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ABSTRACT1 
A highly-efficient fetch unit is essential not only to obtain good 
performance but also to achieve energy efficiency. However, 
existing designs are inflexible and depending on program 
behavior, can be either insufficient or an overkill. We introduce a 
phase-based adaptive fetch mechanism that can be dynamically 
adjusted based on feedback information of the program behavior. 
This design adds very little hardware complexity and relegates 
complex tasks to the software components. It is also very 
effective: saving 26.8% and 34.1% fetch energy on average 
compared with a conventional and a trace cache-based fetch unit, 
respectively. At the same time, performance is improved by 5.7% 
and 0.6%, respectively. 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles- 
Adaptable Architectures. 

General Terms 
Design, Experimentation, Performance. 

Keywords 
Adaptive, Instruction Fetch, Profiling. 

1. INTRODUCTION 
Modern high-end processors rely on sophisticated branch 
prediction and instruction fetch mechanisms to achieve high 
performance and energy efficiency. Without a constant, smooth 
supply of instructions, the rest of the pipeline will not only 
perform poorly, but also use energy inefficiently. However, such 
sophisticated mechanisms are not without cost and can account 
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for a significant fraction of energy consumption (e.g., 22% in 
Pentium Pro). 
A conventional fetch mechanism consists of an instruction cache 
and a branch predictor (including a direction predictor and a 
branch target buffer). The most basic instruction fetch mechanism 
can only supply a consecutive chunk of instructions from a single 
cache line. If a branch is predicted to be taken, the fetching of 
target instructions is delayed to the next cycle. This is referred to 
as SEQ1 [1]. A slightly more aggressive variation of this 
conventional fetch mechanism is to add the capability to fetch 
across multiple branches. In such an implementation, a multi-
branch predictor is needed to provide n predictions per cycle. For 
example, a SEQ3 scheme [1] can fetch across up to 3 branches, 
provided all the targets remain in the same cache line. We note 
that the additional complexity of SEQ3 over SEQ1 is rather low: 
besides requiring a multi-branch predictor, the hardware only 
needs to “collapse” the fetched cache line to remove instructions 
between the taken branches and their respective targets. 
Rotenberg et al. introduced the trace cache as a promising 
solution to obtain a high bandwidth instruction fetching with a 
very low latency [1]. The idea is to capture dynamic instruction 
sequences in an additional cache that stores traces. A trace is a 
sequence of at most n instructions and at most m basic blocks, 
identified by its starting address and m-1 branch outcomes. Note 
that a multi-branch predictor is needed to provide m-1 predictions 
per cycle. In a conventional trace cache design (referred to as 
CTC [2, 3]), the trace cache, the multi-branch predictor, and the I-
cache are accessed simultaneously to reduce miss penalty when 
the trace cache misses. In a Sequential Trace Cache (STC) design 
[2, 3], instruction fetch is carried out in two phases. The trace 
cache and branch predictor are accessed first, and the I-cache is 
accessed later, only upon a trace cache miss. At the cost of longer 
latency when the trace cache misses, this approach can reduce the 
energy consumption due to unnecessary access of the I-cache 
when the trace cache hits. 
Given all these different fetch options, the best strategy depends 
on the behavior of the program. Intuitively, the best option is the 
one that balances the front-end of the machine, which fetches the 
instructions, and the execution engine, which processes them. If 
the front-end can not keep up, the execution will take longer than 
necessary and this longer execution increases energy consumption 
due to clock distribution and other overhead. Conversely, an 
overly aggressive front-end can not further improve performance, 
and thus its high energy expenditure becomes unnecessary. 
Unfortunately, program behavior varies not only across 
applications but also within a single application. Hence, there is 
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no fixed configuration that always works efficiently. An efficient 
system will be adaptive, selecting the fetch policy that works best 
for the code currently executing. Additionally, the size of various 
structures, such as the trace cache and the branch target buffer 
(BTB), also adjusts according to program demand.,  
In this work, our focus is to design such a flexible fetch 
mechanism that can reduce energy consumption and improve 
performance without significantly increasing the design 
complexity. We adopt the general principle of on-demand 
resource allocation and propose a design that we call Phase-Based 
Adaptive Fetch Mechanism (PBAFM). In this scheme, the 
instruction fetch unit is adjusted periodically, at the boundary of 
phases to adapt to the changing program behavior. A phase is a 
period of execution with predictable behavior. In this paper, we 
use a simple strategy to identify program phases. We follow prior 
work [6, 7] and statically divide an application into modules. The 
dynamic execution of a static code module is a natural candidate 
of a phase: prior execution of a code module can be used to 
accurately predict behavior of future instances. Given the 
command to adapt, the hardware re-orchestrates the fetch 
mechanism using a different combination of the component 
structures. Furthermore, using existing circuit techniques [4, 5], 
the size of these structures is also adjusted according to the 
software command. 
To simplify the design and reduce runtime overhead, we use a 
feedback-based approach relying on software components to 
identify resource demand and make a decision on the choice of 
configuration. The hardware, on the other hand, only provides the 
primitives to carry out the reconfiguration. We show that our 
proposal is straightforward to implement and is highly effective: it 
not only saves fetch energy by 26.8% and 34.1% compared to a 
conventional fetch unit (SEQ1) and a trace cache-based fetch unit 
respectively, it also improves the performance of execution. 
The rest of this paper is organized as follows. We first discuss the 
rationale of our work in Section 2. In Section 3 we explain our 
adaptive fetch design. Section 4 describes the experimental 
framework. Evaluation results are shown in Section 5. Section 6 
discusses related work. Finally, Section 7 presents some 
conclusions. 

