
Increasing Ising Machine Capacity with Multi-Chip
Architectures

Anshujit Sharma, Richard Afoakwa, Zeljko Ignjatovic and Michael Huang
{anshujitsharma,richard.afoakwa,zeljko.ignjatovic,michael.huang}@rochester.edu
Department of Electrical and Computer Engineering, University of Rochester

Rochester, New York, USA

ABSTRACT
Nature has inspired a lot of problem solving techniques over the
decades. More recently, researchers have increasingly turned to
harnessing nature to solve problems directly. Ising machines are a
good example and there are numerous research prototypes as well
as many design concepts. They can map a family of NP-complete
problems and derive competitive solutions at speeds much greater
than conventional algorithms and in some cases, at a fraction of
the energy cost of a von Neumann computer.

However, physical Ising machines are often fixed in its problem
solving capacity. Without any support, a bigger problem cannot be
solved at all. With a simple divide-and-conquer strategy, it turns
out, the advantage of using an Ising machine quickly diminishes. It
is therefore desirable for Ising machines to have a scalable archi-
tecture where multiple instances can collaborate to solve a bigger
problem. We then discuss scalable architecture design issues which
lead to a multiprocessor Ising machine architecture. Experimental
analyses show that our proposed architectures allow an Ising ma-
chine to scale in capacity and maintain its significant performance
advantage (about 2200x speedup over a state-of-the-art computa-
tional substrate). In the case of communication bandwidth-limited
systems, our proposed optimizations in supporting batch mode
operation can cut down communication demand by about 4-5x
without a significant impact on solution quality.

CCS CONCEPTS
• Computer systems organization→ Analog computers.

KEYWORDS
Ising machine, scaling, multi-chip, nature-based computing

ACM Reference Format:
Anshujit Sharma, Richard Afoakwa, Zeljko Ignjatovic and Michael Huang.
2022. Increasing Ising Machine Capacity with Multi-Chip Architectures. In
The 49th Annual International Symposium on Computer Architecture (ISCA
’22), June 18–22, 2022, New York, NY, USA.ACM,NewYork, NY, USA, 14 pages.
https://doi.org/10.1145/3470496.3527414

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527414

1 INTRODUCTION
Nature apparently does a lot of computation all the time, solving
differential equations, performing random sampling, and so on.
We have harnessed some of it of course. The transistors, for exam-
ple, can be turned on/off and are the foundation for most of our
computers today. But this is different from harnessing nature’s com-
putational capability at some higher level, for example, to solve an
entire problem. Indeed, some very powerful algorithms are inspired
by nature [2, 33, 59]. It is not hard to imagine that if a computing
substrate is nature-based, we could solve a certain set of problems
much more quickly and efficiently than through mapping it to the
von Neumann interface. One particular branch of this effort that
has seen some recent rapid advance is Ising machines.

In a nutshell, Ising machines leverage nature to seek low-energy
states for a system of coupled spins. A number of problems (in
fact, all original NP-complete problems [36]) can be expressed as
an equivalent optimization problem of the Ising formula (more on
that in Sec. 2). Though existing Ising machines are largely in the
form of prototypes and concepts, they are already showing promise
of (much) better performance and energy efficiency for specific
problems.

However, when the problem size is beyond the capacity of the
machine, the problem can no longer be mapped to the hardware.
Intuitively, with some form of divide and conquer, we can create
smaller sub-problems that can map to the hardware and thus still
benefit from the acceleration of an Ising machine. As it turns out,
with the state-of-the-art algorithm employed by D-Wave [13], the
effective speedup of a system employing such a divide-and-conquer
strategy quickly diminishes as the size of the problem increases. As
an example – and more details in Sec. 3.1 – a 500-node machine
can reach a speedup of 600,000 over a von Neumann solver (simu-
lated annealing); using the same machine to help solve a 520-node
problem will only achieve a speedup of 250.

In this paper, we first analyze the problem of simple divide-and-
conquer strategy. We show why such a strategy is fundamentally
limited in its performance by “glue” computation. Thus, we need
machines that are designed from ground up to obviate such glue.
Next, we investigate hardware designs to achieve that goal. Later
on, we perform experimental analyses that show the design can
indeed scale to larger problems while maintaining high perfor-
mance; achieving more than 6 orders of magnitude speedup over a
sequential solver and over 2200x speedup over a state-of-the-art
computational accelerator.

1

https://doi.org/10.1145/3470496.3527414
https://doi.org/10.1145/3470496.3527414

ISCA ’22, June 18–22, 2022, New York, NY, USA Anshujit Sharma, et al.

2 BACKGROUND AND RELATEDWORK
2.1 Principles of Ising machines
The Ising model is used to describe the Hamiltonian of a system
of coupled spins. Each spin has one degree of freedom and takes
one of two values (𝜎𝑖 ∈ {−1, 1}). The energy of the system is a
function of pair-wise coupling of the spins (𝐽𝑖 𝑗 = 𝐽 𝑗𝑖) and the inter-
action of some external field (𝜇) with each spin (ℎ𝑖). The resulting
Hamiltonian is as follows:

𝐻 = −
∑
𝑖, 𝑗

𝐽𝑖 𝑗𝜎𝑖𝜎 𝑗 − 𝜇
∑
𝑖

ℎ𝑖𝜎𝑖 (1)

Given such a formulation, a minimization problem can be stated:
what state of the system ([𝜎1, 𝜎2, ...]) has the lowest energy. A
physical system with such a Hamiltonian naturally tends towards
low-energy states. It is as if nature always tries to solve the mini-
mization problem, which is not a trivial task. Indeed, the cardinality
of the state space grows exponentially with the number of spins,
and the optimization problem is NP-complete: it is easily convert-
ible to and from a generalized max-cut problem, which is part of
the original list of NP-complete problems [30].

Thus, if a physical system of spins somehow offers programmable
coupling parameters (𝐽𝑖 𝑗 , 𝜇 and ℎ𝑖 in Eq. 1), they can be used as a
special purpose computer to solve optimization problems that can
be expressed in Ising formula (Eq. 1). In fact, all problems in the
Karp NP-complete set have their Ising formula derived [36]. Also,
if a problem already has a QUBO (quadratic unconstrained binary
optimization) formulation, mapping to Ising formula is as easy as
substituting bits (𝑏𝑖 ∈ {0, 1}) for spins: 𝜎𝑖 = 2𝑏𝑖 − 1.

Because of the broad class of problems that can map to the Ising
formula, building nature-based computing systems that solve these
problems has attracted significant attention [6, 9, 11, 14, 26, 31, 32,
41, 56]. Loosely speaking, an Ising machine’s design goes through
four steps:

(1) Identify the physical variable to represent a spin (be it a
qubit [27], the phase of an optical pulse [28], or the polarity
of a capacitor [3]);

(2) Identify the mechanism of coupling and how to program the
coefficients;

(3) Demonstrate the problem solving capability showing both
the theory of its operation (reveal the “invisible hand" of
nature) and satisfactory results of practice;

(4) Demonstrate superior machine metrics (solution time, en-
ergy consumption, and construction costs).

It is important to note that different approaches may offer different
fundamental tradeoffs. Each of them may go through varying ges-
tation speeds. Thus, it would be premature to evaluate a general
approach based on observed instances of prototypes. Nevertheless,
we provide a broad-brushed characterization1, which can help re-
searchers get a basic sense of the landscape – as long as the caveats
are properly understood.

1This characterization is by no means comprehensive. In particular, for conceptual
clarity, we treat the numerous designs that accelerate a von Neumann algorithm
(simulated annealing or a variant) using GPU, FPGA, or an ASIC not as a physical
Ising machine, but an accelerated simulated annealer [17, 22, 23, 40, 47–49, 57, 58].

2.2 The three (and a half) generations of Ising
machines

One of the earliest and perhaps the best known Ising machines are
the quantum annealers marketed by D-Wave. Quantum annealing
(QA) is different from adiabatic quantum computing (AQC) in that
it relaxes the adiabaticity requirement [12]. QA technically includes
AQC as a subset, but current D-Wave systems are not adiabatic. In
other words, they do not have the theoretical guarantee of reaching
ground state. Without the ground-state guarantee, the Ising physics
of qubits has no other known advantages over alternatives. And
it can be argued that using quantum devices to represent spin is
perhaps suboptimal. First, the devices are much more sensitive to
noise, necessitating cryogenic operating condition that consumes a
lot of power (25KW for D-Wave 2000q). Second, it is perhaps more
difficult to couple qubits than to couple other forms of spins, which
explains why current machines use a local coupling network. The
result is that for general graph topologies, the number of nodes
needed on these locally-coupled machines grow quadratically and
a nominal 2000 nodes on the D-Wave 2000q is equivalent to only
about 64 effective nodes [24, 25].

Coherent Ising machines (CIM) can be thought of as a second-
generation design where some of the issues are addressed [11, 28,
37, 45, 55]. In [28], all 2000 nodes can be coupled with each other,
making it apparently the most powerful physical Ising machine
today. CIM uses special optical pulses serving as spins and therefore
can operate under room temperature and consumes only about
200W power. However, besides their own technical challenges, the
current CIMs all use computed rather than physical coupling. Such
a design is essentially a hybrid physical-simulated Ising machine,
and is unlikely to be energy-efficient due to fundamental reasons.
A recent experiment shows that a 2000 node CIM requires more
computation than a computational accelerator [48].

Since the operating principle of CIM can be viewed with a Ku-
ramoto model [46], using other oscillators can in theory achieve a
similar goal. This led to a number of electronic oscillator-based Ising
machines (OIM) which can be considered as a third-generation [16,
51, 52]. These systems use LC tanks for spins and (programmable)
resistors as coupling units.2 These electronic oscillator-based Ising
machines are a major improvement over earlier designs in terms of
machine metrics. To be sure, their exact power consumption and
operation speed depend on the exact inductance and capacitance
chosen and can thus span a range of orders of magnitude. But it is
not difficult to target a desktop size implementation with around
1-10W of power consumption – a significant improvement over
cabinet-size machines with a power consumption of 200W-25KW.
However, for on-chip integration, inductors are often a source of
practical challenges. They are area intensive, have undesirable par-
asitics with reduced quality factor and increased phase noise all
of which pose practical challenges in maintaining frequency uni-
formity and phase synchronicity between thousands of on-chip
oscillators.

2Technically, the phase of the oscillators is equivalent to spin with two degrees of
freedom, spanning an XY-plane (rather than the 1 degree of freedom of up or down
in the Ising model). Consequently, an additional mechanism is needed to impose a
constraint – such as the Sub-Harmonic Injection Locking (SHIL) [15] – to solve Ising
formula problems.

2

Increasing Ising Machine Capacity with Multi-Chip Architectures ISCA ’22, June 18–22, 2022, New York, NY, USA

Another electronic design with a very different architecture
(think of it as generation 3.5) is the Bistable Resistively-coupled
Ising Machine (BRIM) [3]. In BRIM, the spin is implemented as a
capacitor whose voltage is controlled by a feedback circuit making
it bistable. The design is CMOS-compatible and since it uses voltage
(as opposed to phase) to represent spin, it enables a straightforward
interface to additional architectural support for computational tasks.
We therefore use a baseline substrate similar to BRIM. Note that
the same principle discussed in the paper could directly apply to
all Ising machines with different amount of glue logic.

