frames. The
entire group can be marked as protected or unprotected, thus all the
pages in the same group have the same protection property. This
information is recorded using an extra bit in the page table as well as
TLB entries. The physical memory allocator is also modified so that
it can allocate memory from the proper protection group. A portion
of page table and TLB entries of the corresponding mapping are also
illustrated in Fig. 5.

Finally, when gang writeback and high GCP mapping are enabled,
lines are mapped in a helix fashion as illustrated in the right-most
column of Fig. 5.

In summary, our RAIM-5 design requires only minor hardware
modifications. And all such modifications are limited to the the
LLC (L2 in our experimental setup) and memory controllers. Our
optimizations (gang writeback and cache interleaving) only change
where an LLC line is mapped and how to evict a dirty line. The rest
of the system, especially, the interface with the L1 caches remains
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The linear address space is divided into frames. Each frame can be
marked as protected or not protected. This can be done by modifying
mmap() and brk(), or introducing new system calls. Existing MMU
mechanisms are mostly unchanged since virtual to physical memory
mapping is still based on pages.

=	Parity	Data=	Protected	 Data =	Unprotected	 Data

A	Portion	 of
Page	Table	and	TLB	Entries

User	Application’s
Linear	Virtual	 Address	Space

Linear	Physical	Address	Space DRAM	in	2	+	1	Channel	Configuration

Figure 5: Memory management in RAIM-5. The figure illustrates how RAIM-5 manages virtual and physical memory, and how
frames and protection groups are formed from pages. As can be seen, memory management is still based on pages. Note that in a
protected group, the parity frame is not visible to any user process.

the same as the baseline system. For example, with or with our our
RAIM-5 logic, when the LLC evicts a dirty line it would need to
search L1s and request writebacks.

4 EXPERIMENTAL ANALYSIS
In this section, we first discuss experimental setup (Sec. 4.1), then
discuss the overall effect of our proposed RAIM design (Sec. 3.2),
and finally present detailed analyses (Sec. 4.3).

4.1 Experimental Methodology
We evaluate RAIM using gem5 [4] simulator with Ruby memory
model. DRAM is modeled with the DRAM model embedded in
gem5 [11]. The simulated OS uses 4KB page size. Table 2 shows
the detailed simulation parameters. Our baseline machine has 5 data
channels protected by ECC only and cache line size is 64B. All the
results are normalized to this baseline unless otherwise specified. To
minimize non-determinism, for each application, we either collect
data between two global synchronization points, or run 1 billion
useful instructions (excluding instructions in kernel mode and for
spinning) across all cores. The average result of multiple runs is
reported.

Our application mix represents both conventional and emerging
workloads. We run selected PARSEC [3] applications using simlarge

input sets. Since memory traffic is of primary interest in our exper-
iments, a few applications with too little traffic in the simulation
window4 or with too much non-determinism across runs (ferret) are
excluded. We also run popular graph applications from the CRONO
benchmark suite [1], including depth-first search (dfs), community
(com), page rank (page), and betweenness centrality (bc). The input is
a synthetic graph with 327680 vertices and fixed 16 edges per vertex.
This input size is much larger than the that of the L2 cache.

4These are blackscholes, bodytrack, fluidanimate, and swaptions. They
generate less than 5MB of traffic in the window. The traffic of the rest of the applications
ranges from 11MB to 700+ MB.

Table 2: Simulation Parameters

Cores OoO, 2GHz, 16-core, 2D-mesh, MESI
Width 8-wide issue and commit
Issue queue 64-entry unified
Load-store queue 32-entry LD queue, 32-entry ST queue
Reorder buffer 192-entry
Physical registers 256-int, 256-fp
Branch predictor 2K local, 8K global, 4K BTB, 16 RAS
Private L1I&L1D 64KB each, 4-way, 64B line, 2-cycle
Distributed shared L2 4MB total, 16-way, 64B line, 16-cycle
DDR3-1600 DRAM 5-channel (4-data + 1-parity), 1GB/ch

4.2 Overall Effects
Our proposed RAIM-5 design is intended as a better alternative to
RAIM-3 with numerous advantages: highly flexible selective pro-
tection and flexibility in cache line size and the number of memory
channels. The tradeoff is that with a naive implementation (i.e., with-
out the proposed optimizations), there will be significant additional
costs associated with memory accesses. We therefore first answer the
bottom-line question: can the proposed optimizations make the cost
of our RAIM-5 architecture sufficiently low to justify the advantages
gained. Fig. 6 focuses on the main cost – off-chip traffic.

