
Substituting Associative Load Queue with Simple
Hash Tables in Out-of-Order Microprocessors ∗

Alok Garg†, Fernando Castro, Michael Huang†, Daniel Chaver,
Luis Piñuel, and Manuel Prieto

†University of Rochester and Universidad Complutense Madrid
†{garg, huang}@ece.rochester.edu, fcastror@fis.ucm.es, {dani02, lpinuel, mpmatias}@dacya.ucm.es

ABSTRACT
Buffering more in-flight instructions in an out-of-order mi-
croprocessor is a straightforward and effective method to
help tolerate the long latencies generally associated with
off-chip memory accesses. One of the main challenges of
buffering a large number of instructions, however, is the im-
plementation of a scalable and efficient mechanism to de-
tect memory access order violations as a result of out-of-
order scheduling of load and store instructions. Traditional
CAM-based associative queues can be very slow and energy
consuming. In this paper, instead of using the traditional
age-based load queue to record load addresses, we explic-
itly record age information in address-indexed hash tables
to achieve the same functionality of detecting premature
loads. This alternative design eliminates associative searches
and significantly reduces the energy consumption of the load
queue. With simple techniques to reduce the number of false
positives, performance degradation is kept at a minimum.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Design, Experimentation, Measurement

Keywords
LSQ, Memory disambiguation, Hash table, Scalability

1. INTRODUCTION
With high operation frequency, modern out-of-order pro-

cessors often need to buffer a very large amount of instruc-
tions to be able to overlap useful processing with relatively
long latencies associated with accesses to lower levels of
the memory hierarchy. Processor features such as multi-
threading further increase the demand on the instruction
buffering capability. Increasing the number of in-flight in-
structions, however, requires scaling up different microar-
chitectural structures. This can cause significant increase in

∗
This work is supported in part by National Science Foundation under

the grant 0509270, the Spanish government through research contract
TIN 2005-05619, and by the Hipeac European Network of Excellence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’06, October 4–6, 2006, Tegernsee, Germany.
Copyright 2006 ACM 1-59593-462-6/06/0010 ...$5.00.

energy consumption, especially if the structure is accessed
associatively. One such example is the logic that enforces
correct memory-based dependences, generally referred to as
the load-store queue (LSQ) and implemented as two sep-
arate queues: the load queue (LQ) and the store queue
(SQ). Conventional implementations of these queues are age-
based, containing complete addresses. Memory instructions
need to update one queue and associatively check the other.
The associative search operation is a major concern for the
scalability of these queues as not only energy consumption
increases, the latency of accesses also worsen with the in-
crease of queue size and may present complications in the
logic design. As such, unconventional implementations that
avoids associative searches should be explored.

In this paper, we focus on the LQ and propose an alter-
native implementation: instead of explicitly expressing the
full address in the queue and implicitly encoding the age
information in the allocation order of the entries, we ex-
plicitly maintain the age information and implicitly track
the address via a hash table. The resulting structure re-
quires only index-based access and thus can be much more
energy-efficient and easy-to-scale. We do, however, incur
false positive memory order violation detections and thus
extra replays. We show that with a few very simple miti-
gation techniques, the number of replays can be drastically
reduced. Furthermore, because our implementation does not
place a limit on the number of in-flight loads, we can reduce
the chance of stalling processor because the LQ is full. This
can offset the performance degradation caused by extra re-
plays. We show that our design can drastically reduce the
energy consumption of the LQ at a slight performance cost:
on average, about 85% of LQ energy is saved. Performance
degradation is around 1% compared to conventional design
with optimally sized LQ ignoring any latency issues of a
large LQ. Overall, processor-wide energy sayings range from
1-4%.

The rest of the paper is organized as follows: Section 2
discusses the issues of the conventional LQ design and our
alternative implementation; Section 3 describes our experi-
mental methodology; Section 4 presents quantitative evalu-
ation of our design; Section 5 summaries related work; and
Section 6 concludes.