2. RATIONALE 
Intuitively, what fetch mechanism works well depends on the 
application’s characteristics. When the application exhibits high 
trace cache hit ratios, an STC will avoid the unnecessary waste 
accessing the I-cache in parallel and is thus more efficient than 
the CTC. On the other hand, when the application exhibits high 
trace cache miss ratios, the CTC may be a better mechanism since 
the STC incurs extra latency every time that the trace cache 
misses. 
Given the wide variety of general-purpose applications, it is not 
surprising that there is no single optimal fetch mechanism or 
configuration. Figure 1 illustrates this point quantitatively. We 
simulate the execution of several SPEC CPU 2000 applications 
(the details of the experimental methodology will be described 
later in Section 4) and show the energy-delay product of the 
execution under different fetch policies and configurations. Figure 
1-(a) shows the energy-delay product of a system using SEQ3 and 
CTC fetch policy with different trace cache sizes. We present 
normalized results using the energy-delay product of a baseline 

system with a SEQ1 policy. In Figure 1-(b) we vary the BTB size 
from 256 entries to 4096 entries and normalize the result to that of 
a processor with a smaller BTB (128 entries). 

From these results, we can make several observations. First, 
different fetch mechanisms work differently depending on the 
application. For example, while SEQ3 works well for parser and 
twolf, CTC is a better choice for gap and vortex. Moreover, the 
optimal policy may depend on the specific configuration. For 
example, with a trace cache smaller than 64KB, CTC is the most 
efficient mechanism for application gcc, however, a bigger trace 
cache makes it less efficient than SEQ3. Finally, configuration 
details such as BTB size can also drastically affect the efficiency 
of program execution. 
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Figure 1. Energy-delay product of program execution under 
different fetch mechanisms and structure configurations. 
Figure 1-(a) (top) shows the energy-delay product of SEQ3 
and CTC with different trace cache sizes. The results are 
normalized to SEQ1. Figure 1-(b) (bottom) shows the energy-
delay product using different BTB sizes. The results are 
normalized to a BTB with 128 entries. 