Off-chip traffic: Note that both RAIM designs can have different
configurations. In this first comparison, we take the RAIM-3 config-
uration used in the real world [30] and compare a RAIM-5 design
with the same functionality. Note that RAIM-3 uses 256B cache line
size for better execution time (more on that later), whereas baseline
and RAIM-5 configurations use 64B cache-line size. In these com-
parisons, we use 4+1 channels for RAIM systems and compare the
traffic to a system without RAIM and thus all 5 channels are for
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data accesses. Finally, in all our experiments, RAIM-5 is (conser-
vatively) assumed to be protecting all memory, without any benefit
from selectivity.

Fig. 6-a shows the normalized off-chip traffic. We see that by
engaging RAIM-3, the traffic rises to about 2x on average. A naive
implementation of RAIM-5, however, makes the traffic 3.5x that of
the baseline on average. By applying the optimizations discussed,
the traffic drops back to 2x. In other words, an optimized RAIM-5
system no longer has significant additional cost compared to RAIM-
3.

Note that for a few applications (e.g., com and dfs) the overhead
is still high after a large reduction. This is largely due to the applica-
tions’ poor locality and irregular access patterns making fetching and
caching the entire parity group a bad choice. We see that RAIM-3
also suffers from the same problem and has similarly high relative
traffic.
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Figure 6: Off-chip traffic normalized to baseline. We count the
total amount of data transferred between main memory and the
CPU.

As mentioned already, there are a variety of ways one can con-
figure a RAIM system. A particular configuration (which we call
optimistic) worth noting is when we use the redundant channel only
when the per-channel ECC mechanism detects, but can not correct an
error. This is in contrast to the default configuration, where the parity
channel is accessed for all memory requests and can thus detect
certain errors that per-channel ECC fails to detect. This optimistic
configuration does not have the same coverage as the default con-
figuration but can still cover most errors including chip and channel
failures. Under error-free conditions, the overhead of the optimistic
configuration is only limited to that from writebacks. As shown in
Fig. 6-b, compared to baseline, the normalized memory traffic would
only be 1.17x in the RAIM-5 design, down from 1.72x in a naive
implementation. We note that an optimistic version of RAIM-3 also

sees a significantly lower traffic overhead: 1.79x and 1.08x for 256B
and 64B cache-line size, respectively.

Again, the overhead shown here is assuming RAIM-protecting
the entire memory. The cost of selectively protecting portions of
memory is proportionally lower for RAIM-5. When no memory is
protected, the difference in memory traffic compared to a baseline
system (which has different mappings) is negligible. In other words,
RAIM-5 is cost-proportional.

Memory energy costs: Memory traffic statistics only tell part of
the story of RAIM system overhead. The energy consumption of
memory accesses is another part. Energy consumption contains a
fixed portion due to refreshing and the dynamic portion depends on
on how these accesses are spread across channels and their hit rates
on row buffer. RAIM-5 generally has lower overhead in memory
energy compared to RAIM-3. As shown in Fig. 7, RAIM-3 increases
memory energy by an average of 54% (with a range of 2% to 173%).
RAIM-5 configurations keep the energy consumption overhead at
a much lower 28% (with a range of 5% to 127%). This is less than
half of the 61% overhead of a naive implementation.
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Figure 7: Total memory energy consumption normalized to
baseline.
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Figure 8: Execution time normalized to baseline.

Execution time impact: Finally, we show the impact of different
RAIM designs on the execution time in Fig. 8. Like previous results,
the baseline for comparison uses all N +1 channels for regular mem-
ory accesses. Hence, it enjoys more effective memory bandwidth. We
can see that the performance difference is largely muted across most
applications for RAIM-5 configurations. The small differences are
largely because RAIM-5 caches more lines (the entire parity group)
on a miss. This can improve performance in some applications and
hurt in others. Overall, the average impact is negligible.

RAIM-3, on the other hand, presents an unfortunate design trade-
off that manifests more clearly in execution time. RAIM-3 spreads
a cache line over multiple memory channels. A small cache line
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size reduces burst length and multiplies overhead. Hence RAIM-3
designs use long cache lines at the LLC. For applications with poor
spatial locality, however, this choice not only wastes cache space,
but also memory bandwidth. dfs is one clear example where both
long and short cache lines are equally poor choices for RAIM-3. In
contrast, RAIM-5 removes the limitation on both the cache line size
and the number of memory channels.

