
Branch Prediction On Demand: an Energy-Efficient Solution
�

Daniel Chaver, Luis Piñuel,
Manuel Prieto, Francisco Tirado

Dpto. Arquitectura de Computadores
Universidad Complutense

Madrid, Spain�
dani02, lpinuel, mpmatias, ptirado � @dacya.ucm.es

Michael C. Huang
Dept. of Electrical & Computer Engineering

University of Rochester
Rochester, New York

michael.huang@ece.rochester.edu

ABSTRACT
High-end processors typically incorporate complex branch predic-
tors consisting of many large structures that together consume a no-
table fraction of total chip power (more than 10% in some cases).
Depending on the applications, some of these resources may re-
main underused for long periods of time. We propose a methodol-
ogy to reduce the energy consumption of the branch predictor by
characterizing prediction demand using profiling and dynamically
adjusting predictor resources accordingly. Specifically, we disable
components of the hybrid direction predictor and resize the branch
target buffer. Detailed simulations show that this approach reduces
the energy consumption in the branch predictor by an average of
72% and up to 89% with virtually no impact on prediction accu-
racy and performance.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles—Adapt-
able architectures

General Terms
Design, Experimentation, Performance

Keywords
Adaptive, Branch Prediction, Profiling

1. INTRODUCTION
Branch prediction is a central piece of technology in exploit-

ing instruction-level parallelism. Modern high-end processors use
an array of tables for branch direction and target prediction [13].
These tables are quite large in size (352K bits total for the direc-
tion predictor alone in Alpha EV8) and they are accessed every cy-
cle resulting in significant energy consumption - sometimes more
than 10% of the total chip power. While high accuracy is essen-
tial for high performance and energy efficiency, always using the
maximum configuration of the branch predictor regardless of the

�
This research was supported in part by the Spanish research grant

TIC 2002-00750

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008 ...$5.00.

demand is not energy efficient. Consider an array-based floating-
point application with very regular control flow: a simple branch
predictor or even simply predicting all branches taken could be just
as accurate as a complex hybrid predictor. Therefore, we propose
to bring the general principle of “on-demand resource allocation”
to branch predictor and dynamically adjust the strength of the pre-
dictor.

Adaptive branch prediction incurs two types of overhead, re-
configuration overhead and energy waste due to increased mis-
speculation when using weaker predictor configurations. To reduce
such overhead, we adopt a feedback based approach. We partition
an application into smaller units called modules; characterize their
branch prediction demand by profiling; and instrument the applica-
tion to reconfigure the predictor at runtime. The benefits of this ap-
proach are twofold: 1, since characterization and decision making
are done off-line, little runtime overhead is incurred; 2, the chosen
configuration is highly efficient, because the demand characteriza-
tion is very accurate, thanks to behavior repetition of modules.

At the circuit level, there are several existing techniques ([1, 15])
to reconfigure cache-like structures to reduce energy consumption.
In this paper, we do not attempt to explore all possibilities of ex-
isting circuit-level reconfiguration techniques on branch predictor.
Rather, to demonstrate the effectiveness of our overall approach to
provide on-demand branch prediction capacity, we use two generic,
straightforward techniques: a novel access gating technique to re-
duce ineffectual switchings and table resizing to reduce unneces-
sarily large capacitative load.

The rest of this paper is organized as follows: Section 2 explains
the two different types of predictor adaptations and the profiling
methodology, Section 3 discusses the experimental setup , Sec-
tion 4 shows the evaluation of our proposal, Section 5 discusses
related work, and finally Section 6 summarizes.

2. ON-DEMAND BRANCH PREDICTION

2.1 Branch Predictor Reconfiguration
In this paper, we explore two different categories of reconfigura-

tion techniques on the branch predictor: access gating and structure
resizing. First, we propose a novel access gating technique for the
hybrid direction predictor. Second, we leverage existing resizing
techniques for the branch target buffer.