2. TRACKING LOADS WITH HASH TABLES

2.1 Conventional design
In a typical out-of-order core, the result of a store in-

struction is not released to the memory hierarchy until the
store commits so as to easily support precise exception. A

load instruction, on the other hand, is allowed to access the
memory hierarchy as soon as the address is available. This
speculative access is premature if a store older in program
order executes later and modifies (part of) the data being
loaded. In conventional implementations, when a store exe-
cutes, its age and address information is compared to that of
the loads to find out whether there is any premature load.
The LQ implicitly stores the age information by using an
age-ordered queue. If the portion of the queue belonging to
loads younger than the store registers a match, a store-load
replay is triggered [7]. Although the high-level concept of the
LQ is not overly complex, practical designs have to deal with
various issues such as handling of partial overlap between
loads and stores. The (physical) address is explicitly stored
in the LQ and compared. Unfortunately, address is a very
wide operand (more than 32 bits in current generation prod-
ucts) and the width continues to grow. Searching the queue
associatively is not only slow but also power-consuming.

2.2 Hash table-based tracking
We propose an alternative design that eliminates associa-

tive search and the capacity issue of the LQ. The first key
difference between our design and the conventional design
is that we explicitly assign and track the age of loads. Re-
call that to determine whether a store-load replay is needed
requires two pieces of information: address and age. Con-
ventional design allocates an LQ entry for each load at dis-
patch in program order thereby implicitly encoding the age
information within the position of the entry. By explicitly
encoding and tracking the age, we are no longer bound to
perform entry allocation at the early stage of dispatch and
therefore can choose from a much wider variety of imple-
mentation options. For example, the LQ can be split into
multiple smaller ones that are word interleaved.

The second difference is that we use the simple, oft-used
indexing table or a hash table to avoid associative compar-
ison of address: each load, upon execution, will use the ad-
dress to hash into the table and record its age and optionally
some address information. (We refer to this table as the load
table.) Because the hashing already carries some address in-
formation, we only need to record partial information about
address – just like the way cache tag keeps partial informa-
tion. However, one important difference between maintain-
ing a cache and keeping track of loads for order violation
detection is that we do not necessarily need to keep the full
address. If there is a partial address match between a store
and a younger load, we can conservatively assume an ad-
dress match has occurred. This only affects the efficiency of
the system, not correctness. This observation leads to the
third difference: in our design, we choose not to record any
additional address information (beyond hashing). When two
addresses map to the same entry in the load table, we simply
assume that they are accessing the same address.

Clearly, multiple loads can hash into the same entry of
the load table. We simply keep the age of the youngest

load. This is because the existence of an order violation is
all-important, whereas the identity of the load(s) involved is
dispensable. Clearly, keeping the age of the youngest load is
sufficient to detect the existence of order violation. When a
replay is needed, we can simply replay from the instruction
following the store in program order – rather than starting
from the oldest load among all triggering loads. In fact, try-
ing to identify the oldest load that needs to replay requires
additional circuit complexity existing processors such as the

IBM POWER 4 chose to avoid [16]. It, too, replays from
the store onward.

To summarize, when a load executes, it accesses the load
table based on the address and if the age currently stored
in the entry is older, it updates the entry with its own age,
otherwise, the entry remains unchanged. When a store ex-
ecutes, it similarly accesses the table to read the current
age. If the age is younger its own age, a replay (from the
instruction following the store) is triggered.

Representing age: To represent the age of memory in-
structions, we simply take their ROB ID and augment it
with a 2-bit prefix to handle wrap-arounds. This prefix in-
crements every time the write (dispatch) pointer of the ROB
wraps around. Because at any moment two in-flight instruc-
tions can only differ by one in the prefix, we cycle the prefix
from 1 to 3 and when comparing two age IDs, the prefix part
follows the fixed rule 1 < 2, 2 < 3, and 3 < 1.

When the read (commit) pointer of ROB wraps around,
all entries in the load table with the old prefix represent
instructions that are committed. We clean up those entries
with the old prefix by flash-resetting their prefix to 0 to
indicate invalid age. If we do not perform the clean-up,
these age IDs will be misinterpreted as future ages. Note
that depending on the actual implementation, the flash reset
can take multiple cycles. During this clean-up action, we can
not start assigning new prefixes, i.e., the ROB write pointer
can not wrap around. This guarantees that at any moment,
there are only two neighboring prefixes in the load table.