Recap: In summary, the proposed selective RAIM-5 design al-
lows protection cost proportionality and flexibility in baseline con-
figuration in terms of cache line size and the number of memory
channels available. In exchange for these benefits, RAIM-5 pays
with the cost of extra memory traffic, which can be significant in a
naive implementation. With the proposed optimizations, this cost is
significantly mitigated:

(1) Traffic overhead reduces from 250% to 100%, roughly
inline with that of RAIM-3. In the case of an optimistic
configuration, the memory traffic overhead drops from 72%
in a naive implementation to 17% in the optimized design.

(2) Energy overhead of memory reduces from 61% in a naive
design to 28% with optimizations. This compares to 54%
in a RAIM-3 design.

(3) On average, the optimized RAIM-5 architecture has a negli-
gible impact on the execution time, compared to an average
of about 10% slowdown induced by RAIM-3.

Overall, we believe these statistics suggest that RAIM-5 is a
compelling alternative to RAIM-3.

4.3 Detailed Analysis
We now dive in some of the details to better understand the design
and the trade-offs.

Different number of memory channels: An important benefit of
the proposed design is that it offers high on-demand protection
without imposing constraints on the number of channels. RAIM
3, on the other hand, is much less practical in other configurations.
Fig. 9 shows the cost in traffic and DRAM energy of RAIM-5 having
different number of memory channels. Each bar is normalized to
its corresponding baseline (n+1 channel RAIM-5 is normalized to
n+ 1 channel baseline). Recall that if an optimistic configuration
of RAIM is used, there will be less overhead. This result is shown
using darker colors for each bar.
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Figure 9: Effect of having different number of channels, all nor-
malized to its corresponding baseline. Each bar represents the
geometric mean across all applications. The optimistic configu-
ration incurs much less overhead, which is shown as the portion
in darker colors.

As can be seen, with fewer channels, the overhead of accessing
the entire parity group becomes smaller. The tradeoff is that storage

overhead is higher with fewer channels to form RAIM. In the case
of RAIM-5, this storage overhead applies only to the portion of the
memory selected for protection.

Gang writeback and mapping: Fig. 10 shows the effect of the
optimizations in more detail. Recall a RAIM-5 writeback can have
two flavors (which we termed 5a and 5b). A naive RAIM-5 design
picks the better of the two depending on the situation for each
individual writeback. Thus the naive RAIM-5 design is slightly
better than either 5a or 5b in terms of off-chip traffic. However, the
overhead is still quite high (total traffic is 2.6x or 72% more than the
underlying baseline system for default and optimistic configurations
respectively). We see that the high GCP mapping (HGM) and gang
writeback (GW) bring the overhead down significantly (to 102%
and 17% for default and optimistic configurations respectively).
Moreover, they are synergistic. Table 3 shows this synergy more
clearly. Note that the page size is 4KB.
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Figure 10: Off-chip traffic comparing, naive implementation
of RAIM-5 (5naive), GW (+gw), together (+gw+hgm), as well as
RAIM-5a (5a) and RAIM-5b (5b). The lighter colors shows the
default configuration and the darker colors the optimistic con-
figuration.

Table 3: Group complete probability (GCP) under different con-
figurations: original system (Base), with gang write back (GW),
and adding high GCP mapping (HGM).

Application Base GW only GW+HGM
can. <0.1% <0.1% 12.7% (>400x)
ded. 13.1% 26.1% 80.3% (6.1x)
fre. 24.6% 79.5% 83.9% (3.4x)
fac. 14.2% 32.8% 79.3% (5.6x)
ray. 15.1% 40.7% 69.3% (4.6x)
str. 10.2% 14.7% 41.1% (4.0x)
vips 15.4% 38.1% 84.8% (5.5x)
x264 19.6% 48.4% 76.1% (3.9x)
page 27.3% 60.3% 97.9% (3.6x)
bc 45.9% 84.7% 99.6% (2.2x)
com 5.7% 5.8% 6.9% (1.2x)
dfs 52.6% 95.8% 97.0% (1.8x)
Average 20.9% 45.5% 63.3% (3.2x)

The table shows GCP under different configurations. We can see
that the GCP is the highest when both techniques are combined. The
improvement ranges widely and has a geometric mean of more than
3x. Indeed, when the group is complete, we have to write back all
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dirty lines. Otherwise the newly generated checkpoint from the dirty
data will not be consistent with memory data. But fortunately it is
also a good time to write back: if we do not take the opportunity
to gang writeback, the eviction will make the group incomplete,
making other writebacks more expensive. We find that on average
only 7.3% of writebacks are premature, that is, the line becomes
dirty again after the gang writeback.