2.1.1 Adaptive Hybrid Predictor through Access Gating
Our baseline direction predictor is a de-aliased hybrid direction

predictor: 2Bc-gskew-pskew [14]. Like in many other hybrid pre-
dictors, different prediction tables are accessed and the resulting
predictions go through, sometime a series of, majority voting. For
certain branches, a vote from a specific prediction table or tables

can be more accurate than the majority vote. Meta tables are de-
signed to decide which vote sustains.

To reduce energy waste in accessing multiple tables, we propose
to disable tables that are not contributing much to improve the pre-
diction accuracy. We decompose the baseline predictor into three
components as shown in Figure 1: the gskew (G) component, the
pskew (P) component, and the bimodal (B) component. We use two
control signals ����� and ����� to disable (gate accesses to) the
gskew and pskew component respectively. The signals can be wired
to a special control register and set or cleared using special register
load instructions. Once a subset of tables are disabled through this
mechanism, they remain inactive until being enabled again. When
a certain component is disabled, related meta tables may become
irrelevant and can be disabled as well. For example, when ����� is
asserted, the pskew component and metatabe �	��
��� are gated and
the rest of the tables essentially form a gskew predictor.

Notice that we do not gate the bimodal component because it is
also used for majority voting in the other two components, and does
not consume significant amount of energy. Moreover, having only
two control signals simplifies the circuitry.

In theory, it is possible to gate accesses to branch prediction ta-
bles for every prediction. The meta tables can be used to allow
accesses only to the tables whose prediction will be selected. This
saves the energy wasted in accessing the other tables whose predic-
tions will be disregarded anyway. In practice, this does not work
well since it sequentialize accesses to the meta table and the pre-
diction tables, thus slows down branch prediction significantly.

Majority
Vote

Majority
Vote

Addr Hist

PEN

GEN
GEN

Addr

GEN
Meta 1

Meta 2
PEN

PEN

P

B

G
1

M
U

X

M
U

X

MUX

1

MUX

Prediction

Figure 1: Adaptive hybrid predictor with controls for gating.
For brevity, certain structures, such as the local history table
for the pskew component, are not shown.

2.1.2 Adaptive BTB through Dynamic Resizing
To have accurate branch direction predictions is not enough: with-

out the target address, instruction fetch can not proceed after pre-
dicted taken branch. Branch target buffer (BTB) helps provide
the target address quickly. Increasing the size and associativity of
BTBs helps reduce conflict and capacity misses. However, for cer-
tain applications, large structures can be a waste. For example,
compress in the SPEC95 suite has only 46 static branch instruc-
tions [13]. Therefore, we propose to resize BTB on the fly. BTB
is very similar to a normal data cache in terms of organization and
access. There are several schemes in literature discussing how to
resize caches and the circuitry to perform the resizing. The main
idea of such techniques is to exploit sub-array partitioning, already
present for performance reasons, to selectively disable portions of
the cache with minimum hardware support. Current proposals for
resizable caches differ in the kind of partitioning they are based on:
bitline (selective-sets [15]) and wordline (selective-ways [1]). The
effectiveness of these two approaches depends on the particular or-
ganization of the cache structure. In our case, the baseline BTB

is 2-way set associative with 2048 sets (a total of 4096 entries),
and segmented into 8 sub-arrays along the bitlines (�����������),
according to cache timing model Cacti [12]. Thus, we can scale
down the size to 256-set/2-way configuration via selective-sets or
to 2048-set/1-way via selective-ways if we use pass-gates to divide
wordlines.

BTB resizing is triggered by instructions writing to special con-
trol registers. In the context of data caches, resizing entails the
need for flushing or other mechanisms to maintain coherence. In
our case this is not necessary. The reason is quite simple: the infor-
mation stored in any prediction table only affects performance and
energy, not the correctness of the program execution.