Handling coherence and consistency: The LQ also serves
the purpose of maintaining load-load ordering for coherence
and consistency. First off, a cache-coherent design requires
write serialization: all writes to the same location have to
appear in the same order to all processors. As a result,
if a younger load obtained some data, subsequently, the
data is updated by a store from another processor, then
an older load can not obtain the new data. Note that write-
serialization is quite a standard requirement even in a uni-
processor environment. This is because even in uniprocessor
systems, DMA can also assume the role of a bus master and
write to the memory. To simplify software, (almost) all cur-
rent commercial processors maintain cache coherence with
DMA, which implies write serialization.

In a conventional design, an invalidation searches through
the entire LQ to find matching addresses. When matches
are found, they are marked in the LQ. Every load, upon
execution, also searches in the LQ associatively (just like a
store). If there is a match of the address with a younger
load whose entry is marked (by an invalidation), this sug-
gests that the younger load has consumed the old data and
therefore a load-load replay is triggered [7].

The guarantee of write serialization can be supported by
the hash table implementation as well. An invalidation will
also hash into the load table and mark the entries corre-
sponding to the invalidated addresses. When a load exe-
cutes, we inspect the invalidation mark in the entry. If the
mark is set and the age recorded in the table is younger than
that of the current load, we trigger a load-load replay. Note
that for load instructions, we already need to perform a read
of the hash table to determine whether the age needs to up-
date. Thus, checking of load-load replay is essentially for
free in our design. Similar to the store-load replay, we can
not pin-point the identity of the younger loads and have to

replay from the instruction following the older load. Again,
such a more conservative range of replay is already adopted
in existing processors for circuit simplicity [16].

LQ can also be used to ensure that load speculation does
not violate the memory consistency model. For example,
in MIPS R10000, which implements sequential consistency,
loads actually execute, speculatively, before they are allowed
to by the consistency model. To guard against mis-speculation,
an external invalidation searches the LQ and marks match-
ing entries. When the marked loads reach the commit stage,
a “soft” exception – essentially a replay – occurs. This type
of replay can also be implemented by the load table. How-
ever, because the load table does not provide the identity of
loads, only the existence of a match, we can only conserva-
tively replay from the oldest load instruction still in-flight if
there is a match. While this would be functionally correct,
it is perhaps an inefficient implementation. In this paper, we
focus on uni-processors. We leave the study of our design in
multiprocessor domain and potential optimizations in that
environment to future work.

2.3 Handling multiple data sizes
Unfortunately for memory order tracking, accesses come

at different sizes: from byte to 8 bytes or even larger. This
creates a challenge to accurately and efficiently track ac-
cesses: If tracking happens at a fine granularity (e.g., byte),
a wider access needs to simultaneously mark multiple en-
tries, clearly energy-inefficient and complicated circuit-wise.
If, on the other hand, tracking is done at a coarse granu-
larity (e.g., 8-byte word), we lose the ability to distinguish
two finer-grain accesses to two different portions within the
same data chunk. This can potentially result in pathological
scenario and create numerous spurious replays: If a loop per-
forms a read-modify-write cycle on an array of bytes, and the
issue logic favors loads over stores, then there can be many
re-orderings of stores and loads from consecutive iterations
to neighboring bytes. These would be incorrectly construed
by the coarse-grain tracking logic as ordering violation to
the same memory location.

To handle multiple access widths efficiently and without
complicated circuitry, we use a main table to track the pre-
dominant access width (64 bits, or quad-word in our ex-
perimental system) and use a “side” table to handle other
widths. Each entry in the main table contains two bits to
encode the current tracking width. When a load-quad-word
instruction executes, it only accesses the main table. When
a load instruction with narrower width executes, it first ac-
cesses the main table, if the entry is invalid (the prefix part
of the age is 0), it will set the entry’s width field to its own
width and proceed to the side table to update it. If the main
table’s entry already has a valid age, then that age will be
updated if the load’s age is younger. (This way, the main
table always contain the age of the youngest load that ac-
cessed any part of the quad-word.) Comparing the entry’s
existing width and that of the load, there are two possible
cases: (a) the entry’s width is the same or wider than that
of the load, or (b) the entry’s width is narrower.