2.3 The common issue
For most state-of-the-art (physical) Ising machines today, when the
problem fits the hardware, significant speedups and energy effi-
ciency gains can be expected compared to von Neumann computing.
However, little is discussed on what happens when the problem is
beyond the capacity of the machine. It is understandable to assume
that the machine can still accelerate proportional to the fraction of
the problem that can be mapped. As we will show next, the reality
is that for problems beyond the capacity of the machine, we can
expect little to no benefit at all.

3 ON THE DIVIDE AND CONQUER
STRATEGY

We first discuss the approach adopted by D-Wave’s system (Sec. 3.1).
As their systems are the only commercially available Ising machine
platforms, their solution is both the state-of-the-art and a baseline
for any comparison. We then discuss the details of a divide-and-
conquer strategy, starting with the basic principle (Sec. 3.2) and
then show that the sub-problems to be solved are not independent
of each other, making parallelization challenging (Sec. 3.3).

3.1 Practice
With D-Wave’s tool [13], one can use any Ising machine to solve a
problem larger than its hardware capacity. To see the performance
of such a system (for the reader’s convenience, it is replicated in
the appendix as Algorithm 1), we will use a model of BRIM [3] as
the Ising machine. Even though the general strategy should work
with any Ising machine, we note that BRIM offers a number of
practical advantages for our study. First, it offers all-to-all coupling.
This means that an 𝑛-node machine can map any 𝑛-node arbitrary
graph.3 Second, as we explore architectural support for scalable
Ising machine later, the CMOS compatibility of BRIM gives us
significant design flexibility.

In Fig. 1, we show the speedup of an 500-node Ising machine as
the problem size increases past the machine capacity. We omit the
measurement details as they do not affect the qualitative lessons.
From the figure, we see two things. First, when the problem gets big-
ger but still fits within the machine, the speedup increases. Clearly,
larger hardware capacities are desirable.

However, the figure also shows a second point, and perhaps a
more important point: as soon as the problem is bigger than what

3Many machines offer a large number of nominal nodes but only local coupling [27,
47, 57]. A general graph of 𝑛 nodes has𝑂 (𝑛2) coupling parameters. Mapping such a
graph therefore requires𝑂 (𝑛2) nodes for local connection machines.

Figure 1: Speedup of two divide-and-conquer algorithms (D-
Wave and ours) using a 500-spin BRIM plus a sequential
computer for support. [Left]: Speedup for all graphs tested.
[Right] Magnified segment for graph sizes from 500 to 520.

the hardware can hold, the speedup crashes precipitously (Fig. 1-
right). The fact that the speedup reduces is not surprising. What is
surprising is how much and how quickly it does. Of course, some
of this is due to the specific implementation of the D-Wave tool.
We have thus created an alternative (Algorithm 2 in the appendix),
shown as “Ours” in the figure, and the result (shown in Fig. 1) is
only a small improvement. The sharp drop is due to a fundamental
reason, which we delve into next.

3.2 Principle
We first start with the principle of divide and conquer in Ising
optimization problems. This part may be obvious to some readers
who should skip to Sec. 3.3. The problem of minimizing Eq. 1 is
often described as navigating a high-dimensional energy landscape
to find the lowest valley. We can imagine keeping some dimensions
fixed (e.g., longitude) and navigate along the remaining dimensions
in search of a better spot. Many solvers can be described using this
analogy. This is the essence of the divide and conquer strategy. This
point (as well as its problem) can be shown clearly and explicitly
with some straightforwardmath. Here, we think thematrix notation
is more helpful. We rewrite Eq. 1 as:

𝐻 = −𝜎⊤ 𝐽𝜎 − 𝜇ℎ⊤𝜎 (2)

where 𝜎 = [𝜎1, ..𝜎𝑛]⊤, 𝐽 = |𝐽𝑖 𝑗 |𝑛×𝑛 , and ℎ = [ℎ1, .., ℎ𝑛]⊤. Here 𝐽

is a symmetric matrix with the diagonal being 0. If we divide the
𝑛-node problem into two sub-problems of 𝑘 and 𝑛 − 𝑘 nodes, we
can rewrite Eq. 2 as follows.

𝐻 = − [𝜎⊤
𝑢
, 𝜎⊤

𝑙
]

𝐽
𝑢

𝐽×

𝐽⊤× 𝐽
𝑙

[
𝜎
𝑢
𝜎
𝑙

]
− 𝜇 [ℎ⊤

𝑢
, ℎ⊤

𝑙
]
[
𝜎
𝑢
𝜎
𝑙

]
= − 𝜎⊤

𝑢
𝐽
𝑢
𝜎
𝑢
− 𝜎⊤

𝑙
𝐽⊤× 𝜎𝑢 − 𝜎

⊤
𝑢
𝐽×𝜎𝑙 − 𝜎

⊤
𝑙
𝐽
𝑙
𝜎
𝑙
− 𝜇ℎ⊤

𝑢
𝜎
𝑢
− 𝜇ℎ⊤

𝑙
𝜎
𝑙

= −
(
𝜎⊤
𝑢
𝐽
𝑢
𝜎
𝑢
+ 𝜎⊤

𝑙
𝐽⊤× 𝜎𝑢 + 𝜇ℎ

⊤
𝑢
𝜎
𝑢

)
−
(
𝜎⊤
𝑙
𝐽
𝑙
𝜎
𝑙
+ 𝜎⊤

𝑢
𝐽×𝜎𝑙 + 𝜇ℎ

⊤
𝑙
𝜎
𝑙

)
=−

(
𝜎⊤
𝑢
𝐽
𝑢
𝜎
𝑢
+ 𝑔⊤

𝑢
𝜎
𝑢

)
︸ ︷︷ ︸
𝑠𝑢𝑏−𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (𝐽

𝑢
, 𝑔

𝑢
)

−
(
𝜎⊤
𝑙
𝐽
𝑙
𝜎
𝑙
+ 𝑔⊤

𝑙
𝜎
𝑙

)
︸ ︷︷ ︸
𝑠𝑢𝑏−𝑝𝑟𝑜𝑏𝑙𝑒𝑚 (𝐽

𝑙
, 𝑔

𝑙
)

𝑤ℎ𝑒𝑟𝑒 𝑔
𝑢
= 𝜇ℎ

𝑢
+ 𝐽×𝜎𝑙 , 𝑔𝑙 = 𝜇ℎ

𝑙
+ 𝐽⊤× 𝜎𝑢

(3)

3

ISCA ’22, June 18–22, 2022, New York, NY, USA Anshujit Sharma, et al.

With this rewrite, we show that the bigger square matrix can be
decomposed into the upper and lower sub-matrixes 𝐽𝑢 and 𝐽𝑙 (both
square), and the “cross terms" (𝐽× and its transpose). The effect of
the cross terms can be combined with the original biases (ℎ𝑢 and ℎ𝑙
respectively) into new ones (𝑔𝑢 and 𝑔𝑙 respectively). From this point
of view, an Ising optimization problem with 𝑛 nodes can always
be decomposed into sub-problems of 𝑘 and 𝑛 − 𝑘 nodes, and by
transitivity into a combination of sub-problems of any sizes.

3.3 Issues of decomposition
Eq. 3 not only shows the principle of decomposition, it also clearly
shows the issue with it. In the original problem, 𝐽 and ℎ are pa-
rameters and do not change. After decomposition, the bias of the
upper partition (𝑔𝑢) is now a function of the state of the lower par-
tition. This means that the two partitions are not independent. In
other words, strictly speaking, the sub-problems have to be solved
sequentially: when search changes the current state of the upper
partition, we need to update the parameters of the lower partition to
reflect the change before starting the search in the lower partition.
Partitioning also does not reduce total workload. Thus, it is not
surprising that there is no parallel version of canonical simulated
annealing through divide-and-conquer.

In the case of trying to solve a bigger problem than a machine’s
capacity, the issue may seem irrelevant: After all, if we can decom-
pose a bigger problem into two parts (say, A and B), and A now
fits into an Ising machine; we can expect to enjoy speedup from
the processing of A even if processing of A and B can not overlap.
The reasoning is correct. But in reality, there are multiple subtle
problems with severe consequences. We will discuss two that are
relevant here:

(1) As we already saw, with decomposition, the sub-problem’s
formulation changes constantly, which requires reprogram-
ming. For many Ising machines, reprogramming is a costly
operation and can take more time than solving the problem.
To cite a perhaps extreme example, D-Wave’s programming
time is 11.7 ms, compared to a combined 240 𝜇s for the rest
of the steps in a typical run [19]. Keep in mind, a common
(if not universal) usage pattern of these Ising machines is to
program once and anneal many (e.g., 50) times from different
initial conditions and take the best result. In such a usage
pattern, long programming time is amortized over many
annealing runs. In a decomposed problem, reprogramming
may have to occur many times within one annealing run.

(2) Even if the cost of reprogramming is somehow addressed, we
still have the familiar Amdahl’s law. Using a concrete exam-
ple of BRIM (Fig. 1), the speedup of solving a 500-node prob-
lem over a sequential computer is on the orders of 105. Con-
sider using our algorithm to decompose a 510-node problem
into a 500-node sub-problemmapped to the hardware and the
remaining portion plus glue computation left for software.
The workload for software measured in instruction amounts
to about 0.13% of the software workload for the original 510-
node problem. Much of the remaining software workload
is the glue (calculating the new biases 𝑔𝑢 = 𝜇ℎ𝑢 + 𝐽×𝜎𝑙 and
𝑔𝑙 = 𝜇ℎ𝑙 + 𝐽⊤× 𝜎𝑢), different from original solver. As a result,
Amdahl’s law does not directly apply. Nonetheless, we can

(ab)use it to roughly estimate a speedup upper-bound on the
order of 700x.

There are certainly some nuances to the simplified analyses
above, but the bigger point is crystal clear and recapped below.

3.4 Recap
In principle, the problem formulation clearly allows decomposition
of larger problems. But the smaller component problems are not
independent. As a result, relying on von Neumann computing to
glue together multiple Ising machines is a fundamentally flawed
strategy, as it severely limits the acceleration of problems even
marginally larger than a machine’s capacity. The machines need to
be designed from ground up to be used in collaboration and address
the decomposition bottleneck.

4 SCALING OF ISING MACHINES
Our general approach is conceptually straightforward: make a phys-
ically bigger Ising machine (spread across multiple chips). We first
discuss generalities in Sec. 4.1 and a more direct incarnation of a
macro chip and its problems in Sec. 4.2.

4.1 General analysis of scaling Ising machines
4.1.1 Ising machine basics. The core of an Ising machine contains
two types of components: nodes and coupling units. As already
discussed in Sec. 2, the coupling units need to be programmable to
accept the coupling strengths 𝐽𝑖 𝑗 4 as the input to the optimization
problem, and the dynamical system will evolve based on some
annealing control. Finally, all spins are read out as the solution to
the problem. In a generic problem, any spin can be coupled with any
other spin. Thus, there are far more coupling parameters than spins
(𝑂 (𝑁 2) vs 𝑂 (𝑁)). A number of existing Ising machines, however,
adopt a machine architecture where only nearby spins are allowed
to couple, resulting in a systemwith𝑂 (𝑁) coupling units and𝑂 (𝑁)
spins [27, 47, 52, 56]. A special software tool [18] is used to first
convert the original problem into a form that follows the constraint
placed by the machine’s architecture. Loosely speaking, these𝑂 (𝑁)
coupling units can therefore map a problem of the scale of 𝑂 (

√
𝑁)

spins. This is confirmed by observation of actual problems [3, 25].
For the rest of the paper, we will focus only on architectures with
all-to-all connections.