2.2 The Profiling Approach
Adaptive architecture is a promising technology to meet appli-

cations’ diverse and dynamic resource demand in an efficient man-
ner. Managing adaptation of branch predictor, is a challenging task.
Cost and benefit have to be balanced carefully. In particular, we can
only switch to a less power-hungry branch predictor configuration
if the switch causes minimum degradation in prediction accuracy.
This is because the processing of wrong path instructions causes
potentially much more energy waste in other parts of the processor
than saved in the branch predictor. Another issue is that any extra
hardware to keep track of and to predict branch prediction demand
will by itself consume extra energy which directly cuts into the sav-
ings. Consequently, in this work, we use a profiled-based feedback
mechanism to estimate branch prediction demand without incurring
runtime overhead.

We statically partition the code into smaller sections, called mod-
ules. A module is the smallest unit to apply branch prediction re-
configuration. The reason to tie branch predictor reconfiguration
to static code is because intuitively, the code has a large bearing on
the branch prediction demand. After all, instruction address is used,
exclusively or inclusively, to index almost every table. Also, run-
time characteristics of branches (and thus the appropriate predic-
tors for them) do not change much. Certain branches are strongly
biased, others correlate with other branches. Finally, our prior re-
search [8] has shown that tying behavior prediction, and thus adap-
tivity control, to the position of the code is, in general, more effec-
tive than time-based prediction and control mechanisms.

The granularity of a module is also important. If a module is too
fine-grained, the reconfiguration overhead at runtime will be large,
reducing the energy savings. If it is too coarse-grained, it can con-
tain smaller units with different demand on the branch predictor. In
this paper, we select subroutines of a program as modules. To re-
duce switching overhead, and focus only on important subroutines,
we use two thresholds in selecting subroutines: average length per
invocation, ���������! #" and total execution time weight, �$�&%(')��*!+ . In
this paper, these two thresholds are set to ,.-0/ and 5% respectively.

Once the boundaries of the modules are identified, we carry out
profiling to determine the demand of prediction resources for each
module using a training input. To do this, we use a straightforward
approach, running the application multiple times to directly mea-
sure the performance and energy effect of different predictor con-
figurations for each module. During this profiling stage, the energy
and performance metrics can be obtained via a range of methods:
software instrumentation, simulation or using hardware counters.
We assume that changing branch predictor configuration for one
module does not affect another module. When collecting profiling
information for one module, we use the default configuration for
the rest of the modules.

Based on the profile, we can select the best configuration for
each module such that overall the application achieves most energy

savings without slowing down over a predefined limit. This can be
done by using a greedy algorithm solution for the knapsack prob-
lem [5]. In this case, the tolerable performance degradation is the
capacity of the knapsack, while the total energy savings is the value
to maximize. This is similar to the algorithm that we used previ-
ously [8]. Once the configuration for each module is chosen, we
instrument the binary to carry out the reconfiguration at runtime.
This approach incurs very little runtime overhead.

3. EXPERIMENTAL SETUP
We evaluate our proposal on a simulated generic out-of-order

processor loosely modeling MIPS R10000 [16]. The baseline branch
predictor used is a 2Bc-gskew-pskew predictor configured with two
4K-entry meta tables, a 4K-entry bimodal table, a gskew compo-
nent consisting of two 4K-entry global history tables that use 10
bits of global history, and a pskew component consisting of a 1K-
entry local history table (8-bit wide) with two 2K-entry PHTs.

Table 1 shows some parameters of the simulated system. We use
a MINT-based execution driven simulator [9] that models the con-
tention and occupancy of all resources as the evaluation tool. The
simulator incorporates Wattch [4] to evaluate energy consumption.
Our simulator fully accounts for all mis-speculation induced over-
head.