In case (a), because we are already tracking at a coarser
granularity, finer-grain information is useless. So we simply
“upgrade” the width of the load to the same as the entry’s
and proceed to the side table if necessary. For example, if
the entry’s width is double word (4 bytes), then we take the
load’s address, ignore the last two bit (to get double-word
address) and use that to hash into the side table and update

the age if necessary.

0

1

3

4

7

2

5

6

Age

18
ldw/stw map here

S
id

e
T

ab
le19

3

4

1

2

Age

19

M
ai

n
T

ab
le

01

...
...

Width

Instruction Address

ldw

stw

0x40

0x40

Age

16

17

ldb 0x43 19

Execution Order

ldb 0x41 18

Figure 1. Example of table update with width and age
upgrades. ldw, stw, and ldb stand for load-word, store-
word, and store-byte, respectively. Example shows an
8-entry side table with a hashing function that takes
the 3 least significant bits of byte, word, or double-word
addresses, depending on the access width.

In case (b), because we do not want the complexity of
having to check multiple entries, we forgo the fine-grain in-
formation we have accumulated so far and upgrade the en-
try’s width to that of the load and proceed to update the
side table. If the upgraded width is quad-word, the side
table is not accessed. Before we access the side table, we
upgrade the load’s age to the elder of its own age or that
of the entry in the main table. The reason to upgrade the
age is best explained by an example. In Figure 1, we show
a sequence of 4 instructions in which the two younger ldb

instructions execute first. The figure shows the state of the
two tables after their execution. When ldw executes, the
width of the main table entry will upgrade, indicating that
the side table will start to track this quad-word at word
granularity instead. ldw will map into entry 0 of the side
table and the new age needs to reflect all accesses to the en-
tire word starting at address 0x40. Rather than traversing
multiple entries of the side table to figure out the new age,
we adopt the simple, if conservative, solution: to take the
age in the main table which reflects the age of the youngest
load accessing anywhere in the quad-word. In fact, all the
(consecutive) entries in the side table that correspond to the
quad-word need to be updated to at least the age of the load.
Finally, we note that, an alternative design is that whenever
a width upgrade takes place, we always directly upgrade to
quad-word. This simplifies the hardware at the expense of
(negligible) increases in the replay rate.

When a store executes, it compares its age to that in the
corresponding entry in the main table. If the store’s age is
younger, then no replay is needed. Otherwise, we may need
to replay. However, if the store has a narrower width, we
may have more fine-grained tracking information from the
side table that can rule out violation. Depending on the
width of the store and that of the entry, there are also two
cases: (a) the store’s width is the same or narrower than the
corresponding entry’s in the main table, or (b) the store’s
width is wider. In case (a), we simply treat the store as a
wider access (with the same width as the entry) and consult
the side table to determine whether we replay. In case (b),

though the side table contains the age information, it does
so in a “fragmented” way, and we need to access the side
table multiple times to find out the age of the youngest load
that overlaps with the store. To avoid complexity, we do not
do so. We simply ignore the side table in this case.

In summary, the side table essentially provides some ex-
tra space to allow us to “zoom in” and track select quad
words at a finer granularity. At any time, a single quad-
word is tracked with only one data width. However, that
width differs from quad-word to quad-word. The entries in
the side table, therefore, are tracking different widths. Hash-
ing conflicts may incur spurious replays, but does not affect
correctness.