From these observations, it is obvious that fetch requirements 
vary significantly from application to application. So, we propose 
an adaptive fetch mechanism choosing among different fetch 
schemes: SEQ1, SEQ3, CTC, and a modified STC (the 
modification is explained in Section 3.4).  
The first two configurations avoid trace cache access while the 
others make use of it. In some cases when the branch 
misprediction rate is high, using a trace cache is 
counterproductive, since it executes many wrong path 
instructions, which increases pollution in some structures like the 
cache and increase energy consumption. In these cases it may 
make sense to use a SEQ1 or a SEQ3 fetch policy. For the trace 
cache based schemes, our adaptive mechanism has two 
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possibilities. In the first, CTC, the fetch unit accesses at the same 
time to the trace cache, the I-cache, the multi-branch predictor, 
and the BTB (in a similar way to CTC [2, 3]). This configuration 
is useful when the trace cache behaves well, but the I-cache still 
provides a considerable amount of instructions. The second 
configuration is a modified STC. In those cases when trace cache 
provides almost all instructions to the back-end, the fetch unit 
virtually divides into two phases, like in [2] and [3]. It accesses 
first the trace cache and the multi-branch predictor, and then the I-
cache and the BTB – only when a trace cache miss occurs. 
The adaptive fetch mechanism can also adjust the size of some  
structures. Figure 1 suggests that the optimal size for trace cache 
or BTB varies. Consequently, our adaptive fetch mechanism 
resizes these structures to the most appropriate configuration. 

3. ADAPTIVE FETCH MECHANISM 
We intend to adapt the fetch policy and trace cache and BTB sizes 
at the boundary of program phases, where the behavior is about to 
change. While the concept of program phases is simple at an 
intuitive level – that the program goes through different periods of 
execution with different behavior, accurate and efficient phase 
detection and behavior prediction for future phases are 
challenging and are currently being investigated by many research 
groups. In this paper, we use a code-based approach [8] that is 
straightforward and very effective in our design. We associate the 
behavior of a period of execution with the static code section that 
is being executed and use the behavior of past instances of that 
section to predict the behavior of future instances. While this 
learning and prediction process can be performed online, the need 
for any extra hardware for prediction will not only complicate the 
hardware but also consume energy, which will reduce the benefit 
of adaptation. In this paper, we adopt an offline approach for its 
simplicity and effectiveness. 
We first need to establish the phase boundaries (Section 3.1). 
Once each phase is identified, we use profile information to 
decide what policy and structure sizes to use in each phase. This 
information is then encoded into the binary, so that at runtime, it 
instructs the hardware to adapt. Sections 3.2 and 3.3 describe 
these steps. 

3.1 Phase Detection 
As mentioned above, we use a simple code-based approach. We 
partition the code into modules purely based on granularity. We 
want the modules to be big enough to reduce overhead associated 
with runtime adaptation and yet small enough to have more 
consistent behavior. The technique employed is the same to the 
one detailed in [6, 7]. Arguably, the partitioning may be improved 
when the behavior of the modules is taken into account. We leave 
this as future work. 
We tie fetch reconfiguration to the static code because, 
intuitively, the code strongly affects fetch demand. After all, 
every structure from the fetch mechanism uses an instruction 
address, exclusively or inclusively, to index it. Also, the runtime 
path of instructions does not change much. Finally, prior research 
has shown that tying adaptively control to the code’s position is 
generally more effective than time-based prediction and control 
mechanisms [8]. 
The module’s granularity is important. If a module is too fine- 
grain, the reconfiguration overhead at runtime will be large. If it is 

too coarse-grain, it may contain smaller units with different fetch 
demands. So it becomes important to find the optimal module-
division of the application. In this work, we use important 
subroutines as modules. Besides, when the subroutine is too big, it 
is further divided into its internal loops. This process of 
partitioning follows [7]. The particular thresholds we use in our 
study in selecting subroutines and loops are the average length per 
invocation and total execution time weight. We set these 
thresholds to 1 microsecond and 5 percent respectively. As an 
example, gzip was divided in 7 modules. We found 5 important 
subroutines, one of them big enough to be further divided, so it 
was split in 3 internal loops. The resulting partition works well in 
our study: the adaptation not only results in significant energy 
savings, but also improves the performance. 
The overhead resulted from runtime adaptation is negligible. In 
our experiments, even assuming a very conservative 50-cycle 
switching overhead, the percentage of cycles spent in 
reconfiguration is less than 0.01% in all cases due to the relatively 
coarse granularity of the modules.  