4.1.2 Electronic Ising machine baseline. A number of electronic
Ising machines have been recently proposed [16, 51, 52]. The pri-
mary operating principle is similar, though at a deeper level there
are significant technical differences. We will discuss the relevant
operating principle here. Readers familiar with these machines
can skip forward. Our baseline is BRIM [3] where an array of 𝑁
bi-stable nodes are interconnected by an array of 𝑁 × 𝑁 resistive
coupling units. The coupling units are programmed by an array
of DACs before the system starts annealing. The coupling resistor
value between nodes 𝑖 and 𝑗 is set to 1/𝐽𝑖 𝑗 : strong coupling meaning
lower resistance. And the sign of coupling strength can be imple-
mented with either parallel or antiparallel connection. Specifically,
if the coupling parameter 𝐽𝑖 𝑗 is negative, then the two nodes are

4The bias term 𝜇ℎ𝑖𝜎𝑖 can be viewed as a special coupling term 𝐽𝑖,𝑛+1𝜎𝑖𝜎𝑛+1 (𝐽𝑖,𝑛+1 ≜
𝜇ℎ𝑖𝜎𝑖) which coupled 𝜎𝑖 with an extra, fixed spin (𝜎𝑛+1 = +1).

4

Increasing Ising Machine Capacity with Multi-Chip Architectures ISCA ’22, June 18–22, 2022, New York, NY, USA

connected in an antiparallel fashion (positive plate of 𝑖 connected to
negative plate of 𝑗 and vice versa). This encourages the two nodes
to be in opposite polarities, so that the contribution of this pair’s
coupling (−𝐽𝑖 𝑗𝜎𝑖𝜎 𝑗) lowers the overall energy. Conversely, if 𝐽𝑖 𝑗 is
positive, the plates of the same polarity will be coupled through
the resistor. Fig. 2 shows the machine characteristics.

Z

Z

Z +

−

+

−

+

−

Not connected
Coupling(s) 𝐽!,# > 0

−

+

𝐽!,# < 0

𝑅!,# ∝
1
𝐽!,#

𝑅!,# =
𝑅
𝐽!,#

+

−

+

−

+

−

Connected
Coupling(s)

𝑁𝑜𝑑𝑒	𝑖 𝑁𝑜𝑑𝑒	𝑗

Figure 2: A simplified diagram of BRIM showing nodal ca-
pacitors, coupling resistors, and parallel/antiparallel con-
nections.

All these electronic Ising machines can be analyzed as a dynam-
ical system and Lyapunov stability analysis can show why they
tend toward low-energy state in a more theoretical fashion. But a
more intuitive discussion with an example situation suffices for our
purpose. Let us imagine the system is in a particular state, and one
spin (say, 𝜎𝑘 = −1) is “wrong” – meaning if we flip it (𝜎𝑘 = +1),
energy will improve/decrease. A little algebra will show that this
means

𝜎𝑘
©«
∑
𝑗≠𝑘

𝐽 𝑗𝑘𝜎 𝑗
ª®¬ < 0 (4)

If we recall 𝐽 𝑗𝑘 is represented by the coupling resistor between
nodes 𝑗 and 𝑘 and substitute 𝜎 𝑗 with the representation of it (𝑉𝑗 ,
the voltage of node 𝑗), the term

∑
𝑗≠𝑘 𝐽 𝑗𝑘𝜎 𝑗 is thus approximated

by
∑

𝑗≠𝑘
𝑉𝑗

𝑅 𝑗𝑘
, which describes the current coming into node 𝑘 . Ac-

cording to Eq. 4, this value is of the opposite sign of 𝜎𝑘 . This shows
that if node 𝑘 is wrong, the combined current input to it will be in
the opposite polarity and thus has the effect of trying to correct/flip
it. A similar exercise can show that when node 𝑘 is right (flipping it
would increase/deteriorate energy), the current input from outside
node 𝑘 will agree with the current polarity of 𝑘 , and thus keeping
it in the current state. Given this baseline, we now analyze one
conceptually straightforward design of an Ising machine with a
large capacity.

4.2 A macrochip architecture
Fig. 3 shows a k-by-k array of chips each with 𝑁 2 coupling units
that together form a larger machine with (𝑘𝑁)2 coupling units.
We simply connect the wires of a row of coupling units to the
corresponding wires of the same row from the left and/or right
neighbor chip. Similarly, the wires of the same column from upper
and lower neighbors are joined. If we ignore the packaging and
wire loading issue for a moment, we can treat the entire circuit area
as one (bigger) macrochip Ising machine with 𝑘𝑁 nodes.

A single macrochip machine is not necessarily limited to solving
one problem at a time. Given an Ising machine of 𝑘𝑁 nodes, without

𝐶𝑈!,#𝐶𝑈!,$

𝐶𝑈$,#𝐶𝑈$,$

𝐶𝑈#,$ 𝐶𝑈#,#

𝐶𝑈!,#𝐶𝑈!,$

𝐶𝑈$,#𝐶𝑈$,$

𝐶𝑈#,$ 𝐶𝑈#,#

𝐶𝑈!,#𝐶𝑈!,$

𝐶𝑈$,#𝐶𝑈$,$

𝐶𝑈#,$ 𝐶𝑈#,#

𝐶𝑈!,#𝐶𝑈!,$𝐶𝑈!,!

𝐶𝑈$,#𝐶𝑈$,! 𝐶𝑈$,$

𝐶𝑈#,! 𝐶𝑈#,$ 𝐶𝑈#,#

𝐶𝑈!,!

𝐶𝑈$,!

𝐶𝑈#,!

𝐶𝑈!,!

𝐶𝑈$,!

𝐶𝑈#,!

𝐶𝑈!,!

𝐶𝑈$,!

𝐶𝑈#,!

𝑁!

𝑁"

𝑁#

𝑁!

𝑁"

𝑁#

𝑃𝑈

𝑃𝑈

𝐶ℎ𝑖𝑝!,! 𝐶ℎ𝑖𝑝!,"

𝐶ℎ𝑖𝑝",! 𝐶ℎ𝑖𝑝","

𝑃𝑈

𝑃𝑈

Figure 3: Block diagramof amacrochip of k-by-k array (k=2)
of chips. Only the leftmost chips need nodes. CU ’s are Cou-
pling Units and PU ’s are Programming Units.

any system support, a user can already solve multiple smaller prob-
lems simultaneously simply by manipulating the coupling matrix –
so long as the sum of the number of nodes from each problem does
not exceed 𝑘𝑁 . This can be seen in the illustration shown in Fig. 4.

…

… … … …

… … … …

J1,1

…

J1,2

…

…

… …

J1,N
J2,1 J2,2 … J2,N

JN,1 JN,2 … JN,N

JN+1,N+1 JN+1,N+2 JN+1,2N
…JN+2,N+1 JN+2,N+2 JN+2,2N

…J2N,N+1 J2N,N+2 J2N,2N

…J2N+1,2N+1 J2N+1,2N+2 J2N+1,3N
…J2N+2,2N+1 J2N+2,2N+2 J2N+2,3N

…J3N,2N+1 J3N,2N+2 J3N,3N

0 0
0
0 0

0

Figure 4: Conceptual view showing wasted resource when a
single macrochip solves multiple smaller problems.

If we keep the shaded area of the coupling matrix all zero,
the matrix is effectively isolated into several smaller submatrixes.
This is obviously not resource-efficient: it takes 𝑘2 chip to form a
macrochip of 𝑘𝑁 nodes. If we use this macrochip to solve smaller
problems of size 𝑁 , we can only accommodate 𝑘 such problems.
Indeed, in that specific case, only the coupling arrays of the chips
in the diagonal of the 𝑘 × 𝑘 array are being used.

Such waste is not difficult to avoid. One approach is to introduce
some reconfigurability, so that the chips can either work together to
solve a bigger problem or independently to solve multiple smaller
problems. Fig. 5 demonstrates this functionality. Three types of
units need to be reconfigurable in such a design: the nodes, the
diagonal couplers, and the interface pins in each chip. In indepen-
dent operation, each chip is isolated from others and operate just
like a single-chip Ising machine: the nodes are in regular mode,
the pins are disconnected from rows and columns of wires, and
the diagonal couplers are in cross-over mode (where the wires for
row 𝑖 and column 𝑖 are connected at the diagonal coupler (𝑖 ,𝑖)). In
collective operation, corresponding rows and columns of wires are
connected through the pins to neighboring chips; all the diagonal
couplers except on the main diagonal of the entire macrochip will
be switched to regular coupler mode (the main diagonal will remain

5

ISCA ’22, June 18–22, 2022, New York, NY, USA Anshujit Sharma, et al.

Switch A

Z

+

−

Switch B

Coupling(s) Disabled

Node(s) Regular Mode

Switch B

Coupling(s) Enabled

Switch A

Z

+

−

Node(s) By-pass Mode

Figure 5: Macrochip with switching support to allow either
independent or joint operation. In this specific configura-
tion, each chip operates jointly to solve one large problem.

in cross-over mode); and only nodes in the leftmost chips are in
regular mode while other nodes on other chips will be in by-pass
mode. Note that it is also possible that a subset of the chips will be
working collectively while the rest work independently.

While this macrochip design is conceptually straightforward,
there are a number of issues concerning its implementation. The
primary concern is the chip-interface. Depending on whether the
chips are integrated via PCB or interposers, the chip-to-board inter-
face may become an engineering challenge. As the interface carries
fast-changing analog signals between multiple chips, they certainly
make analysis of system behavior less straightforward. For this
reason, the next section will focus on an entirely digital interface.
In a sense, we use multiple chips plus a digital interconnect to make
a multiprocessor Ising machine.

5 A MULTIPROCESSOR ARCHITECTURE
By having all coupling coefficients embodied in physical units, the
macrochip just discussed fundamentally avoids any glue computa-
tion to support multi-chip operation. While we keep this essential
feature, the multiprocessor architecture addresses the interface
issues of the macrochip.

5.1 Basic architecture
Fig. 6 shows this design. On the top, we have the logical system
layout: 𝑁 nodes with 𝑁 2 coupling units. Physically, they can be
split over, say, 4 chips, each one with a complete set of nodes. Some
of these nodes (shown in orange) are merely “shadow copies” of
the real nodes on some other chip. For example, node 3 on chip
𝐶1 is just a buffer. The real node 3 is on 𝐶2. When node 3 changes
polarity (say to -1), 𝐶2 will communicate this information to other
chips through a digital fabric (not shown). All other chips will use

𝐶! 𝐶" 𝐶# 𝐶$

𝑁!
𝑁"
𝑁#
𝑁$
𝑁%
𝑁&
𝑁'
𝑁(

Z

Z

Z

Z

Z

Z

Z

Z𝑁!

𝑁"

𝑁#

Figure 6: Logical view of a single BRIM chip (top) split into
multiple chips (bottom). In the multi-chip setup, nodes are
labelled 𝑁1 to 𝑁8 while chips are labelled 𝐶1 to 𝐶4. Nodes
with orange color are shadow copies, while regular nodes
are colored blue. The zoomed in logical views are also shown.
The inter-node digital interconnect is not shown.

a buffer to maintain a -1 value for node 3 until 𝐶2 notifies them
of further changes. In other words, compared to the real node, the
shadow copies are approximate in time (a bit delayed) and in value
(always at a voltage rail).