2.4 Mitigating the effect of pollution
Because of hashing conflicts, we may have spurious replays

that an age-ordered LQ recording full address does not have.
We also have another and more serious source of spurious
replays – table pollution. Recall that updates to the load
tables (main table and side table) occur at execution time
when the instructions are speculative and may be on the
wrong path. Later on, when a recovery of misprediction or
replay takes place, the processor rolls back and starts to re-
assign older ages to memory instructions on the right path.
However, the tables already have many (incorrect) future
ages making apparent order violation very likely. Unfortu-
nately, we can not easily undo the updates from the load
tables. It is certainly possible to maintain a log of updates
and walk through the log to undo updates after a recovery
or a replay. However, it is clearly inefficient and undesirable.

We propose a technique to mitigate the effect using a sim-
ple, global register. This register can be thought of as a
degenerate main table that has only one entry. When a load
executes, if its age is younger than that recorded by the reg-
ister, the register is updated. Because this degenerate table
has only one entry, it is very easy to roll back the age to
that of the branch upon branch misprediction recovery, or
to that of the first instruction to be replayed. If this single
register can rule out the possibility of order violation, we
do not check the larger tables. This actually has a filtering
effect that reduces the energy consumption of accessing the
bigger tables.

In practical implementations, we are not limited to a single
register. We can use a small number of registers (essentially
making a table of a few entries). Intuitively, we get dimin-
ishing returns as we increase the number registers. In our
limited exploration, adding a second registers can further re-
duce the number of spurious replays and seems to be a good
choice. In this paper, we use a pair of such registers.

Alternatively, we can use a monotonically increasing counter
(with wrap-arounds) to replace the ROB ID as the age. With
such an age mechanism, when a misprediction recovery or
replay happens, we continue to increment age counter rather
than reuse already-assigned age IDs and this can signifi-
cantly cut down spurious replays due to table pollution. The
disadvantage is the extra bits needed to store the age. In
contrast, ROB ID is already used by the issue logic to update
instruction execution status and thus an ROB ID-based age
representation is nearly for free. However, as we will show
later, the improvement in replay reduction is significant and
could easily justify the extra cost in the design.

3. EXPERIMENTAL SETUP
We evaluate our scheme using a heavily-modified Sim-

pleScalar [3] 3.0d tool set with Wattch extension [2]. The
Wattch model is extended to include the energy consump-
tion of the hash tables. Besides implementing separate ROB,
issue queue, and register files, we have added support to
more faithfully model modern microprocessors. Specifically,
we allow speculative issue of load instructions when there
are prior unresolved stores; we faithfully model store-load
replays [7] (instructions are re-fetched and re-issued); we
model load rejections [16]; we issue dependent instructions
of the load speculatively (assuming a cache hit) and perform
scheduler replays [7] if the load misses in the cache.

Our simulator models only uniprocessor and we do not
have a source to faithfully model invalidation messages in
a uniprocessor. Thus we do not model load-load ordering
search in the LQ. This favors the conventional design by
reducing the energy expenditure – for our hash table-based
design, this checking is for free.

To evaluate our design we use three processor configura-
tions (config1, config2, and config3) as shown in Table 1.
Config1 closely mimics POWER 4 processor whereas Con-

fig2 and Config3 are scaled-up versions of config1. To focus
on energy consumption of the baseline load queue we size it
optimally relative to ROB size for all three configurations.

We use highly optimized alpha binaries of all 26 SPEC
CPU2000 benchmarks. We simulate 500 million instructions
after fast-forwarding 1 billion instructions.

Processor core

Issue/Decode/Commit width 8 / 8 / 8
Functional units INT 8+2 mul/div, FP 8+2 mul/div
Branch predictor Bimodal and Gshare combined
- Gshare 8K entries, 13 bit history
- Bimodal/Meta table/BTB 4K/8K/4K (4 way) entries
Branch misprediction penalty at least 7 cycles

Memory hierarchy

L1 instruction cache 64KB, 1-way, 128B line, 2 cycles
L1 data cache (2 ports) 32KB, 2-way, 128B line, 2 cycles
L2 unified cache 1MB, 8-way, 128B line 15 cycles
Memory access latency 120 cycles

Config1 Config2 Config3

Issue queue (INT, FP) (32, 32) (48, 48) (64, 64)
ROB 128 256 512
Register (INT, FP) (100, 100) (200, 200) (400, 400)
LSQ(LQ,SQ) 2 search ports 80 (48,32) 144 (96,48) 256 (192,64)
Table size (main, side) (512, 128) (1024, 256) (2048, 512)

Table 1. System configuration.