Access statistics: Fig. 11 shows the number of read and write
accesses from the memory controllers and the on-chip traffic in
different schemes. The results reveal an inherent challenge in the
RAIM-3 design. When using a RAIM-3 design that spreads a single
cache line across multiple channels, every last-level cache miss
involves multiple memory transactions on separate channels. This
is part of the reason that energy consumption is high for RAIM-3.
To amortize this cost, actual designs use much a longer cache line
size (e.g., 256B), which has its own drawback. For instance, in our
setup, the on-chip traffic in RAIM-3 (112%) is significantly higher
than baseline. In contrast, on-chip traffic in our proposed RAIM-5
design (31%) is much less.
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Figure 11: Total number of memory reads, writes, and on-
chip traffic, all normalized to baseline. Each bar represents the
geometric mean across all applications. Traffic is measured in
bytes.

Different cache line sizes: Unlike RAIM-3, which essentially
places a constraint on the cache line size, RAIM-5 is rather insen-
sitive to the choice of line size. As we can see in Fig. 12-a, the
overhead appears lower with longer cache lines. In reality, smaller
cache line sizes make gang-writeback somewhat more efficient due
to better locality, but the difference is small. The biggest factor in the
difference of relative off-chip traffic is the traffic in the baseline sys-
tem without RAIM. As we increase the cache line size, the baseline
system starts to be more inefficient (more traffic and DRAM energy)
as we can see in Fig. 12-b. This larger base makes the overhead of
RAIM-5 appear smaller in relation.

Different page and frame sizes: Modern processors usually sup-
port multiple page sizes, which range from the conventional 4KB
to several gigabytes. Page size does not directly affect our RAIM-5
design since page-based memory management is not changed in
our design. However, page size affect frame size. Frame size has
to be a multiple of page size and a multiple of a cache way. It is
possible that a large page size makes frame size also large. Because
the granularity of selective protection is a frame, a larger frame can
make the granularity coarser. Other than this, a large frame size does
not have significant impact on our RAIM-5 system.

With different page sizes, the applications’ performance will be
affected. It is hard to isolate the effect of page size itself and the
effect of RAIM-5. So in this set of experiments, based on the above
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Figure 12: Effect of different cache line sizes on traffic and mem-
ory energy of RAIM-5. (a) Each bar represents the geometric
mean across all applications normalized to its corresponding
baseline (i.e., the 256B RAIM-5 is normalized to a 256B base-
line). Darker color portion of the bar indicates the overhead
when running RAIM-5 in optimistic mode. (b) Off-chip traffic
in a baseline system with different line sizes all relative to that
of 64B baseline.

discussion, we keep the page size constant as 4KB and change the
frame size from 64KB to 1GB. As is shown in Fig. 13, our RAIM-5
with different frame sizes have a consistent behavior.
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Figure 13: Effect of different frame sizes.

RAIM vs. Virtualized Ecc: Our proposed RAIM-5 design and
Virtualized ECC (VECC) are two different proposals supporting se-
lective protection but with somewhat different emphases. RAIM-5
was intended as a more flexible, and cost-proportional alternative
to RAIM-3, which is intended for high-end systems. For a higher
overhead, RAIMs offer strong protection such as against channel
failures. In contrast, Virtualized ECC only tolerates chip failures.
Both designs can also be adapted to offer ECC protections to sys-
tems using non-ECC DIMMs. However, this was not the intent of
the RAIM-5 design.

In the following comparison, we focus on traffic costs of RAIM-
5 vs. Virtualized ECC in two scenarios. In the first scenario, both
designs use the additional storage to augment regular per-channel
ECC. In the second scenario, the additional storage provides the only
form of ECC. Note that the original Virtualized ECC design [49]
was mainly for a single-core system and did not discuss address
mapping in multi-banked last-level caches. We extended the original
design to make it support multi-banked last-level caches. We model
x8 chips for both RAIM-5 and Virtualized ECC for comparison.