5.2 Reconfigurable chip architecture
With this design, the logical structure of a single chip captures a
long slice of the overall couplingmatrix. This logical structure is still
implemented based on a typical square baseline chip architecture.
All we needed to do is to build it from a modular, re-configurable ar-
ray. As shown in Fig. 7, a single chip can be made into a square array
of 𝑘 ×𝑘 modules (𝑘 = 4 in the example). Each module consists of an
array of 𝑛 configurable nodes, and 𝑛×𝑛 coupling units. The general
idea is that these modules can then be strung together differently
for different purposes. For instance, the three configurations are: ①
2𝑛 × 8𝑛; ② 4𝑛 × 4𝑛; and ③ 1𝑛 × 16𝑛. In this way, this chip can be
used as a part of a four-chip multiprocessor of 8𝑛 nodes total, as a
single machine of 4𝑛 nodes, or part of a 16-chip multiprocessor of
16𝑛 nodes total.

Let us take the configuration of 2𝑛 × 8𝑛 as a concrete example.
When combined with 3 others chips of the same configuration, the
system forms a complete 8𝑛 × 8𝑛 coupling matrix. In Fig. 7 (bottom
right) we show the desired logical organization of the 16 modules.
Among thesemodules, only 2 (providing 2𝑛 nodes) are configured as
regular nodes (module 1 and 2 in blue); 6 are configured as shadow
copies (3, 4, and 9 to 12 in orange); the rest are configured to pass
through (green). In addition to different configuration of the nodes,
wire connections need to change too. For instance, modules 1 and

6

Increasing Ising Machine Capacity with Multi-Chip Architectures ISCA ’22, June 18–22, 2022, New York, NY, USA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4𝑛	×	4𝑛 1𝑛	×	16𝑛2𝑛	×	8𝑛
Example Chip Configurations

2

3

4

Physical View

1 module:
𝑛	×	𝑛 coupling

units with 𝑛
nodes

5

6

7

8

9

10

11

12

13

14

15

16

2

3

4

11 5 139

6 10 14

7 11 15

8 12 16

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

Regular
Node

Pass
Through

Shadow
Copy

Node Configurations

1
2
3
4
9
10
11
12

5
6
7
8
13
14
15
16

Logical View

Figure 7: Illustration of a reconfigurable chip made of 4 × 4
modules each with 𝑛 nodes and an array of 𝑛 × 𝑛 coupling
units. The nodes can operate in three different modes: reg-
ular (blue), shadow copy (orange), or pass-through (green).
These modules can be configured in three ways, correspond-
ing to different coupling (sub)matrices. ① 2𝑛 × 8𝑛: as can be
seen in the logical view (bottom right), the 16modules are ef-
fectively connected as 2 columns each with 8 modules. This
can be used in a 4-chip multiprocessor with a total of 8𝑛
nodes. ② 4𝑛 × 4𝑛: the chip is an independent machine with
4𝑛 nodes and the 16𝑛2 coupling units organized as a 4𝑛 × 4𝑛
matrix. These 4𝑛 nodes are in the first column (blue). The
nodes in the rest of the modules are set in pass-through
mode (green). ③ 1𝑛 × 16𝑛: similar to the first example, this
chip is used in a 16-chip multiprocessor with a total of 16𝑛
nodes.

9 have to be connected so that modules 1 to 4 and 9 to 12 can act as
one 8-module tall column.

5.3 Communication demand and technological
solutions

The basic idea is that when a spin changes polarity, one chip needs
to communicate to other chips in order for them to update their
shadow copies. The communication demand is, to a first approxima-
tion, 𝑓𝑠𝑁𝑙𝑜𝑔(𝑁), where 𝑁 is the total number of spins in a system
and 𝑓𝑠 is the frequency of spin flips. Take a concrete example of
our baseline Ising substrate: on average, one spin/node flips every
10 ns, depending on problems being solved. Assuming the same
spin flip frequency, if we take sixteen 8,000-spin chips to form a
multiprocessor Ising machine, the total system would offer 32,000
spins (

√
16 × 8000) and would require at least 50 Tb/s (broadcast)

bandwidth. In fact, due to the annealing schedule, the system has
a higher spin flip frequency at the beginning of the schedule and
thus would demand even more peak bandwidth.

Note that such communication is also needed for any multi-
threaded vonNeumann solver. The difference is that, comparedwith
a state-of-the-art physical Ising machine, a von Neumann solver is
orders-of-magnitude slower and thus has a correspondingly lower
bandwidth demand.

Given this significant, intrinsic bandwidth demand, a number of
technological solutions immediately come to mind. Optical commu-
nication and 3D integration are both appealing options. Indeed, 3D
integration is a very convenient solution to the proposed architec-
ture. Fig. 8 shows an example 4-layer 3D IC. We can see nodes and
their shadow copies are conveniently located on top of each other
and thus can be easily connected with through-silicon vias (TSV).
In fact, due to the short distance of the TSVs, shadow nodes are no
longer necessary architecturally. They may still be a convenient
circuit solution for improving driving capabilities though.

14
15

16

10
11

12

5
6

7
8

31

2 4

Layer 1

3D View

119

10 12

75

6 8

1513

14 16

Layer 3

Layer 2 Layer 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Logical ViewPhysical View

1
2

3
4

Figure 8: Illustration of 3D-integrated multiprocessor. Each
layer (physical view) is shown as fourmodules (eachmodule
is an 𝑛 × 𝑛 array). When four layers are connected to form a
multiprocessor, every layer operates as an 1𝑛 × 4𝑛 slice (logi-
cal view). Together, they form the 4𝑛×4𝑛machine. In the log-
ical view, within each slice, the blue box indicates the mod-
ule of regular spins while the orange ones are their shadow
copies (e.g., block 6’s shadow copies are 2, 10, and 14, which
are conveniently on top of each other in the 3D view to be
connected by TSV).

Finally, we can always slow down the physics of the Ising ma-
chine so that the communication demand matches the supply of
the fabric. In the case of BRIM, this can be achieved in a combina-
tion of (at least) two ways. First, the machine’s RC constant can be
increased – higher coupling resistors will be used to slow down
charging. Second, the system can be stopped altogether, for in-
stance, to wait out a congestion. No matter how we combine these
mechanisms the math is simple: to reduce bandwidth demand by 2x,
we need to slow down the machine by 2x. There are things that we
can do to reduce the bandwidth demand without a corresponding
reduction in performance. We discuss these next.

5.4 Concurrent mode operation
Concurrent operation of multiple Ising machines (solving the same
problem) can be roughly described as a combination of each ma-
chine performing local searches independently and exchanging
information about the state of spins with each other. A surpris-
ingly consequential design parameter is how long to wait before
communicating a change of spin to others. Sending any change
immediately seems the natural choice as the multiprocessor func-
tions most closely to a monolithic, large physical Ising machine.
However, waiting has its merit too. During a window of time, a
spin may flip back and forth multiple times. With some waiting, we
avoid wasting bandwidth on unnecessary updates. In this regards,

7

ISCA ’22, June 18–22, 2022, New York, NY, USA Anshujit Sharma, et al.

the longer the waiting, the more we can save on bandwidth. In
reality, however, the wait time has implications on the solution
quality, as we explain next.

5.4.1 Impact of global state ignorance. In a concurrent operation,
every solver is always having some “ignorance” of the true state
of spins mapped on other solvers. Take a 4-solver system as an
example. At any point, the system’s global state can be represented
by 𝑆𝑔 = [𝐴, 𝐵,𝐶, 𝐷]⊤ where each letter represents the spin vector
of each machine. Due to communication delays as well as waiting
mentioned above, the first solver’s belief of the current state is
thus 𝑆1 = [𝐴, 𝐵′,𝐶 ′, 𝐷 ′]⊤. In its local search, it is essentially trying
to optimize the energy of this believed state 𝐸 (𝑆1). A low 𝐸 (𝑆1)
does not necessarily mean that the energy of the system’s true
state 𝐸 (𝑆𝑔) is also low. Imagine that solver 1 is now given the true
state of other solvers and recalculates the energy. We can define the
difference as the the energy surprise: 𝐸𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 = 𝐸 (𝑆1) − 𝐸 (𝑆𝑔).5
Fig. 9 shows the empirical observations of the energy surprises.

Figure 9: Degree of ignorance and the corresponding energy
surprise for different epoch sizes. The graph has 8000 nodes
which is partitioned and mapped onto 8 solvers with each
solving 1000nodes. Thefigure shows the communication for
small, medium and large epochs. A magnified segment near
the origin is also shown.

This particular experiment is obtained by solving an 8000-node
problem divided into 8 sub-problems each solved by a simulated
annealing (SA) solver. After initialization, each solver uses the state
of the other 7000 nodes to compute the biases. Then they perform
local searches for a fixed amount of time (called an epoch) before
communicating the state with each other. At the epoch boundary,
we can show the amount of ignorance measured by the percentage
of external spins that have changed. We also calculate the energy
surprise. Each dot represents the data of one epoch and the figure
shows the results of all epochs from 20 runs.

We see that when the epoch time is long,more spin changes occur
from other solvers. As a result, any single solver is under a higher
degree of ignorance of the external state, leading to a higher degree
of misjudgement and a larger magnitude of the energy surprise.
5Defined this way, a positive energy surprise means that the current state has lower
(better) energy than what the solver believed prior to the update: in other words, it is
a good/positive surprise.

When the epoch is longer than a certain value, the surprise is highly
correlated with the degree of ignorance. In this regime, one can say
that the parallel solvers are clearly doing a poor job (also reflected in
very poor final solution quality not shown in the graph). So far, this
message is consistent with earlier analysis that decomposed sub-
problems are not independent from each other. However, when the
epoch time goes below a certain threshold (small epoch, also shown
in themagnified segment), the situation seems to have gone through
a phase change: now, the energy surprise is no longer uniformly
negative. At any rate, the magnitude of surprise gets lower. In
other words, despite having some ignorance, the solvers can still
find reasonable solutions. In fact, the overall solution quality is
no worse (and often statistically better) than running the solvers
sequentially (i.e., without any ignorance). This means that it is
practical to operate multiple Ising machines concurrently so long
as they can communicate sufficiently swiftly to prevent building
up too much ignorance.

5.4.2 Coordinated induced spin flips. Another important aspect of
the design is about spin flips introduced to the system to prevent
it from being stuck at a local minimum. (We will refer to them as
induced spin flips.) These spin flips are generally applied stochasti-
cally, similar to an accepted proposal in the Metropolis algorithm.
In a practical implementation, randomness is often of a determinis-
tic, pseudo-random nature. As a result, if we properly synchronize
the pseudo random number generator (PRNG) on each chip, we
can guarantee that each chip will generate the same output every-
where at about the same time. In this way, we can apply induced
spin flips without explicit communication. In other words, instead
of randomly choosing, say, spin node 3 to flip and then sending
an explicit message from the chip that contains the node to other
chips informing them of the flip, the PRNG on all chips would be
programmed to induce node 3 (and its shadow copies) to flip and
update the nodal capacitor or the shadow register at about the same
time.

To sum: phenomenologically multiple solvers can operate con-
currently and seems to offer the highest solution quality, provided
they keep each other informed “sufficiently promptly”. This means,
we have to choose a short epoch time, which generally means high
communication demands. One opportunity to reduce the demand
is using properly synchronized PRNG for induced spin flips.