3.2 Configuration Space Exploration 
Our approach draws on profiling with reduced inputs to determine 
each module’s demand. The energy and performance metrics are 
collected by means of software instrumentation, simulation or by 
using hardware performance counters. A naive implementation 
would exhaustively search the space, covering all possible 
combinations of the different module’s configurations. However 
this is impractical because it would require nm profiling runs, 
where n is the number of possible processor configurations and m 
is the number of modules. 
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Figure 2. Results for the different modules of gzip. Figure 2-
(a) (on top) illustrates IPC improvement of different schemes 
over a SEQ1. Figure 2-(b) (on bottom) shows energy savings 
over a SEQ1. A negative value implies performance or energy 
loss in the given scheme compared to SEQ1. 
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We decrease the number of experiments assuming that choosing a 
different configuration for one module does not affect other 
modules. Under this assumption, the number of experiments in 
the profiling stage decreases to n*m, significantly fewer than the 
naive solution. The assumption ignores the effect of destructive or 
constructive interference among different modules. This 
interference tends to be secondary unless the size of the trace 
cache becomes very small. Given that we never go down to such 
small sizes this effect is irrelevant in our study. 
As an example, Figure 2 illustrates results for a given application 
(gzip). Figure 2-(a) illustrates the IPC improvement achieved in 
each module using a SEQ3 and different CTC and STC schemes 
over a SEQ1 baseline. Figure 2-(b) shows the processor-wide 
energy savings achieved for the same set of configurations, 
compared again to the baseline SEQ1. We can see that the energy 
savings can be quite dramatic in certain modules, reaching more 
than 15% processor-wide energy savings just by adapting the 
fetch mechanism. 

3.3 Decision Making for Adaptation 
After per-module exploration, we have to obtain the best 
configuration for each module, depending on the energy and 
performance target. This is the same as solving a knapsack 
problem [9]: the tolerable performance degradation is the 
knapsack's capacity while the total energy savings is the value we 
want to maximize. As in [6], we employ a greedy strategy to find 
an approximation solution.  
The knapsack algorithm adopts a global approach in deciding the 
configurations to choose for each module. We observe that a 
simpler approach may also work. For some modules, 
configurations are very easy to select just based on local 
information of that module and would not require the more global 
consideration. For example, from Figure 2, for module 3 it is 
obvious that an STC is the best approach to use, since it obtains a 
very similar IPC as the others, but achieves higher energy 
savings. On the other hand, module 7 should adapt to a SEQ3 
configuration, since any of the trace cache based configurations 
behaves significantly poorer, due to a high number of wrong path 
speculated instructions. 

3.4 Hardware Support 
As mentioned above, we intend to adapt the fetch unit to match 
the requirement of each application phase. Our fetch unit can 
adopt any of the 4 different configurations that we consider 
(SEQ1, SEQ3, CTC, and a modified STC). We modify the STC 
originally proposed by Hu et al. [2, 3]. In our design, the BTB is 
not accessed when the trace cache hits. This can be done since our 
trace cache directly provides the target address. 
In addition to adapting to the best policy, trace cache and BTB 
sizes can also be adapted. There are several existing schemes for 
resizing caches and circuitry to perform the resizing. In particular, 
the associativity [4], the number of sets [5], or the combination of 
the two can be adjusted dynamically. The effectiveness of these 
schemes depends on the particular cache structure organization. In 
our case, dynamically varying the number of sets of the baseline 
cache is more effective than changing cache ways. 
Figure 3 illustrates the design that we are using. When the SEQ1 
signal is set, trace cache access is disabled, and just the first 
prediction bit from the multi-branch predictor is used. When the 
SEQ3 signal is set, trace cache access is disabled, but the 3 