In Fig. 14-a, we can see that RAIM-5 incurs similar overheads
in off-chip traffic as Virtualized ECC (17% vs. 19% on average),
but less in on-chip traffic (4% vs. 14% on average). The two con-
figurations also have similar performance, with Virtualized ECC
being about 1% slower. In the second scenario, we see that RAIM-5
has a much higher overhead in off-chip traffic (102% vs. 29% on
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Figure 14: Off-chip and on-chip traffic in two scenarios of using
RAIM-5 vs. Virtualized ECC.

average), a somewhat higher overhead in on-chip traffic (31% vs.
22% on average); though RAIM-5 has a performance advantage of
5%. Again, this scenario is not the intent of the RAIM-5 design.

Generally speaking, we see Virtualized ECC as a good mecha-
nism to add to mainstream systems to offer a stronger protection,
especially to systems using non-ECC DIMMs. On the other hand,
RAIM-5 is a compelling alternative to RAIM-3 architectures found
in high-end systems.

5 CASE STUDY OF SELECTIVE
PROTECTION

With our proposed system and proper OS support, there is already
flexibility for end users in selective protection. For instance, a user
can enable protection for important runs and only pay the cost then.
However, an additional level of flexibility is to protect different data
differently. One of the motivating categories of such selective protec-
tion is large scale scientific applications. Scientific computation is a
pillar for modern scientific exploration. On the one hand, due to the
size of these applications, memory errors are a statistical certainty,
and the consequence can be severe.5 On the other hand, without se-
lective protection, traditional counter measures can be an overkill as
many scientific codes are large because they are modeling a complex
system and errors in one component need not necessarily compro-
mise system integrity. In this paper, we use a particular scientific
computation application – a particle-in-cell (PIC) simulator – for a
limited case study of such selective protection.

5There is a common misconception that scientific computations do not need the same
level of protection as business operations do. The reason scientific computing platforms
today often provide very limited reliability measures is largely an economic one. Sci-
entists would be just as happy as bankers to not have to worry about computational
errors.

5.1 Introducing OSIRIS
A PIC code is a generic simulator that relies on low-level modeling
of particles in a physical space. It is a first-principle simulator that is
often used to validate other derived models of simulation. The code
structure itself is generic enough to allow modeling of a whole range
of phenomena from astrophysics to plasma research. We use this
code to model Landau Damping in this study. We chose this study for
three reasons. First, Landau Damping is a prime example of the use
of computing in science. The phenomenon is first discussed some
70 years ago [22] and remains the “single most famous mystery” of
classical plasma [32]. The phenomenon defies simple theoretical
characterization and simulation is a prime, if not the only way to ac-
curately model it. Second, when studying a large number of particles,
there is typically no easy way to summarize the outcome of a simu-
lation. In the case of simulating Landau damping, we can actually
reduce the whole simulation to a single scalar value describing the
damping rate. This serves as a convenient first-order characterization
of how much impact errors have on the computation. Finally, we
are familiar with the prime academic code for PIC simulation called
OSIRIS, which is one of the most widely used PIC code and a large
player on the Department of Energy’s most powerful machines.

5.2 The Observation
We first relay an interesting anecdote. A production run of OSIRIS
can easily recruit 10,000 computing nodes and runs for weeks. So a
typical production simulation does not lend itself to simple verifica-
tion from reruns. One such run produced results that are so unlikely
to be real that physicists start to pore over checkpoint dumps and
indeed found evidence that computer error is to blame (Fig. 15).

Figure 15: Illustration for the error caught in diagnostic data.
The visualization shows a rectangle region with abnormal elec-
tron density that clearly has roots in data structure error un-
caught by the code.

Intuitively, since the code models an enormous number of indi-
vidual particles, errors in any one particle is incapable of altering the
overall behavior of the system. Since memory errors are still rare,
certain aspects of the particle data can be protected against memory
error in a variety of alternative ways including having no protection
at all. In other words, some data structures inherently offer graceful
degradation. Indeed, while uncorrectable errors will almost always
result in the termination of an application, in some cases, the best
thing to do may be simply to ignore it and carry on. In the case of
OSIRIS, particle momentum data, a single data structure (array), is
one such data example. If a particle has “gone rogue” and acquired
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an erroneous momentum, the error will generally be too small to
affect the plasma as a whole.