5.5 Batch mode operation
While careful design of concurrent operation can achieve noticeable
bandwidth savings (about 1.5x as we shall see), a completely differ-
ent mode of operation – batch mode – can allow a more substantial
savings (about 5x). This mode leverages the fact that a common, if
not universal, mode of using an annealer is to perform a batch of
annealing jobs of the same problem with different initial states and
take the best solution from the batch. Each job is thus independent
of each other. Knowing that we have a batch of jobs of the same
setup, we can stagger them in a fairly straightforward manner to
reduce the necessary communication.

The key idea is illustrated in Fig. 10. Viewed vertically, a single
job (from one initial state, say Job 1) is still spread out over multiple
solvers (on Chip 1 in epoch 1, on Chip 2 in epoch 2, etc.) like in
concurrent mode. So each chip is still just annealing for its part of

8

Increasing Ising Machine Capacity with Multi-Chip Architectures ISCA ’22, June 18–22, 2022, New York, NY, USA

the problem. But the solvers now work sequentially. At the end of
Epoch 1, Chip 1 passes on the updated spin state to others (indicated
in the figure by the change to a darker red for the first quarter
of spins in all chips). Chip 2 then picks up Job 1 and continues
exploration of the second quarter of the spins.

Epoch 1

Epoch 2

Sync

Chip
1

Chip
2

Chip
3

Chip
4

Chip
1

Chip
2

Chip
3

Chip
4

Spin
copies

Darker
shade is
updated

Job 1
Job 2
Job 3
Job 4

Figure 10: Illustration of batch mode operation where four
staggered job runs of the same problem starting from dif-
ferent initial conditions are solved by four solvers. Each job
run is depicted with a different color. Each chip has a copy
of spins for every job. At the end of the epoch, all the chips
broadcast its spins via dedicated channels which updates all
the spin copies (shown by darker shades). Then each chip
loads the next job’s spin states and starts the next epoch of
annealing of that job.

Viewed horizontally, in every epoch each of the 4 chips works
on a different job (indicated by different colors). In the synchroniza-
tion phase, they exchange the updated state and afterward start
annealing on a different job. The key advantage of this approach
is that each epoch can be much longer in time – without creating
any ignorance. As already discussed, with a longer epoch, the to-
tal communication bandwidth needed can be much less than that
needed to communicate every single event of spin flip.

To exploit parallelism, in batch mode, 𝑛 different jobs (from dif-
ferent initial states) are performed simultaneously across 𝑛 solvers.
As a result, the system as a whole needs to carry 𝑛 copies of states
instead of just one in the concurrent mode. To support this, we
need a modest increase in storage (𝑛 × 𝑁 bits per solver) to keep
the states for different jobs.

Finally, we note that it is tempting to think that a good way to
run batch mode is just like in a von Neumann system where every
machine runs an independent job. This is decidedly less efficient in
a multiprocessor Ising machine: If an entire problem is solved by
one machine, we need to context-switch in the new parameters at
the end of every epoch. The data volume is 𝑂 (𝑏𝑁 2) bits, where 𝑏
is the bit width of coupling weight – not to mention the effort it
takes to reprogram the Ising machine. In contrast, in our proposed
batch mode, the data volume is 𝑂 (𝑁) bits.

6 EXPERIMENTAL ANALYSIS
6.1 Experimental methodology
Because we are in the early stage of Ising machine development,
access to physical systems is difficult. Most of our comparisons will

be performed with a mixture of modeling, using results reported in
literature, and measuring time of simulated annealing (SA). In all
the experiments, SA is natively executed, while BRIM’s dynamical
system evolution is modeled by solving differential equations us-
ing 4th-order Runge-Kutta method. When comparing to reported
results, we are obviously limited by the type of benchmarks that
were used in literature for direct comparison.6 Fortunately, a few
benchmarks (K-graphs) have been commonly used. One such graph
that we will use for comparison is known as K16384 [49] and con-
tains 16,384 spins with all-to-all connections. Simulating dynamical
systems with differential equations can be orders-of-magnitude
slower than cycle-level microprocessor simulation. Simulating 1𝜇𝑠
of dynamics in K16384 takes about 3 days on a very powerful
server. Therefore, we only use it for direct performance compari-
son. Smaller K-graphs (e.g., K2000 [28]) are used for some additional
analyses.

While the execution time of SA is generally the closest thing to
a standard performance yardstick, there are actually quite some
subtleties. First, different versions have vastly different performance.
We choose Isakov’s algorithm [29] as it is the fastest version as
far as we know. Second, we apply an optimization using dense
matrix representation. This exploits fully connected graphs like the
K-graphs to improve performance. Finally, researchers have tuned
the annealing schedules for these specific graphs. This tuning turns
out to have significant impact on execution time. Similar tuning on
our hardware annealing schedule could potentially also improve
performance. We can not yet perform such tuning as the simulation
cost is prohibitive.

6.2 Single solver baseline
To get a sense of the landscape of physical Ising machines and
digital accelerators for simulated annealing, in Fig. 11 we show
results of a few uniprocessor Ising machines running K2000: a
BRIM chip (simulated), simulated annealing (measured), and the
reported results for STATICA [54], CIM [28], and two variants of
simulated bifurcation machine (SBM) [22]. Many other machines
are missing from this comparison because they simply cannot map
the graph. Despite its seemingly modest size (2000 nodes), K2000 is
a fully connected graph and will take millions of nodes for machines
with only local couplings.

For this graph, BRIM could reach the best known solution of
33,337 in 11 𝜇s. The only other machine that could reach similar
solution quality is dSBM in 2 ms, about 180x slower. Even if we are
willing to accept lower solution quality, a single-chip BRIM is still
at least an order of magnitude faster.

In summary, a properly designed physical Ising machine can be 6
orders of magnitude faster than a conventional simulated annealer
(SA) and about 2 orders of magnitude faster than the state-of-the-
art computational annealer. The only disadvantage of a physical
Ising machine over a computational annealer is that the latter can
more easily scale to solve bigger problems. We now look at how
the proposed multiprocessor architecture addresses this issue. We
will narrow our focus to comparing against just SA and SBM [49]
as the latter is the fastest system at the moment.

6Cross-benchmark comparison is full of pitfalls (if not meaningless altogether) as there
is no easy way to compare solution quality for different problems.

9

ISCA ’22, June 18–22, 2022, New York, NY, USA Anshujit Sharma, et al.

Figure 11: Performance of K2000 graph on diversemachines
shown as solution cut value on y-axis (higher is better) and
execution time in x-axis. At every time scale, the machine
goes through 100 runs. In machines where multiple time
scale results are available, the average results for each time
scale are shown in a dashed line and the range is shown as a
shaded region. Resultswith only one time scale are shown as
bars with the dots indicating the range and the average cut
values. Data for bSBM [22], dSBM [22], STATICA [54] and
CIM [28] are obtained from the references.

6.3 High-level comparison
We compare our proposedmultiprocessor BRIM (mBRIM) with SBM
using the larger K16384 graph as the benchmark. This allows us to
directly compare solution quality and performance with reported
results in the literature. We assume a 4-chip multiprocessor. Each
chip is a BRIM-style electronic Ising machine with 8192 nodes.
Such a chip should have a smaller die size (about 80mm2 in a
45 nm technology) and consume much less power (less than 10W)
than a single FPGA used in SBM. We use three incarnations of this
multiprocessor as proxies for different implementation choices:

(1) mBRIM3𝐷 : A 3D-integrated version where communication
is essentially instantaneous and without bandwidth limit;

(2) mBRIM𝐻𝐵 : A system with high communication bandwidth.
Each chip is provided with three dedicated channel each
of 250 GB/s. The total bandwidth is thus close to that of
HBM [38].

(3) mBRIM𝐿𝐵 : A system with low communication bandwidth
(4x less than mBRIM𝐻𝐵).

Fig. 12 shows the best solution quality and time obtained by dif-
ferent mBRIMs, by an 8-FPGA implementation of SBM [49] and by
SA. For clarity, only the results of the best-quality run are shown in
the graph. If we compare the highest performingmBRIM (mBRIM3𝐷
concurrent mode), with SBM, we see that mBRIM gets to a much
better solution quality (793,423 to 799,292 vs SBM’s best result of
about 792,000) and is about 2200x faster (1.1 𝜇s vs 2.47 ms). Even
the bandwidth constrained configuration (mBRIM𝐿𝐵), which we
would operate in batch mode, is more than 700x faster than SBM,
also with a higher solution quality.

Next we look at the impact of bandwidth limitation. As already
discussed in Sec. 4, if the communication bandwidth between chips

Figure 12: Solution quality as annealing proceeds for K16384
graph on 4-chip BRIMmultiprocessors compared with an 8-
FPGA version of SBM [49] and simulated annealing (SA).

is insufficient, we can resort to slowing down the Ising machines to
cope. The impact, of course, is we need to wait longer to obtain the
solution. Both mBRIM𝐻𝐵 and mBRIM𝐿𝐵 are slower than mBRIM3𝐷
due to congestion-induced stalling. In these bandwidth limited situ-
ations, our proposed batch mode operation is a reasonably effective
tool and can improve execution speed. Specifically, batch mode
allows the same amount of annealing to be finished by 2.8x and 7x
faster for mBRIM𝐻𝐵 and mBRIM𝐿𝐵 , respectively. With batch mode,
mBRIM𝐻𝐵 is only about 2x slower than mBRIM3𝐷 and mBRIM𝐿𝐵

is another 1.4x slower. However, the solution quality is reduced
to 792,728 (which is still better than SBM’s result). We will take a
more detailed look as to how the speed improvement is achieved
and other issues in the next section.

Finally, we compare mBRIM to SA. We see that to get to the same
solution quality, mBRIM is about 4.5 × 106 faster. This compares to
the 1.3 × 106 speedup in K2000. Note here that there is an extraor-
dinary difference (about 140x) for SA’s performance due to tuning
the annealing schedule.

6.4 In-depth analysis
6.4.1 First-principle approximations. It may be beneficial to under-
stand how different types of solver work from first principles. No
matter what solver is used, we need to explore the high-dimensional
energy landscape sufficiently to achieve a good solution. As an
example, for the K800 graph (800 nodes, all-to-all), simulated an-
nealing (SA) and BRIM explored 148K and 115K different states
respectively to arrive at comparable solution quality. In BRIM, on
average, there is a spin flip every 20ps. In (sequential) SA, flipping
individual spins is achieved computationally: the energy of an al-
ternative configuration (with a particular spin flipped) is calculated
and based on the energy, the new state is probabilistically accepted.
Roughly speaking, we count 140,000 instructions executed per spin
flip running SA [29].

10

Increasing Ising Machine Capacity with Multi-Chip Architectures ISCA ’22, June 18–22, 2022, New York, NY, USA

Simulated bifurcation (SB) is an entirely new computational
approach. It can be thought of as simulating a dynamical system.
Thanks to its algorithm design, it is easier to parallelize. Thus,
despite having similar workload, it can be faster.7 Nevertheless,
accelerating SB to the level of BRIM would require about 1000x
more computational throughput or about 2 Peta Ops per second.
We can see why physical Ising machines are more attractive even
compared to the best computational accelerator.

6.4.2 Effects of bandwidth optimizations. As already discussed in
Sec. 5.4, the degree of global state ignorance can have significant
impact on solution quality. Thus, in concurrent mode, we need to let
solvers frequently update each other. In batch mode, we can tolerate
much longer epochs and only need to communicate cumulative
state changes between the beginning and end of the same epoch
(which we call bit change to differentiate from spin flips). If a spin
flips, say, 4 times in an epoch, its state will end up the same as at
the beginning of the epoch, and we do not need to communicate
anything. In other words, there are 4 spin flips but 0 bit change.
Intuitively, the longer the epoch, the higher the fraction of spin
flips will result in no bit change. Fig. 13 confirms this intuition
quantitatively.