prediction bits are used. When STC1 is set (first phase of a 
modified STC configuration), access to I-Cache and BTB is 
gated, while if STC2 is set (second phase of a modified STC 
configuration), access to trace cache and multi-branch predictor is 
gated. 
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Figure 3. Hardware support. 

4. EXPERIMENTAL FRAMEWORK 
We have evaluated our proposed adaptive fetch on a simulated 
generic out-of-order processor, whose main parameters are 
summarized in Table 1. As the evaluation tool, we employ a 
modified version of SimpleScalar [10], incorporating the Wattch 
framework [11] to evaluate energy consumption. 
To evaluate our designs for different applications, we select 
several benchmarks from the SPEC CPU2000 suite. In selecting 
those applications, we tried to cover the wider variety of 
behaviour. We simulated each application to completion, using 
the train input as our default production input. 

Table 1. Simulated parameters. 

16-issue out-of-order processor 
120 integer and floating-point physical registers 
I-Queue and FP-Queue: 64 entries 
Branch predictor: 2-level, 16K entries / BTB: 4K entries 
RAS: 32 entries  /  LSQ: 128 entries 
L1 data cache: 64KB, 4-way, LRU, latency: 1 cycle 
L2 cache: 512KB, 4-way, LRU, latency: 6 cycle 
L1 instruction cache: 64KB, 2-way, LRU, latency: 1 cycle 
Trace cache: 32KB, 2-way, LRU, latency: 1 cycle, partial 
matching 
Memory access: 100 cycles 

 
The trace cache we are simulating is accessed by the least 
significant bits of the fetch address. Each trace contains: a tag 
(most significant bits of the address), 3 prediction bits, the number 
of branches and of instructions that the trace contains, a maximum 
of 16 instructions, and the next instruction PC for a final taken 
branch. For filling in the trace cache, there is a buffer that stores 
every committed instruction, so that when a trace is completed, it 
is stored into the trace cache (at a maximum rate of one trace per 
cycle). The trace cache we employ allows partial matching [1]. 
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We should highlight that this implementation guarantees one 
cycle access to the trace cache, but only allows one trace per fetch 
address. 

Our baseline fetch unit uses a 32KB trace cache, a 64KB I-cache, 
a 4K-entry BTB, and a 2-level multi-branch predictor with 16K 
entries. Both BTB and trace cache can be downsized to smaller 
structures (BTB: 4K, 2K, 1K, 512, 256, or 128 entries; trace 
cache: 32KB, 16KB, 8KB, 4KB, or 2KB). 

The multi-branch predictor that we are using is a two level gshare 
predictor with a golden BHR [12] updated in the fetch stage.The 
main BHR and PHT are updated in the decode stage. 

5. EXPERIMENTAL RESULTS 

5.1 Energy Savings 
Table 2 summarizes the energy savings in the processor’s fetch 
unit of PBAFM over 4 different non-adaptive designs (SEQ1, 
SEQ3, CTC-4KB, and CTC-32KB), all of which employ a 4K-
entry BTB and a 64KB I-cache. 

Table 2. Fetch unit energy savings achieved by PBAFM over 4 
different non-adaptive designs (SEQ1, SEQ3, CTC-4K, and 
CTC-32K). 