5.3 Catastrophe Recovery
Although the majority of data can naturally tolerate some inaccuracy,
as it turns out, this does not mean the data is impervious to any errors.
For example, an error occurring to the exponent bits may produce
physically meaningless values or cause subsequent computation to
overflow and produce NaN or Inf, which in turn may cause the
program to crash. However, upon such a catastrophe, the program
does not necessarily have to crash. In our case study, we make simple
modifications to ignore the catastrophe and keep on running. First,
we embed a signal handler into the program. This code handles the
floating-point exceptions caused by NaN and Inf numbers, directly
preventing the crash. However, addressing the symptom alone is not
enough. So the second thing we do is to clean up obvious corruptions.
This can help reduce the chance of future crashes, and thus prevent
the signal handler from getting called too frequently. Upon being
triggered, the handler also scans the array for wrong (e.g., NaN) or
unreasonably large values and replace them with a proper random
value.6 We also modify the code to prevent the errors from producing
wrong index values for array accesses.

The impact on non-uniform protection cost is significant. In this
example, in a production run, the size of momentum data can reach
beyond 90% of all data footprint. We show in Sec. 5.4 that our
intuition is born out by experiments. In this particular case, both the
physical meaning and identification of the data structure are rather
straightforward.

5.4 Error Injection Study
In this set of experiments, we inject single bit errors to different
arrays in OSIRIS under different configurations comparing no pro-
tection with selective protection, where the hardware only protects
the subset of crucial data. We label the momentum data as robust
(and therefore they do not need RAIM protection) but enable the
software catastrophe recovery. The rest of the data (including code,
stack, some data arrays, loop counters, pointers, etc.) are consid-
ered “vulnerable”. In Fig. 16, we show the crashing rate and error
of Landau damping rate of the survived runs under different FIT
rates. The error injections are intentionally raised to levels higher
than observed DRAM FIT rates [41].

We see that without hardware protection, using only our software
catastrophe recovery, the robust data can sustain much more memory
errors than the vulnerable data. For error occurring in vulnerable
data, as the error rate increases beyond 104 FIT, we start to see
non-trivial rate of crashing. For those runs that did not crash, the end
result is essentially useless. On the other hand, when error occurs
to the robust data, no crash occurred even if we increase the rate by
six orders of magnitude. In all cases, the results are largely tolerable
and well within the range of randomness induced variation.

Finally, we run OSIRIS with selective RAIM-5 protection. Com-
pared to RAIM-3, we achieve about 80% savings in storage overhead.
Execution time and DRAM energy overhead become essentially neg-
ligible.

6This is straightforward as there is only a single type of data (momentum) to scan and
their values are known to follow Maxwellian distribution throughout time.
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Figure 16: Percentage of crashing rate and Landau damping
rate error.

6 CONCLUSIONS
Errors in the main memory are a serious source of overall system
reliability concern. While more efficient error-correcting codes are
constantly being proposed, another source of efficiency gain can be
obtained by recognizing the vast differences in applications’ protec-
tion needs. This is important as we are increasingly consolidating
diverse workloads to the cloud environments. In this paper, we pro-
posed an alternative RAIM-based design that offers the strongest
memory protection available in commercial products. Our design
not only provides better implementation flexibility in terms of num-
ber of memory channels needed and appropriate cache line sizes, it
also easily provides selective protection. Additionally, we presented
design optimizations to lower its overhead, mainly in memory traffic.

The result is a design that produces the highest error protection
when needed under a reasonable overhead. In a 5-channel imple-
mentation, the average traffic overhead is 101% over the underly-
ing baseline architecture, compared to 108% in a state-of-the-art
RAIM-3 design. The memory energy overhead is 28% for RAIM-5
compared to 54% for RAIM-3. The traffic overhead results in negli-
gible impact on execution speed for RAIM-5. RAIM-3, on the other
hand, incurs about 10% execution speed penalty. The behavior of
RAIM-5 is rather consistent across a variety of parameters such as
cache line size and page size. A case study with a production quality
scientific workload shows that a user of the code can easily pick out
a large portion of the data structure to be excluded from system-level
memory protection, which drastically lowers the overheads without
impacting system reliability. Overall, we believe the proposed op-
timized RAIM-5 design is a compelling mechanism for high-end
systems already employing RAIM-3 and for low-end systems as an
additional cost-proportional memory protection mechanism.
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