Figure 13: [Left] Evolution of flips and bit changes over
time for a 4 chip BRIM with a fixed epoch size of 3.3 ns.
The left vertical axis corresponds to flips (solid blue line)
and bit changes (dashed blue line). The right vertical axis
corresponds to the ratio of flips to bit changes shown in
red. [Right] Correlation of the average ratio of flips to bit
changes with epoch size. The ratio increases almost linearly
with increasing epoch size.

We measure the number of spin flips during an epoch and count
the number of bit changes. In Fig. 13 (left), we show both numbers
and their ratio as the annealing proceeds. We see that for a fixed
epoch size, the ratio is rather stable after an initial period. Fig. 13
(right) shows the ratio as a function of different epoch sizes. Not
surprisingly, the longer the epoch the higher the ratio. As we can
see, if we can use an epoch size of about 3 ns, we can reduce traffic
demand by around 4-5x compared to using sub-nanosecond epochs.

Increasing epoch size does degrade solution quality as can be
seen in Fig. 14, where we show the solution quality as a function
of epoch size. We can see the best solution quality is achieved
7A non-trivial portion of SA is also massively parallel. However, there is no effort for
custom-hardware implementation of parallel SA.

Figure 14: [Left] Average MaxCut solution for different
epochs in concurrent and batch mode. [Right] Magnified y
axis.

with concurrent mode with a small epoch size. When bandwidth
is sufficient, this is the best mode to use. In a bandwidth-bound
system, the dynamical system needs to be slowed down. In that
case, 4-5x traffic reduction means the dynamical system can run
about 4-5x faster. Achieving traffic reduction in turn requires longer
epochs. In such a case, we see that the concurrent mode does not
tolerate longer epochs well and the solution quality drops quickly
and significantly. Batch mode, on the other hand, is much more
tolerant to longer epochs as the solution quality reduces but only
very slightly. Thus, in a bandwidth-bound system, batch mode will
be very useful in not sacrificing execution speed while maintaining
high solution quality.

Finally, we look at the bandwidth reduction when coordinating
induced spin flips (Sec. 5.4.2). Fig. 15 (left) shows the amount of
bit changes and induced spin flips with the evolution of time. The
percentage of bit changes due to induced spin flips is also plotted.
Of course, the value is a function of epoch size. Fig. 15 (right) shows
the average percentage with different epoch sizes. Clearly a non-
trivial amount of communication (30-38%) can be saved with the
optimization of coordinating induced flips for both concurrent and
batch modes. In a bandwidth constrained system, a corresponding
improvement in execution time (about 1.5x) can be expected.

6.5 Contrast with other parallel processing
Finally, we note that communication among distributed agents
is clearly a common component and performance bottleneck in
parallel processing. Thus, in exploring solutions for Ising machines,
we may have reinvented some wheels. For instance, using shadow
copies is a necessity for us the same way keeping copies (ghosts)
of non local neighbors is in parallel algorithms [7, 20, 34, 39]. Also,
techniques of reducing communication while limiting performance
consequences have been explored in different contexts: sending
lower precision data [5] – sometimes just 1 bit [10, 42], using lossy
compression [1], reducing the number of elements transmitted
[4, 21, 44, 50, 53] or even skipping rounds [8, 35, 43]. Compared to
these situations, two key differences can be highlighted specifically
for the case of Ising machines:

(1) Scale of the problem: Ising machines are dynamical systems
and can evolve extremely quickly. They thus present enor-
mous raw communication demand without optimizations.

11

ISCA ’22, June 18–22, 2022, New York, NY, USA Anshujit Sharma, et al.

Figure 15: [Left] Evolution of induced spin flips and bit
changes over time for a 4 chip BRIM with a fixed epoch
size of 3.3 ns. The left vertical axis corresponds to induced
spin flips (solid blue line) and bit changes (dashed blue line).
The right vertical axis corresponds to the percentage of bit
changes that are induced spin flips (shown in red). [Right]
Correlation of the average percentage of induced spin flips
with epoch size.

For instance our assumed 4 BRIM chips (each about 80𝑚𝑚2

in 45 nm technology) would need about 4 TB/s.
(2) Design flexibility: Optimizations such as batch mode and

coordinating induced spin flips are possible because we can
exploit the freedom to orchestrate the evolution process
of the underlying Ising machine. As a result, there is no
additional logic such as compression and yet we canmaintain
solution quality while reducing communication demand to
only 218 GB/s (20x reduction).

7 CONCLUSIONS
Physical Ising machines can solve Ising formula optimization prob-
lems with extreme speeds and energy efficiencies, even when com-
pared with special-purpose (von Neumann) accelerators. However,
existing Ising machines have a fixed capacity. If we simply use a
divide-and-conquer strategy, the benefit of using Ising machine
reduces quickly when the problem is even slightly bigger than the
machine capacity. Instead we need machines that are fundamen-
tally designed to cooperate with other machines to solve a larger
problem. In this paper, we have presented the architectural design
and optimizations of a multiprocessor Ising machine. Our analysis
of the design can be summarized into a few key takeaway points:

(1) Even under conservative conditions we can see that the
multiprocessor can achieve about 2200x speedup compared
to the state-of-the-art computational accelerator.

(2) With the proposed multiprocessor architecture, a physical
Ising machine can now also scale up and solve bigger prob-
lems. While it is difficult to compare speedups over different
problems, it is safe to say that the performance advantage of
a multiprocessor BRIM over its von Neumann counterpart
is as significant as in the case of single-chip BRIM.

(3) Given the extreme speed of a physical Isingmachine, commu-
nication bandwidth is likely the performance bottleneck and
the machine dynamics need to slow down correspondingly.
In these cases, our proposed batch mode operation can lead

to about 4-5x reduction in communication demand, translat-
ing to about 4-5x improvement in processing throughput.

ACKNOWLEDGMENTS
This work has been supported by a University Research Award
from the University of Rochester, by New York State Center of
Excellence in Data Science at the University of Rochester under
Project 1689dC13, and also in part by DARPA under Agreement No.
HR00112090012.

Appendix A DIVIDE-AND-CONQUER
ALGORITHMS

Users interact with D-Wave systems using the Solver API (SAPI)
over network. A job is submitted to a SAPI server queue. Jobs are
then assigned to workers, which run on a conventional proces-
sor and are responsible for submitting instructions to the quan-
tum processor, receiving results from the quantum processor, post-
processing results when necessary, and sending results back to
user.

Algorithm 1 D-WAVE’s d-n-c algorithm [13]
1: Input:𝑄𝑈𝐵𝑂 instance
2: #𝑉𝑏𝑒𝑠𝑡 , lowest value found to date
3: #𝑄𝑏𝑒𝑠𝑡 , solution bit vector corresponding to the lowest value so far
4: # 𝑖𝑛𝑑𝑒𝑥 , indices of the bits in the solution
5:
6: # Get initial estimate of minimum value and backbone
7: 𝑄𝑡𝑚𝑝 ← random 0/1 vector
8: (𝑉𝑏𝑒𝑠𝑡,𝑄𝑏𝑒𝑠𝑡) ← 𝑇𝑎𝑏𝑢𝑆𝑒𝑎𝑟𝑐ℎ (𝑄𝑈𝐵𝑂,𝑄𝑡𝑚𝑝)
9: 𝑖𝑛𝑑𝑒𝑥 ← 𝑂𝑟𝑑𝑒𝑟𝐵𝑦𝐼𝑚𝑝𝑎𝑐𝑡 (𝑄𝑈𝐵𝑂,𝑄𝑏𝑒𝑠𝑡)
10: 𝑝𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡 ← 0
11: 𝑄𝑡𝑚𝑝 ← 𝑄𝑏𝑒𝑠𝑡

12: 𝑡𝑜𝑡𝑎𝑙 ← 𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 𝑠𝑖𝑧𝑒 (𝑄𝑈𝐵𝑂)
13:
14: while 𝑝𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡 < 𝑛𝑢𝑚𝑅𝑒𝑝𝑒𝑎𝑡𝑠 do
15: for 𝑖 = 0; 𝑖 < 𝑡𝑜𝑡𝑎𝑙 ; 𝑖 = 𝑖 + 𝑠𝑢𝑏𝑄𝑢𝑏𝑜𝑆𝑖𝑧𝑒 do
16: # select subQubo with other variables clamped
17: 𝑠𝑢𝑏𝑄𝑢𝑏𝑜 ← 𝐶𝑙𝑎𝑚𝑝 (𝑄𝑈𝐵𝑂,𝑄𝑡𝑚𝑝, 𝑖𝑛𝑑𝑒𝑥 [𝑖 : 𝑖 + 𝑠𝑢𝑏𝑄𝑢𝑏𝑜𝑆𝑖𝑧𝑒 − 1])
18: (𝑠𝑢𝑏𝑉 , 𝑠𝑢𝑏𝑄) ← 𝐷𝑊𝑎𝑣𝑒𝑆𝑒𝑎𝑟𝑐ℎ (𝑠𝑢𝑏𝑄𝑢𝑏𝑜)
19: # project onto full solution
20: 𝑄𝑡𝑚𝑝 [𝑖𝑛𝑑𝑒𝑥 [𝑖 : 𝑖 + 𝑠𝑢𝑏𝑄𝑢𝑏𝑜𝑆𝑖𝑧𝑒 − 1]] ← 𝑠𝑢𝑏𝑄
21: end for
22: (𝑉 ,𝑄𝑛𝑒𝑤) ← 𝑇𝑎𝑏𝑢𝑆𝑒𝑎𝑟𝑐ℎ (𝑄𝑈𝐵𝑂,𝑄𝑡𝑚𝑝)
23: 𝑖𝑛𝑑𝑒𝑥 ← 𝑂𝑟𝑑𝑒𝑟𝐵𝑦𝐼𝑚𝑝𝑎𝑐𝑡 (𝑄𝑈𝐵𝑂,𝑄𝑛𝑒𝑤)
24: if 𝑉 < 𝑉𝑏𝑒𝑠𝑡 then
25: 𝑉𝑏𝑒𝑠𝑡 ← 𝑉 ;𝑄𝑏𝑒𝑠𝑡 ← 𝑄𝑛𝑒𝑤
26: 𝑝𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡 ← 0
27: else if 𝑉 == 𝑉𝑏𝑒𝑠𝑡 then
28: 𝑄𝑏𝑒𝑠𝑡 ← 𝑄𝑛𝑒𝑤
29: 𝑝𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡 + +
30: else
31: 𝑝𝑎𝑠𝑠𝐶𝑜𝑢𝑛𝑡 + +
32: end if
33: 𝑄𝑡𝑚𝑝 ← 𝑄𝑛𝑒𝑤
34: end while
35: Output:𝑉𝑏𝑒𝑠𝑡,𝑄𝑏𝑒𝑠𝑡

The general idea of the algorithm (shown as Algorithm 1 here,
replicated from [13]) is straightforward: If part of the state remains
fixed, then the original QUBO problem is converted into a smaller
sub-problem (𝑠𝑢𝑏𝑄𝑢𝑏𝑜 in line 15) that can be launched on a solver
(line 18). Repeating this action over different portions of the state
vector (lines 15 to 21) constitutes one pass of the algorithm. Multiple
passes are performed (while loop starting in line 14) to achieve a
better result. Shown in Algorithm 2 is our approach which is a bit
more efficient.