Gap Bzip Parser Twolf Crafty
SEQ1 31% 49% 19% 22% 16%
SEQ3 26% 33% 19% 20% 15%

CTC-4KB 24% 36% 26% 26% 20%
CTC-32KB 26% 38% 35% 39% 31%

Vortex Gcc Gzip Vpr INT-Avg
SEQ1 32% 25% 23% 17% 26.0%
SEQ3 27% 21% 21% 15% 21.9%

CTC-4KB 26% 20% 21% 22% 24.6%
CTC-32KB 28% 20% 19% 34% 30.0%

Applu Art Mgrid Swim FP-Avg
SEQ1 33% 27% 22% 32% 28.5%
SEQ3 36% 29% 24% 34% 30.8%

CTC-4KB 40% 33% 30% 40% 35.8%
CTC-32KB 46% 41% 40% 46% 43.3%  

As can be noticed, the energy savings achieved by PBAFM are 
significant both in integer and floating-point applications. All the 
adaptation mechanisms incorporated in PBAFM contribute to this 
enhancement. Trace cache and BTB resizing are useful in most 
cases, especially in floating-point applications. In those modules 
where trace cache performs poorly, it is disabled, which results in 
significant energy savings. On the other hand, in those modules 
where the trace cache performs exceptionally well, the savings 
come from the use of a modified STC, in which BTB and I-cache 
are accessed only when the trace cache misses. 
As Table 3 illustrates, improvements in the fetch unit translate 
into notable energy savings in the whole processor. These savings 
are not only due to the savings in the fetch unit. In those modules 
where a less aggressive fetch policy is used (especially SEQ1) an 
extra saving comes from the mis-speculation reduction (mis-
speculation pollutes the branch predictor and incurs extra energy 
executing wrong instructions). In addition, for integer 
applications, improving performance (as will be shown in Section 
5.2) saves energy, mostly by cutting down extra clock distribution 
energy. 

Table 3. Processor energy savings achieved by PBAFM over 4 
different non-adaptive designs (SEQ1, SEQ3, CTC-4K, and 
CTC-32K). 

Gap Bzip Parser Twolf Crafty
SEQ1 5.8% 10.0% 3.1% 3.4% 5.8%
SEQ3 4.5% 5.4% 1.7% 2.0% 2.1%

CTC-4KB 3.1% 5.1% 3.8% 4.1% 4.3%
CTC-32KB 2.5% 6.1% 4.4% 4.8% 4.7%

Vortex Gcc Gzip Vpr INT-Avg
SEQ1 10.8% 6.9% 7.4% 3.9% 6.4%
SEQ3 4.6% 4.0% 4.9% 1.6% 3.4%

CTC-4KB 3.9% 2.9% 3.3% 2.2% 3.6%
CTC-32KB 3.9% 3.2% 3.5% 2.4% 3.9%

Applu Art Mgrid Swim FP-Avg
SEQ1 3.3% 3.9% 3.2% 3.8% 3.6%
SEQ3 2.9% 3.7% 3.0% 4.1% 3.4%

CTC-4KB 2.7% 2.7% 3.0% 4.3% 3.2%
CTC-32KB 2.6% 2.8% 2.8% 4.6% 3.2%  

5.2 Performance 
Table 4 shows performance improvement achieved when using a 
PBAFM compared to the 4 non-adaptive designs. A negative 
value means that performance gets worse in our adaptive 
approach. 

Table 4. Performance improvement achieved by PBAFM over 
4 different non-adaptive designs (SEQ1, SEQ3, CTC-4K, and 
CTC-32K). 

Gap Bzip Parser Twolf Crafty
SEQ1 7.6% 16.1% 3.8% 2.3% 6.5%
SEQ3 3.5% 2.2% 0.3% 0.0% 0.7%

CTC-4KB 1.7% 0.7% 0.6% 1.1% 2.9%
CTC-32KB 1.1% 0.7% 0.6% 1.0% 2.9%

Vortex Gcc Gzip Vpr INT-Avg
SEQ1 17.3% 7.0% 8.8% 3.9% 8.1%
SEQ3 5.1% 4.3% 3.7% 0.2% 2.2%