Processor
Core: 1 GHz Out-of-order Branch units: 1
Issue width: 6 Branch penalty: � 8 cycles
I-window size: 96 RAS entries: 32
Load/store units: 2 BTB entries: 4096
Int,FP units: 5,4 BTB assoc: 2
Pending loads,stores: 16,16 Predictor: 2Bc-gskew-pskew
Caches Bus & Memory
L1: 32 KB 2-way LRU FSB freq: 333 MHz
L1 OC,RT: 1,3 ns FSB width: 128 bits
L1 line size: 32 B Mem: 2-channel Rambus
L2: 512 KB 8-way pseudo LRU DRAM bandwidth: 3.2 GB/s
L2 OC,RT: 4,12 ns Mem RT: 108 ns
L2 line size: 64 B
I-cache: 32 KB 2-way 32 B line

Table 1: System configuration. RAS, OC, and RT stand for re-
turn address stack, occupancy, and contention-free round trip
time from the processor, respectively.

To evaluate our proposal on different types of applications, we
select a set of 8 applications that include 5 SPECint applications
(181.mcf, 186.crafty, 197.parser, 252.eon, and 256.bzip2), 2 SPECfp
applications (171.swim and 301.apsi), and a multimedia applica-
tion (mp3dec). For the SPECint and SPECfp applications, we re-
duce the ref input dataset to cut down simulation time. Simulation
length ranges from hundreds of millions of cycles to over 2.5 bil-
lion cycles.

4. EVALUATIONS
In this section, we first evaluate the effect of adapting the size

of BTB in Section 4.1, then we evaluate adaptive hybrid predictor
in Section 4.2, we briefly discuss combining the two techniques in
Section 4.3, and finally we present some discussions in Section 4.4.

4.1 Adaptive BTB
Adaptive BTB exploits the fact that many BTB entries are un-

derused. Figures 2 and 3 show the relationship between the size
of BTB and the miss rate for different applications and different
modules inside single applications, respectively.

In Figure 2, we see that for some applications, such as bzip, BTB
miss rate is almost independent of the size in the range shown,

0

2

4

6

8

6 7 8 9 10 11 12
log2(BTB_size)

B
T

B
 m

is
s

ra
te

 (
%

)

bzip apsi
mp3dec crafty
eon parser
mcf swim

Figure 2: BTB miss rate for different benchmarks using differ-
ent BTB sizes.

crafty

0

20

40

60

6 7 8 9 10 11 12
log2 (BTB_size)

B
T

B
m

is
s

ra
te

(%
)

Modules

Total

mp3dec

0

2

4

6

8

6 7 8 9 10 11 1

log2(BTB_size)

B
T

B
m

is
s

ra
te

(%
)

Total Modules

Figure 3: BTB miss rate for different modules and the average
of the whole program of two applications (crafty and mp3dec)
with different BTB sizes.

whereas other applications, such as crafty, exhibit a significant in-
crease in miss rate for small BTB sizes. In addition, as Figure 3
illustrates, BTB demand for a given application also varies among
different modules. This suggests that in some applications many
entries of the BTB remain unused for long periods of time. In Fig-
ure 4 we can clearly see that while a handful of entries in the BTB
are heavily accessed, many others are not.

To gauge an application’s BTB size requirement, in the profil-
ing stage, we measure the energy and performance statistics for
each module using different BTB sizes. Figure 5 illustrates the re-
sults in this stage for crafty. For brevity we only show the results
of selective-sets scheme on selected modules. The horizontal axis
shows the slowdown relative to the program execution time and the
vertical axis shows the energy savings relative to total program en-
ergy consumption in the processor. We observe the following:
1. For certain modules, moderate BTB resizing can produce rel-
atively significant energy reduction without incurring much slow-
down. In fact, BTB resizing can sometimes even improve perfor-
mance. This may seem counterintuitive, but is possible, since re-
sizing can change BTB entry conflict patterns.
2. Beyond a certain size, further reducing the size of BTB is counter-
productive. The reason is straightforward. When the BTB becomes

apsi bzip crafty eon mcf mp3dec parser swim
train ref train ref train ref train ref train ref train ref train ref train ref

SS
� �������	��
������� 3.55 3.60 8.54 8.62 2.25 2.37 1.60 1.75 7.60 7.72 3.87 3.24 6.54 6.60 1.27 1.17� ������������� 57.01 57.83 66.18 65.96 20.13 21.12 43.28 44.80 71.31 72.15 64.60 57.14 57.89 58.41 53.09 49.47���������

0.01 0.01 -0.02 0.08 0.50 0.64 0.75 0.97 0.02 0.02 0.38 0.44 0.05 0.08 -0.01 0.00

SW
� �������	��
������� 1.30 1.21 2.16 2.22 0.68 0.55 0.18 0.11 2.22 1.46 1.19 1.14 1.32 1.33 0.50 0.54� ������������� 14.99 15.18 15.09 15.18 3.47 3.10 3.97 4.0 14.55 12.04 14.86 15.03 14.17 14.30 13.4 12.8���������

0.03 0.03 0.02 0.08 0.09 0.12 0.74 1.08 0.02 0.02 0.31 0.39 0.16 0.21 0.00 0.00

Table 2: Total energy savings and performance degradations obtained using adaptive BTB. SS and SW stand for selective-sets and
selective-ways respectively.

0%

5%

10%

0 10 20 30 40 50

BTB entries

P
er

ce
n

ta
g

e
o

f
to

ta
l a

cc
es

s

mp3dec
crafty
bzip
apsi

Figure 4: Percentage of total accesses to each entry for a 4096-
entry BTB. The entries are sorted by the number of accesses.
Only the first 50 entries are shown. For clarity, we only show
four applications.

crafty

0

1

2

3

−0.5 0.5 1.5 2.5 3.5
Slowdown (%)

E
n

er
g

y
re

d
u

ct
io

n
(%

)

Modules

Figure 5: The influence on overall performance and energy
consumption by progressive resizing of the BTB sets on dif-
ferent modules in crafty. The crosses indicate configurations
selected when the tolerable slowdown is set to 0.5%.

too small, slowdown induced energy waste outweighs the energy
savings in the BTB.

To demonstrate the effectiveness of BTB resizing, we set up a
threshold for tolerable performance degradation: 0.5%. Based on
the profile information and this threshold, our off-line decision al-
gorithm chooses the configuration that saves the most energy with-
out going over the threshold for each application, and embed the
decision into the application binaries. We then perform two pro-
duction runs using the training input and the reference input. The
results of using this configuration are shown in Table 2.

For each application, the two columns correspond to the two in-
puts used in the productions runs. Each column contains the rel-
ative energy savings in the whole processor (��� ��� � + � �) and in
the branch predictor (��� ��!#"), and the relative increase in total
execution time (� �).

From the table, we can see that dynamically changing the size of
BTB can be profitable: around 20-70% of branch predictor energy
and up to 8.6% of total chip energy can be saved with very little
performance degradation. We note that the effectiveness of differ-

ent resizing techniques depends on the particular configuration of
the BTB.

4.2 Adaptive Hybrid Predictor
Just as the demand on BTB varies both within and across appli-

cations, the demand on the strength of the direction predictor also
varies. This is exemplified in Figure 6. In the figure, we show the
misprediction rate for a range of predictor configurations: from the
most sophisticated full configuration to the simplest bimodal pre-
dictor.

0

5

10

15

20

25

Bimodal pskew gskew 2Bc−gskew−pskew

M
is

p
re

d
ic

ti
o

n
ra

te
(%

)

Total

Modules

(a)

0

5

10

15

20

Bimodal pskew gskew 2Bc-gskew-pskew

M
is

p
re

d
ic

ti
o

n
 r

at
e

(%
)

mp3dec bzip
apsi crafty
eon mcf
parser swim

(b)

Figure 6: Branch misprediction rate with different branch pre-
dictor configurations for each module inside one application
mp3dec (a), and for all applications (b).

From the figure we can see that, in some cases, certain predic-
tors produce results that are close to the more sophisticated predic-
tors. For example, for bzip, the bimodal predictor produces satis-
factory results, having a small overall misprediction rate. Experi-
ments show that disabling (gating accesses to) the gskew and pskew
components inside the predictor does result in notable energy sav-
ings (3% of total processor energy) without noticeable performance
degradation for this application. Table 3 summaries performance
and energy impact for all applications using adaptive hybrid pre-
dictor.