12

Increasing Ising Machine Capacity with Multi-Chip Architectures ISCA ’22, June 18–22, 2022, New York, NY, USA

Algorithm 2 Our d-n-c algorithm
1: Input:𝐺𝑟𝑎𝑝ℎ

2: #𝑉 ← random 0/1 spin vector
3: # 𝑛𝑢𝑚𝑆𝑜𝑙𝑣𝑒𝑟𝑠 ← number of solvers
4: # 𝑛𝑢𝑚𝑅𝑒𝑝𝑒𝑎𝑡𝑠 ← number of times to repeat
5: # 𝑒𝑝𝑜𝑐ℎ ← Epoch times for each solver
6: # 𝑟𝑎𝑡𝑖𝑜 ← ratio in which the graph is to be partitioned
7:
8: (𝑠𝑢𝑏𝐺, 𝑠𝑢𝑏𝑉) ← 𝑅𝑎𝑛𝑑𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝐺𝑟𝑎𝑝ℎ,𝑉 , 𝑟𝑎𝑡𝑖𝑜)
9: 𝑒𝑛𝑒 ← 𝐼𝑠𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 (𝑠𝑢𝑏𝐺, 𝑠𝑢𝑏𝑉)
10: for 𝑟 = 0; 𝑟 < 𝑛𝑢𝑚𝑅𝑒𝑝𝑒𝑎𝑡𝑠 ; ++𝑟 do
11: for 𝑖 = 0; 𝑖 < 𝑛𝑢𝑚𝑆𝑜𝑙𝑣𝑒𝑟𝑠 ; ++𝑖 do
12: # Launch solvers (Can be parallel)
13: 𝑆𝑜𝑙𝑣𝑒𝑟 (𝑠𝑢𝑏𝐺 [𝑖], 𝑠𝑢𝑏𝑉 [𝑖], 𝑒𝑝𝑜𝑐ℎ [𝑖], 𝑒𝑛𝑒 [𝑖])
14: end for
15: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑒 (𝑠𝑢𝑏𝐺, 𝑠𝑢𝑏𝑉 , 𝑒𝑛𝑒)
16: end for
17:
18: 𝑉 ← 𝑐𝑜𝑝𝑦 (𝑠𝑢𝑏𝑉)
19: 𝐹𝑖𝑛𝑎𝑙𝐸𝑛𝑒 ← 𝐼𝑠𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦 (𝐺𝑟𝑎𝑝ℎ,𝑉)
20: Output:𝑉 , 𝐹𝑖𝑛𝑎𝑙𝐸𝑛𝑒

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. CoRR abs/1603.04467 (2016). arXiv:1603.04467 http://arxiv.org/abs/
1603.04467

[2] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. 1985. A learning
algorithm for Boltzmann machines. Cognitive science 9, 1 (1985), 147–169.

[3] Richard Afoakwa, Yiqiao Zhang, Uday Kumar Reddy Vengalam, Zeljko Ignjatovic,
and Michael Huang. 2021. BRIM: Bistable Resistively-Coupled Ising Machine.
2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA) (2021), 749–760. https://doi.org/10.1109/HPCA51647.2021.00068

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstanti-
nov, and Cédric Renggli. 2018. The Convergence of Sparsified Gradient Methods.
In Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 5977–5987.

[5] Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016. QSGD: Ran-
domized Quantization for Communication-Optimal Stochastic Gradient Descent.
CoRR abs/1610.02132 (2016). arXiv:1610.02132 http://arxiv.org/abs/1610.02132

[6] Rami Barends, Alireza Shabani, Lucas Lamata, Julian Kelly, Antonio Mezzacapo,
Urtzi Las Heras, Ryan Babbush, Austin G Fowler, Brooks Campbell, Yu Chen, et al.
2016. Digitized adiabatic quantum computing with a superconducting circuit.
Nature 534, 7606 (2016), 222–226.

[7] William J. Barry, Mark T. Jones, and Paul E. Plassmann. 1998. Parallel adaptive
mesh refinement techniques for plasticity problems. Advances in Engineering
Software 29, 3 (1998), 217–225. https://doi.org/10.1016/S0965-9978(98)00040-4

[8] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. 2019. Qsparse-Local-
SGD: Distributed SGD with Quantization, Sparsification, and Local Computations.
Curran Associates Inc., Red Hook, NY, USA.

[9] Natalia G Berloff, Matteo Silva, Kirill Kalinin, Alexis Askitopoulos, Julian D
Töpfer, Pasquale Cilibrizzi, Wolfgang Langbein, and Pavlos G Lagoudakis. 2017.
Realizing the classical XY Hamiltonian in polariton simulators. Nature materials
16, 11 (2017), 1120–1126.

[10] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anand-
kumar. 2018. signSGD: compressed optimisation for non-convex problems. CoRR
abs/1802.04434 (2018). arXiv:1802.04434 http://arxiv.org/abs/1802.04434

[11] Fabian Böhm, Guy Verschaffelt, and Guy Van der Sande. 2019. A poor man’s
coherent Ising machine based on opto-electronic feedback systems for solving
optimization problems. Nature Communications 10, 1 (2019), 3538. https://doi.
org/10.1038/s41467-019-11484-3

[12] Sergio Boixo, Troels F Rønnow, Sergei V Isakov, Zhihui Wang, David Wecker,
Daniel A Lidar, JohnMMartinis, andMatthias Troyer. 2014. Evidence for quantum
annealing with more than one hundred qubits. Nature physics 10, 3 (2014), 218–
224.

[13] Michael Booth, Steven P. Reinhardt, and Aidan Roy. 2017. Partitioning Opti-
mization Problems for Hybrid Classical/Quantum Execution. Technical Report
(2017). https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/
bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf

[14] Paul I Bunyk, Emile M Hoskinson, Mark W Johnson, Elena Tolkacheva, Fabio
Altomare, Andrew J Berkley, Richard Harris, Jeremy P Hilton, Trevor Lanting,
Anthony J Przybysz, et al. 2014. Architectural considerations in the design of
a superconducting quantum annealing processor. IEEE Transactions on Applied
Superconductivity 24, 4 (2014), 1–10.

[15] KyungHyun Cho, Alexander Ilin, and Tapani Raiko. 2011. Improved learning of
Gaussian-Bernoulli restricted Boltzmann machines. In International conference
on artificial neural networks. Springer, 10–17.

[16] Jeffrey Chou, Suraj Bramhavar, Siddhartha Ghosh, and William Herzog. 2019.
Analog Coupled Oscillator Based Weighted Ising Machine. Scientific Reports 9, 1
(2019), 14786. https://doi.org/10.1038/s41598-019-49699-5

[17] Chase Cook, Hengyang Zhao, Takashi Sato, Masayuki Hiromoto, and Sheldon
X. D. Tan. 2019. GPU Based Parallel Ising Computing for Combinatorial Opti-
mization Problems in VLSI Physical Design. arXiv:1807.10750 [physics.comp-ph]

[18] D-WAVE. 2014. minorminer. https://github.com/dwavesystems/minorminer
[19] D-WAVE. 2022. Operation and Timing. https://docs.dwavesys.com/docs/latest/

c_qpu_timing.html
[20] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat

Medina,Mike Barrientos, Erich Elsen, FrankHam, AlexAiken, Karthik Duraisamy,
Eric Darve, Juan Alonso, and Pat Hanrahan. 2011. Liszt: A domain specific
language for building portable mesh-based PDE solvers. In SC ’11: Proceedings
of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–12. https://doi.org/10.1145/2063384.2063396

[21] Melih Elibol, Lihua Lei, and Michael I. Jordan. 2020. Variance Reduction with
Sparse Gradients. CoRR abs/2001.09623 (2020). arXiv:2001.09623 https://arxiv.
org/abs/2001.09623

[22] Hayato Goto, Kotaro Endo, Masaru Suzuki, Yoshisato Sakai, Taro Kanao, Yohei
Hamakawa, Ryo Hidaka, Masaya Yamasaki, and Kosuke Tatsumura. 2021. High-
performance combinatorial optimization based on classical mechanics. Sci-
ence Advances 7, 6 (2021), eabe7953. https://doi.org/10.1126/sciadv.abe7953
arXiv:https://www.science.org/doi/pdf/10.1126/sciadv.abe7953

[23] Hidenori GYOTEN, Masayuki HIROMOTO, and Takashi SATO. 2018. Area
Efficient Annealing Processor for Ising Model without Random Number Gener-
ator. IEICE Transactions on Information and Systems E101.D, 2 (2018), 314–323.
https://doi.org/10.1587/transinf.2017RCP0015

[24] Ryan Hamerly, Takahiro Inagaki, Peter L McMahon, Davide Venturelli, Alireza
Marandi, Tatsuhiro Onodera, Edwin Ng, Carsten Langrock, Kensuke Inaba, et al.
2018. Scaling advantages of all-to-all connectivity in physical annealers: the
Coherent Ising Machine vs. D-Wave 2000Q. D-Wave 2000Q arXiv (2018).

[25] Ryan Hamerly, Takahiro Inagaki, Peter L McMahon, Davide Venturelli, Alireza
Marandi, Tatsuhiro Onodera, Edwin Ng, Carsten Langrock, Kensuke Inaba, Toshi-
mori Honjo, et al. 2019. Experimental investigation of performance differences
between coherent Ising machines and a quantum annealer. Science advances 5, 5
(2019), eaau0823.

[26] R Hamerly, A Sludds, L Bernstein, M Prabhu, C Roques-Carmes, J Carolan, Y
Yamamoto, M Soljačić, and D Englund. 2019. Towards Large-Scale Photonic
Neural-Network Accelerators. In 2019 IEEE International Electron Devices Meeting
(IEDM). IEEE, 22–8.

[27] R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E.
Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear,
C. Enderud, C. Rich, S. Uchaikin, M. C. Thom, E. M. Chapple, J. Wang, B. Wilson,
M. H. S. Amin, N. Dickson, K. Karimi, B. Macready, C. J. S. Truncik, and G. Rose.
2010. Experimental investigation of an eight-qubit unit cell in a superconducting
optimization processor. Phys. Rev. B 82 (Jul 2010), 024511. Issue 2. https://doi.
org/10.1103/PhysRevB.82.024511

[28] Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei
Tamate, Toshimori Honjo, Alireza Marandi, Peter L McMahon, Takeshi Umeki,
Koji Enbutsu, et al. 2016. A coherent Ising machine for 2000-node optimization
problems. Science 354, 6312 (2016), 603–606.

[29] S.V. Isakov, I.N. Zintchenko, T.F. Rønnow, and M. Troyer. 2015. Optimised simu-
lated annealing for Ising spin glasses. Computer Physics Communications 192 (Jul
2015), 265–271. https://doi.org/10.1016/j.cpc.2015.02.015

[30] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. Springer US,
Boston, MA, 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9

[31] Kihwan Kim, M-S Chang, Simcha Korenblit, Rajibul Islam, Emily E Edwards,
James K Freericks, G-D Lin, L-M Duan, and Christopher Monroe. 2010. Quantum
simulation of frustrated Ising spins with trapped ions. Nature 465, 7298 (2010),
590–593.

[32] AndrewDKing, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, EvgenyAndriyash,
Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare,
et al. 2018. Observation of topological phenomena in a programmable lattice of
1,800 qubits. Nature 560, 7719 (2018), 456–460.