CTC-4KB 1.5% 0.5% 0.9% 0.3% 1.1%
CTC-32KB 0.4% 0.5% 0.7% 0.3% 0.9%

Applu Art Mgrid Swim FP-Avg
SEQ1 0.3% 0.6% -0.1% -0.3% 0.1%
SEQ3 0.3% 0.3% -0.1% -0.3% 0.1%

CTC-4KB 0.0% 0.1% 0.0% -0.2% 0.0%
CTC-32KB 0.0% 0.1% 0.0% -0.3% 0.0%  

Using PBAFM, we obtain performance improvements in most 
integer applications. Each module employs an optimal fetch 
configuration, which provides sufficient supply of instructions 
and yet without using an overly aggressive policy that can 
introduce many wrong-path instructions and negatively impacting 
performance. Moreover, in modules where a small trace cache or 
BTB is sufficient, keeping the structure size small also helps to 
reduce conflict in the disabled portion of the structures, which 
indirectly benefits the execution of other modules. For some 
modules of the floating point applications, the trace cache is 
simply not effective, so PBAFM ends up disabling it in these 
cases. As can be seen from Table 4, the performance implication 
is thus negligible. 

6. RELATED WORK 
Researchers have proposed other solutions to improve the fetch 
unit management. Most of these proposals include a trace cache 
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structure in the fetch stage, and our proposal can work on top of 
these designs to further improve the fetch mechanism. 
In [2] and [3], Hu et al. propose two new models for a fetch stage. 
The first model, which they call Selective Trace Cache, uses 
compiler and hardware support to control trace cache lookup 
(avoided in the cases where trace cache behaves poorly). This 
approach can achieve some energy reduction in the fetch stage, 
but at the cost of some performance loss, compared to a CTC. A 
second approach proposed in this prior work is a Direction 
Predictor based Trace Cache (DPTC). In this case, the selection 
for the fetch unit configuration is dynamic, eliminating the need 
for recompilation and ISA modification. However, this comes at 
the cost of some overhead. The model can reduce energy 
consumption in the fetch mechanism, but again with some 
performance loss compared to CTC. 
In [13], Buyuktosunoglu et al. introduce a scheme based on a 
combination of fetch gating and issue queue adaptation to jointly 
adapt the fetch and issue stages so as to match the current 
parallelism characteristics of the application. 
In [14], Santana et al. propose software techniques to reorganize 
the code so that the fetch engine complexity can be reduced. In a 
similar way, Ramirez et al. [15] also propose compiler 
optimizations to improve the layout of instructions. 
In [16], Co and Skadron perform a set of fetch engine area and 
associativity experiments as well as a next trace predictor design 
space exploration. 
In the broader domain of low-power design, some researchers 
have proposed structure resizing for achieving energy savings. In 
particular, the associativity [4] or the number of sets [5] of a 
cache can be adjusted dynamically to the most convenient 
configuration. We have applied some of these techniques to resize 
trace cache and BTB when needed.  
Finally, in our prior work, we demonstrated the effectiveness of 
an adaptive design of the branch prediction, including the 
direction predictor and the BTB [6]. 

7. CONCLUSIONS 
In this paper we have proposed PBAFM, a new adaptive fetch 
mechanism that adjusts the underlying hardware to meet the 
application’s demands. Our design switches to less expensive 
configurations when appropriate, resulting in significant energy 
savings in the fetch unit. In doing so, the performance is not 
compromised. In fact, for integer applications, we even obtain 
modest performance gain relative to a very aggressive fetch unit. 
Comparing PBAFM with the most aggressive fetch unit design 
studied (a 32KB CTC), energy consumption in the fetch unit is 
reduced by 34.1% on average and the performance is improved by 
0.6%. The combined effect is a 3.7% processor-wide energy 
reduction. Compared to a baseline fetch unit (SEQ1), PBAFM 
improves performance by 5.7%, while saving 26.8% and 5.5% 
energy in the fetch unit and the whole processor, respectively. 
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