4.3 Combining the Two Adaptations
Finally, we can combine the two techniques to achieve more

flexible on-demand branch prediction. Table 4 shows energy sav-
ings and performance degradation using both adaptive techniques
to save as much energy as possible given a tolerable performance

apsi bzip crafty eon mcf mp3dec parser swim
train ref train ref train ref train ref train ref train ref train ref train ref� �������	��
� ����� 1.84 2.11 2.78 2.95 2.43 2.90 0.92 0.75 3.39 3.29 1.51 1.44 2.20 2.10 0.58 0.56� ������� ����� 28.5 32.14 25.32 28.54 21.28 24.95 17.60 17.60 22.67 21.90 24.07 23.45 19.02 18.17 24.22 24.01��� �����
0.09 0.12 0.03 0.07 0.32 0.29 -0.09 0.35 -0.02 0.01 0.11 0.19 -0.14 -0.01 0.00 0.00

Table 3: Total energy savings and performance degradations obtained using adaptive hybrid predictor.

degradation limit of 0.5%. In this experiment, we use selective-
sets which is more effective for our BTB organization. We see that
about 6% on average and as much as 11.5% reduction in processor-
wide energy consumption can be achieved.

One key observation from the results presented throughout this
section is that using the same profile (based on training input), we
obtain very similar results for the two sets of production runs us-
ing different inputs. This is in line with our intuition that branch
prediction demand largely depends on the code. Also, the results
shown in Tables 2, 3, and 4 suggest that the two techniques are
largely independent under the tested scenario. Finally we note that
the overall energy savings not only depend on the effectiveness of
our proposed adaptive system but also depend on the branch pre-
diction demand of the application.

4.4 Discussions
To gain further insight into the validity of our approach, we look

at the following issues in more detail.

4.4.1 Invocation Variation
We propose to dynamically adjust branch prediction strength for

each module because we hypothesize that branch prediction de-
mand is largely a function of the static code itself. To see if there is
a lot of variation of branch prediction demand among the dynamic
instances of a module, we show in Figure 7 the standard deviation
of BTB hit rate for all applications. We compute the standard devi-
ation of BTB hit rate among all instances of a single module, and
then compute the weighted-average of all per-module results. As
we can see, in general, the variation is very low. When the config-
uration is dynamically adjusted, the increase in the standard devi-
ation is also small. Similar results can be shown for the direction
prediction. The low standard deviation clearly shows the behav-
ior repetition of modules upon repeated invocations, which in turn
suggests that reconfiguring branch predictors based on static code
is a viable approach.

0%

1%

2%

apsi bzip crafty eon mcf mp3dec parser swim Avg

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

Default size
Selected size

Figure 7: Standard deviation of BTB hit rate for invocations of
modules, under the default BTB size and the selected size.

4.4.2 Influence of Different Inputs
Our feedback based approach gauges demand of applications us-

ing training inputs and makes decisions based on that. We have al-
ready seen some evidence earlier in this section that this is a valid
approach: the energy savings and performance impact on two sets
of experiments using train and ref inputs are similar to each other.
In Figure 8, we show the difference of branch prediction rate and
BTB hit rate between different inputs. We run the same instru-
mented binaries using two different inputs: the reduced version of

ref inputs, and the original unchanged ref input for 1 billion instruc-
tions after the initialization phase. We compare the per-module
prediction rates to those obtained using the training input and cal-
culate weighted-average of the absolute differences. As we can see,
except for application mcf the difference is extremely small. This
suggests that different inputs do not change the branch prediction
demand, and thus using off-line profiling is a valid way to gauge
the demand.

0%

1%

2%

3%

apsi bzip crafty eon mcf mp3dec parser swim

D
if

fe
re

n
ce

Direction prediction - reduced ref
Direction prediction - ref
BTB hit rate - reduced ref
BTB hit rate - ref

Figure 8: Weighted average of per-module difference in BTB
hit rate and branch direction prediction rate between the train-
ing input and each of the two production inputs.