4. EVALUATION
In this section, we perform some quantitative analysis on

the proposed design and the optimizations. For brevity, we
report data in a compact format. We group applications into
integer (INT) and floating-point (FP) groups. All metrics
are first normalized to the result of the conventional con-
figuration (baseline) and then averaged within the groups.
We show the average in solid bars and the minimum and
maximum for the group in superimposed I-beams.

4.1 Energy impact of hash table-based tracking
We first inspect energy savings on the LQ. Intuitively, en-

ergy reduction will be significant because we no longer have a
wide operand CAM structure and under most circumstances,
each access consists of just one main table access. We see
in Figure 2-(a) that this is indeed the case. Across configu-
rations and applications, the energy savings consistently fall
in the range of 77-94%. The averages are about 83-88% de-
pending on the configuration. Recall that if load-load order

checking is performed, the baseline could spend even more
energy.

Config1 Config2 Config3 Config1 Config2 Config3
70%

80%

90%

100%

INT FP

E
ne

rg
y

S
av

in
gs

(a) LQ Energy Savings.

Config1 Config2 Config3 Config1 Config2 Config3

0

1%

2%

3%

4%

INT FP

P
er

f.
D

eg
ra

da
tio

n

(b) Performance Degradation.

Config1 Config2 Config3 Config1 Config2 Config3

−2%

0

2%

4%

6%

INT FP

E
ne

rg
y

S
av

in
gs

(c) Total Energy Savings.

Figure 2. Average energy savings from the LQ (a),
performance degradation (b), and processor-wide en-
ergy savings (c) over the conventional systems.

Next, we look at performance degradation. The perfor-
mance is less straightforward to compare because the differ-
ence is sensitive to the LQ size of the baseline. Here we size
the LQ in the baseline system to keep stalling due to LQ-
fillup very low. Reducing the LQ size even moderately would
result in noticeable slowdown for the baseline configuration,
especially for floating-point applications. In the scaled-up
configurations, we use ever larger LQs, ignoring any practi-
cality issues. With these in mind, we can see that slowdown
induced by our design is very small, about 1%. Even the
worst-case slowdown is insignificant. The minimum degra-
dation is almost always 0%. The overall processor-wide en-
ergy savings are shown in Figure 2-(c). We see that for the
smallest configuration (Config1), we already make a net en-
ergy gain. As we scale to larger configurations, our gain
increases. This is because larger LQs are increasingly inef-
ficient – if they can be built to start with. Note that en-
ergy consumption is spread out over different components.
Thus it is expected that the drastic energy reduction in the
LQ would translate into much smaller global energy savings.
Furthermore, the benefit of a table-based tracking mecha-
nism goes beyond energy savings. Large CAM structures
are best avoided. Our results have clearly showed that the
more sensible table-based implementation can competently
and energy-efficiently track memory access order in large
scale.

In these statistics, we use monotonically increasing age
counter to mitigate pollution effect. If we choose ROB ID-
based age and use the alternative of global register for pol-

lution mitigation, the performance will degrade 1.1% and
0.5% on average for the integer and floating-point applica-
tions, respectively.

4.2 Understanding the optimization techniques
To understand the effect of the optimization techniques,

we show the breakdown of the number of replays and the ef-
fect of the optimization techniques in Figure 3. For this anal-
ysis, we only show the averages for one configuration (Con-
fig2) while the results from other configurations are very
similar. We break down the number of replays according to
their type, from bottom up: true replays, false replays due
to the mismatch between the access width and the tracking
width, those due to hashing conflict, and finally, those due
to table pollution caused by squashed instructions. We show
the results of using four different configurations: using just
the main table (M), using the main and the side table (MS),
using both tables plus the pair of global registers (MSG),
and using the age counter with main and side table (MSC).