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by Simulated
Annealing. Science 220, 4598 (1983), 671–680. https://doi.org/10.1126/science.
220.4598.671 arXiv:https://science.sciencemag.org/content/220/4598/671.full.pdf

[34] Orion S. Lawlor, Sayantan Chakravorty, Terry L. Wilmarth, Nilesh Choudhury,
Isaac Dooley, Gengbin Zheng, and Laxmikant V. Kalé. 2006. ParFUM: A Parallel
Framework for Unstructured Meshes for Scalable Dynamic Physics Applications.

13

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://doi.org/10.1109/HPCA51647.2021.00068
https://arxiv.org/abs/1610.02132
http://arxiv.org/abs/1610.02132
https://doi.org/10.1016/S0965-9978(98)00040-4
https://arxiv.org/abs/1802.04434
http://arxiv.org/abs/1802.04434
https://doi.org/10.1038/s41467-019-11484-3
https://doi.org/10.1038/s41467-019-11484-3
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://doi.org/10.1038/s41598-019-49699-5
https://arxiv.org/abs/1807.10750
https://github.com/dwavesystems/minorminer
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html
https://docs.dwavesys.com/docs/latest/c_qpu_timing.html
https://doi.org/10.1145/2063384.2063396
https://arxiv.org/abs/2001.09623
https://arxiv.org/abs/2001.09623
https://arxiv.org/abs/2001.09623
https://doi.org/10.1126/sciadv.abe7953
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/sciadv.abe7953
https://doi.org/10.1587/transinf.2017RCP0015
https://doi.org/10.1103/PhysRevB.82.024511
https://doi.org/10.1103/PhysRevB.82.024511
https://doi.org/10.1016/j.cpc.2015.02.015
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://arxiv.org/abs/https://science.sciencemag.org/content/220/4598/671.full.pdf

ISCA ’22, June 18–22, 2022, New York, NY, USA Anshujit Sharma, et al.

Eng. with Comput. 22, 3 (dec 2006), 215–235.
[35] Tao Lin, Sebastian U. Stich, and Martin Jaggi. 2018. Don’t Use Large Mini-

Batches, Use Local SGD. CoRR abs/1808.07217 (2018). arXiv:1808.07217 http:
//arxiv.org/abs/1808.07217

[36] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in
Physics 2 (2014), 5.

[37] Peter L. McMahon, Alireza Marandi, Yoshitaka Haribara, Ryan Hamerly, Carsten
Langrock, Shuhei Tamate, Takahiro Inagaki, Hiroki Takesue, Shoko Utsunomiya,
Kazuyuki Aihara, Robert L. Byer, M. M. Fejer, Hideo Mabuchi, and Yoshihisa Ya-
mamoto. 2016. A fully programmable 100-spin coherent Ising machine with all-to-
all connections. Science 354, 6312 (2016), 614–617. https://doi.org/10.1126/science.
aah5178 arXiv:https://science.sciencemag.org/content/354/6312/614.full.pdf

[38] Chris Mellor. 2021. DRAM, it stacks up: SK hynix rolls out 819 GB/s HBM3 tech.
https://www.theregister.com/2021/10/20/sk_hynix_hbm3/

[39] Misbah Mubarak, Seegyoung Seol, Qiukai Lu, and Mark S. Shephard. 1900. A Par-
allel Ghosting Algorithm for The Flexible Distributed Mesh Database. Scientific
Programming 21 (01 Jan 1900), 654971. https://doi.org/10.3233/SPR-130361

[40] Saavan Patel, Lili Chen, Philip Canoza, and Sayeef Salahuddin. 2020. Ising Model
Optimization Problems on a FPGA Accelerated Restricted Boltzmann Machine.
arXiv:2008.04436 [cs.AR]

[41] D Pierangeli, G Marcucci, and C Conti. 2019. Large-scale photonic Ising machine
by spatial light modulation. Physical review letters 122, 21 (2019), 213902.

[42] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-Bit Stochastic
Gradient Descent and Application to Data-Parallel Distributed Training of Speech
DNNs. In Interspeech 2014 (interspeech 2014 ed.). https://www.microsoft.com/en-
us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-
data-parallel-distributed-training-of-speech-dnns/

[43] Sebastian U. Stich. 2019. Local SGD Converges Fast and Communicates Little. In
International Conference on Learning Representations. https://openreview.net/
forum?id=S1g2JnRcFX

[44] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018. Sparsified
SGD with Memory. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 4452–4463.

[45] Kenta Takata, Alireza Marandi, Ryan Hamerly, Yoshitaka Haribara, Daiki Maruo,
Shuhei Tamate, Hiromasa Sakaguchi, Shoko Utsunomiya, and Yoshihisa Ya-
mamoto. 2016. A 16-bit Coherent Ising Machine for One-Dimensional Ring
and Cubic Graph Problems. Scientific Reports 6, 1 (2016), 34089. https://doi.org/
10.1038/srep34089

[46] Y Takeda, S Tamate, Y Yamamoto, H Takesue, T Inagaki, and S Utsunomiya. 2017.
Boltzmann sampling for an XY model using a non-degenerate optical parametric
oscillator network. Quantum Science and Technology 3, 1 (nov 2017), 014004.
https://doi.org/10.1088/2058-9565/aa923b

[47] T. Takemoto, M. Hayashi, C. Yoshimura, and M. Yamaoka. 2019. 2.6 A 2 by 30k-
Spin Multichip Scalable Annealing Processor Based on a Processing-In-Memory
Approach for Solving Large-Scale Combinatorial Optimization Problems. In IEEE
International Solid- State Circuits Conference.

[48] Kosuke Tatsumura, Alexander R. Dixon, and Hayato Goto. 2019. FPGA-Based
Simulated Bifurcation Machine. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). 59–66. https://doi.org/10.1109/FPL.
2019.00019

[49] Kosuke Tatsumura, Masaya Yamasaki, and Hayato Goto. 2021. Scaling out Ising
machines using a multi-chip architecture for simulated bifurcation. Nature
Electronics 4, 3 (01 Mar 2021), 208–217. https://doi.org/10.1038/s41928-021-
00546-4

[50] Hongyi Wang, Scott Sievert, Zachary Charles, Shengchao Liu, Stephen Wright,
and Dimitris Papailiopoulos. 2018. ATOMO: Communication-Efficient Learning
via Atomic Sparsification. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems (Montréal, Canada) (NIPS’18). Curran
Associates Inc., Red Hook, NY, USA, 9872–9883.

[51] Tianshi Wang and Jaijeet Roychowdhury. 2019. OIM: Oscillator-Based
Ising Machines for Solving Combinatorial Optimisation Problems.
arXiv:1903.07163 [cs.ET]

[52] Tianshi Wang, Leon Wu, and Jaijeet Roychowdhury. 2019. New Computational
Results and Hardware Prototypes for Oscillator-Based Ising Machines. In Pro-
ceedings of the 56th Annual Design Automation Conference 2019 (Las Vegas, NV,
USA) (DAC ’19). Association for Computing Machinery, New York, NY, USA,
Article 239, 2 pages. https://doi.org/10.1145/3316781.3322473

[53] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. 2018. Gradi-
ent Sparsification for Communication-Efficient Distributed Optimization. In
Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
3328bdf9a4b9504b9398284244fe97c2-Paper.pdf

[54] Kasho Yamamoto, Kazushi Kawamura, Kota Ando, Normann Mertig, Takashi
Takemoto, Masanao Yamaoka, Hiroshi Teramoto, Akira Sakai, Shinya Takamaeda-
Yamazaki, and Masato Motomura. 2021. STATICA: A 512-Spin 0.25M-Weight An-
nealing Processor With an All-Spin-Updates-at-Once Architecture for Combina-
torial Optimization With Complete Spin–Spin Interactions. IEEE Journal of Solid-
State Circuits 56, 1 (2021), 165–178. https://doi.org/10.1109/JSSC.2020.3027702

[55] Yoshihisa Yamamoto, Kazuyuki Aihara, Timothee Leleu, Ken-ichi Kawarabayashi,
Satoshi Kako, Martin Fejer, Kyo Inoue, and Hiroki Takesue. 2017. Coherent Ising
machines—Optical neural networks operating at the quantum limit. npj Quantum
Information 3, 1 (2017), 1–15.

[56] Masanao Yamaoka, Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, Hide-
taka Aoki, and Hiroyuki Mizuno. 2015. A 20k-spin Ising chip to solve combina-
torial optimization problems with CMOS annealing. IEEE Journal of Solid-State
Circuits 51, 1 (2015), 303–309.

[57] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno.
2015. 24.3 20k-spin Ising chip for combinational optimization problemwith CMOS
annealing. In 2015 IEEE International Solid-State Circuits Conference - (ISSCC)
Digest of Technical Papers. 1–3. https://doi.org/10.1109/ISSCC.2015.7063111

[58] Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, and Masanao Yamaoka.
2017. Implementation and Evaluation of FPGA-based Annealing Processor for
Ising Model by use of Resource Sharing. International Journal of Networking
and Computing 7, 2 (2017), 154–172. http://www.ijnc.org/index.php/ijnc/article/
view/148

[59] G Zames, NM Ajlouni, NM Ajlouni, NM Ajlouni, JH Holland, WD Hills, and DE
Goldberg. 1981. Genetic algorithms in search, optimization and machine learning.
Information Technology Journal 3, 1 (1981), 301–302.

14

https://arxiv.org/abs/1808.07217
http://arxiv.org/abs/1808.07217
http://arxiv.org/abs/1808.07217
https://doi.org/10.1126/science.aah5178
https://doi.org/10.1126/science.aah5178
https://arxiv.org/abs/https://science.sciencemag.org/content/354/6312/614.full.pdf
https://www.theregister.com/2021/10/20/sk_hynix_hbm3/
https://doi.org/10.3233/SPR-130361
https://arxiv.org/abs/2008.04436
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=S1g2JnRcFX
https://doi.org/10.1038/srep34089
https://doi.org/10.1038/srep34089
https://doi.org/10.1088/2058-9565/aa923b
https://doi.org/10.1109/FPL.2019.00019
https://doi.org/10.1109/FPL.2019.00019
https://doi.org/10.1038/s41928-021-00546-4
https://doi.org/10.1038/s41928-021-00546-4
https://arxiv.org/abs/1903.07163
https://doi.org/10.1145/3316781.3322473
https://proceedings.neurips.cc/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3328bdf9a4b9504b9398284244fe97c2-Paper.pdf
https://doi.org/10.1109/JSSC.2020.3027702
https://doi.org/10.1109/ISSCC.2015.7063111
http://www.ijnc.org/index.php/ijnc/article/view/148
http://www.ijnc.org/index.php/ijnc/article/view/148

	Abstract
	1 Introduction
	2 Background and Related work
	2.1 Principles of Ising machines
	2.2 The three (and a half) generations of Ising machines
	2.3 The common issue

	3 On the Divide and Conquer Strategy
	3.1 Practice
	3.2 Principle
	3.3 Issues of decomposition
	3.4 Recap

	4 Scaling of Ising Machines
	4.1 General analysis of scaling Ising machines
	4.2 A macrochip architecture

	5 A multiprocessor architecture
	5.1 Basic architecture
	5.2 Reconfigurable chip architecture
	5.3 Communication demand and technological solutions
	5.4 Concurrent mode operation
	5.5 Batch mode operation

	6 Experimental Analysis
	6.1 Experimental methodology
	6.2 Single solver baseline
	6.3 High-level comparison
	6.4 In-depth analysis
	6.5 Contrast with other parallel processing

	7 Conclusions
	Acknowledgments
	A Divide-and-conquer algorithms
	References