The low standard deviation of prediction rates among invoca-
tions (Figure 7) and the small difference induced by inputs (Fig-
ure 8) support our intuition that branch prediction demand is largely
a function of the static code itself.

4.4.3 Interference Between Modules
To reduce the number of profiling experiments, we make a sim-

plifying assumption that the choice of predictor configuration for
one module is independent of configurations for other modules. To
see if this assumption is reasonable, we compare the BTB hit rate
and direction prediction rate of every module under two different
cases, where the difference is the predictor configuration for other
modules. In one case, all other modules keep the default config-
uration. This is the profile-time scenario. In the other case, all
modules choose their selected configuration (to achieve maximum
energy savings without passing the 0.5% performance degradation
threshold). This is the production-time scenario. To eliminate the
influence of different input sets, in both cases, we use the same in-
put – the training input. For each module, we obtain the difference
in rates (direction prediction rate and BTB hit rate) between the
two cases. In Figure 9, we summarize the data by computing the
weighted average of the absolute value of per-module results. As is
shown, with the exception of BTB hit rate for application eon, the
difference between the two cases is negligible, suggesting that the
independence assumption is indeed reasonable.

5. RELATED WORK
Some earlier research also looks at energy issues related to branch

prediction. Pipeline gating [10] monitors the confidence of predic-
tions for the outstanding branches. When the aggregated confi-
dence is too low, instruction fetch is disabled. The two approaches
are orthogonal. While our work tries to reduce energy wasted in
the branch predictor itself, their work tries to prevent energy waste
in other parts of the processor due to ineffectual branch prediction.

Parikh et. al. point out in [11] that modern processors access
branch predictors very early in the pipeline stage. This results in

apsi bzip crafty eon mcf mp3dec parser swim
train ref train ref train ref train ref train ref train ref train ref train ref� ����� �	��
 ������� 5.20 5.33 11.46 11.52 4.83 5.21 2.26 2.28 10.69 10.76 5.06 4.81 8.15 8.21 1.76 1.81� ������������� 78.91 80.53 89.15 89.48 41.63 43.38 54.07 54.41 74.82 75.52 86.11 82.35 72.41 73.18 74.63 74.98���������
0.12 0.15 0.00 0.16 0.82 0.96 0.71 1.26 0.03 0.03 0.55 0.69 -0.02 0.11 0.00 0.00

Table 4: Total energy savings and performance degradations obtained using both adaptive BTB (selective-sets) and adaptive hybrid
predictor.

0%

1%

2%

3%

apsi bzip crafty eon mcf mp3dec parser swim Avg

D
if

fe
re

n
ce

Direction prediction

BTB

Figure 9: Weighted average of per-module difference between
profile-time projected rate (BTB hit rate or branch direction
prediction rate) and the production-time measured rate.

many unnecessary accesses. They propose to implement a small,
fast structure called prediction probe detector to identify chances
to avoid or abort branch predictor accesses. While they reduce the
number of inconsequential accesses to the predictor, we try to re-
duce the energy consumption for every access, whether useful or
not.

Hu et. al. let entries that are unused for a long time decay [7].
This reduces leakage energy of branch predictor. This work also
exploits the fact that many entries in modern processors’ branch
predictor tables are underutilized. However, their approach targets
leakage energy, while ours targets mainly dynamic energy.

Some other work also proposes to dynamically adjust hardware
resources to reduce energy consumption while still meeting appli-
cation demand. Among other proposals, Albonesi et. al. adjust the
cache configuration [1, 3], Folegnani and Gonzalez disable empty
instruction window entries [6], Bahar and Manne shut down func-
tional units [2]. The concept of these approaches is similar, but the
issue of on-demand branch prediction is a bit more tricky. While
any adaptation that results in performance degradation runs the risk
of increasing energy consumption (due to fixed energy overhead
per cycle), adaptation of branch predictor adds an extra source of
energy waste: wrong branch predictions introduce useless instruc-
tions that will be squashed later. This is not the case for these other
adaptations. Moreover, to predict application demand accurately
without incurring energy overhead, we adopt a feedback based ap-
proach that exploits program behavior repetition at module level,
while these related proposals generally use time-based algorithms
to control adaptation.