M MS MSG MSC M MS MSG MSC
0

20

40

60

80

100

INT FP

R
ep

la
ys

 p
er

 1
0K

 In
st

ru
ct

io
ns

Table Pollution
Width Mismatch
Hashing Conflict
True Replays

92

27

12
 3

14 11 9 4.5

Figure 3. Breakdown of replay rates.

We see that the results are rather intuitive. (1) Inte-
ger applications tend to have many narrow-width data ac-
cesses, which cause significant number of false replays when
we track access order only using the main table at quad-
word granularity. Floating-point applications, on the other
hand, have far fewer replays due to width mismatch when
we only use the main table. With the use of the side table,
these false replays are almost completely eliminated. (2) In-
teger applications tend to suffer more from table pollution
due to the higher branch misprediction rate. Floating-point
applications suffer far less from table pollution, but the ef-
fect is still visible. With the global registers, we are able
to remove a significant portion of false replays: about 63%
and 32% for integer and floating-point applications, respec-
tively. With age counter, this source of replay is all but
completely eliminated. (3) Hashing conflict-induced replays
are almost negligible in integer applications, whereas they
are more noticeable in floating-point applications because
the working set is generally larger. The techniques aimed
at reducing other false replays have little impact on these
conflict-induced replays. A better hashing function may fur-
ther improve our design for floating-point applications.

5. RELATED WORK
Recognizing the scalability issue of the LSQ, many differ-

ent proposals have emerged recently. A large body of work
adopts a two-level approach to disambiguation and forward-
ing. The guiding principle is largely the same. That is to
make the first-level (L1) structure small (thus fast and en-
ergy efficient) and still able to perform a large majority of
the work. This L1 structure is backed up by a much larger

second-level (L2) structure to correct/complement the work
of the L1 structure [1, 8, 17]. A variation of a two-level ap-
proach is the dual-queue approach where memory instruc-
tions predicted to have in-flight dependence are kept in an
associative queue with conventional searching capabilities
and others are kept in less power-hungry FIFOs [5,6].

Another body of work only uses a one-level structure (for
stores) but reduces check frequency through clever filtering
or prediction mechanisms such as bloom filter [11,13].

Exact memory dependence prediction is an alternative
to address-based dependence-checking mechanism. Ambi-
tious and complex dependence prediction is used in [14,
15]. Unfortunately, achieving highly accurate prediction of
the actual communicating pairs of memory instructions re-
quires a large number of tables, some of which highly-ported.
Furthermore, enforcing the predicted dependence requires
non-trivial support from the issue logic. Value-based re-
execution presents a new paradigm for memory disambigua-
tion. In [4], the LQ is eliminated altogether and loads re-
execute to validate the prior execution. To address the en-
ergy increases due to re-execution, and the performance im-
pact due to increased memory pressure, various filters are
developed to reduce the re-execution frequency [4,12].

Cooperative disambiguation uses compiler-based analysis
to rule out the possibility for certain loads to cause depen-
dence violation and therefore allow them to completely by-
pass the LQ [10].

Finally, slackened memory dependence enforcement adopts
a different philosophy of enforcing memory dependence. Two
decoupled executions of all memory instructions are used,
the leading front-end execution focuses on speed and effi-
ciency of common-case communication and the trailing exe-
cution follows program order to ensure correctness and resets
the front-end execution when it failed to correctly enforce
dependence [9].

In contrast to this body of prior work, our approach still
maintains the conventional address-based memory disam-
biguation strategy, i.e., we do not rely on dependence pre-
diction or re-execution for validation. Compared to the so-
lutions that still use the LQ, our approach is different in
that we explicitly represent age and use hashing functions
to implicit represent the address. This allows us to eliminate
expensive associative comparisons of wide address operands
(32 bits or more) and replace them with a single compari-
son of the much narrower age ID (about 10 bits) for most
memory accesses.