6. SUMMARY
To effectively exploit instruction-level parallelism, high-end pro-

cessors typically employ sophisticated branch predictors that utilize
many large structures. In this paper we have shown that these re-
sources are often underutilized causing unnecessary energy waste.
By adapting the size of the branch target buffer and dynamically
disabling components of a hybrid predictor, significant amount of
energy can be saved with very little performance degradation. We
have shown that for a set of eight applications, an average of 71.7%
(up to 89.5%) of the energy consumed in the branch predictor or
6.2% (up to 11.5%) processor-wide energy consumption can be
saved with negligible performance degradation.

7. REFERENCES
[1] D. Albonesi. Selective Cache Ways: On-Demand Cache Resource Al-

location. Journal of Instruction-Level Parallelism, 2, 2000.

[2] R. Bahar and S. Manne. Power and Energy Reduction Via Pipeline Bal-
ancing. In International Symposium on Computer Architecture, pages
218–229, Göteberg, Sweden, June–July 2001.

[3] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory Hierarchy Reconfiguration for Energy
and Performance in General-Purpose Processor Architectures. In Inter-
national Symposium on Microarchitecture, pages 245–257, Monterey,
CA, December 2000.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Interna-
tional Symposium on Computer Architecture, pages 83–94, Göteberg,
Sweden, June–July 2001.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms.
McGraw Hill, 1989.

[6] D. Folegnani and A. González. Energy-Effective Issue Logic. In In-
ternational Symposium on Computer Architecture, pages 230–239,
Göteberg, Sweden, June–July 2001.

[7] Z. Hu, P. Juang, K. Skadron, D. Clark, and M. Martonosi. Applying De-
cay Strategies to Branch Predictors for Leakage Energy Savings. In In-
ternational Conference on Computer Design, pages 442–445, Freiburg,
Germany, September 2002.

[8] M. Huang, J. Renau, and J. Torrellas. Positional Adaptation of Proces-
sors: Application to Energy Reduction. In International Symposium on
Computer Architecture, San Diego, CA, June 2003.

[9] V. Krishnan and J. Torrellas. A Direct-Execution Framework for Fast
and Accurate Simulation of Superscalar Processors. In International
Conference on Parallel Architectures and Compilation Techniques,
pages 286–293, Paris, France, October 1998.

[10] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating: Speculation
Control for Energy Reduction. In International Symposium on Com-
puter Architecture, pages 132–141, Barcelona, Spain, June–July 1998.

[11] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan. Power
Issues Related to Branch Prediction. In International Symposium on
High-Performance Computer Architecture, pages 233–244, Cambridge,
MA, February 2002.

[12] N. Jouppi S. Wilton. CACTI: an Enhanced Cache Access and Cy-
cle Time Model. IEEE Journal of Solid-State Circuits, 31(5):677–688,
May 1996.

[13] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design Tradeoffs for
the Alpha EV8 Conditional Branch Predictor. In International Sympo-
sium on Computer Architecture, pages 296–306, Anchorage, AK, May
2002.

[14] A. Seznec and P. Michaud. De-aliased Hybrid Branch Predictors. Tech-
nical Report No. 3618, Institut National de Recherche en Informatique
et en Automatique (INRIA), February 1999.

[15] S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vijaykumar. An Inte-
grated Circuit/Architecture Approach to Reducing Leakage in Deep-
Submicron High-Performance I-Caches. In International Symposium
on High-Performance Computer Architecture, pages 147–157, Nuevo
Leone, Mexico, January 2001.

[16] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE
Micro, 6(2):28–40, April 1996.