6. CONCLUSIONS
In this paper, we have proposed a novel approach of track-

ing memory access order violation. The design uses a hash
table-based tracking methodology maintaining explicit age
information in the table. This data structure provides a
number of benefits: First, detecting order violation involves
only table indexing and a single age comparison per ta-
ble. Compared to the fully-associative matching of the much
wider address operand, this drastically reduces energy con-
sumption; Second, thanks to the absence of large CAM
structures, the access latency is low and does not increase
much when scaling up the tables, making them a much bet-
ter choice for scalable microarchitectures; Third, the design
does not place a limit on the number of in-flight load in-
structions that can be tracked, potentially removing a bot-
tleneck on the instruction-buffering capability. A straight-

forward implementation of the design, however, does intro-
duce spurious replays due to different data access widths
and table pollution as a result of branch misprediction and
replays. We have presented two effective mitigation tech-
niques. First, we use a side table to provide finer-grain track-
ing of non-predominant access widths. Second, we provide
two alternatives – a pair of global registers or a monotoni-
cally increasing age assignment logic – to filter out a large
fraction of pollution-induced false replays. We have shown
that the overall implementation is very effective: with very
little slowdown, depending on the configuration, we cut the
energy consumption of the LQ by an average of about 83-
88%. Taking into account the energy cost of extra replays,
the processor still makes a net gain in energy on average.

7. REFERENCES
[1] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint

Processing and Recovery: Towards Scalable Large Instruction
Window Processors. In International Symposium on
Microarchitecture. Dec. 2003.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. In International Symposium on Computer
Architecture. June 2000.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. Technical report 1342, Computer Sciences Department,
University of Wisconsin-Madison, June 1997.

[4] H. Cain and M. Lipasti. Memory Ordering: A Value-based
Approach. In International Symposium on Computer
Architecture. June 2004.

[5] F. Castro, D. Chaver, L. Pinuel, M. Prieto, M. Huang, and
F. Tirado. A Power-Efficient and Scalable Load-Store Queue
Design. In International Workshop on Power And Timing
Modeling, Optimization and Simulation. Sep. 2005. Lecture
Notes in Computer Science Vol. 2236(8):1-9.

[6] F. Castro, D. Chaver, L. Pinuel, M. Prieto, M. Huang, and
F. Tirado. Load-Store Queue Management: an Energy Efficient
Design based on a State Filtering Mechanism. In International
Conference on Computer Design. Oct. 2005.

[7] Compaq Computer Corporation. Alpha 21264/EV6
Microprocessor Hardware Reference Manual, Sep. 2000. Order
number: DS-0027B-TE.

[8] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai.
Scalable Load and Store Processing in Latency Tolerant
Processors. In International Symposium on Computer
Architecture. June 2005.

[9] A. Garg, M. Rashid, and M. Huang. Slackened Memory
Dependence Enforcement: Combining Opportunistic
Forwarding with Decoupled Verification. In International
Symposium on Computer Architecture. June 2006.

[10] R. Huang, A. Garg, and M. Huang. Software-Hardware
Cooperative Memory Disambiguation. In International
Symposium on High-Performance Computer Architecture.
Feb. 2006.

[11] I. Park, C. Ooi, and T. Vijaykumar. Reducing Design
Complexity of the Load/Store Queue. In International
Symposium on Microarchitecture. Dec. 2003.

[12] A. Roth. Store Vulnerability Window (SVW): Re-Execution
Filtering for Enhanced Load Optimization. In International
Symposium on Computer Architecture. June 2005.

[13] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, and
S. Keckler. Scalable Hardware Memory Disambiguation for
High ILP Processors. In International Symposium on
Microarchitecture. Dec. 2003.

[14] T. Sha, M. Martin, and A. Roth. Scalable Store-Load
Forwarding via Store Queue Index Prediction. In International
Symposium on Microarchitecture. Dec. 2005.

[15] S. Stone, K. Woley, and M. Frank. Address-Indexed Memory
Disambiguation and Store-to-Load Forwarding. In
International Symposium on Microarchitecture. Dec. 2005.

[16] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture. IBM Journal of Research
and Development, Vol. 46(1):5–25, Jan. 2002.

[17] E. Torres, P. Ibanez, V. Vinals, and J. Llaberia. Store Buffer
Design in First-Level Multibanked Data Caches. In
International Symposium on Computer Architecture. June
2005.

