
Journal of Computational Physics 230 (2011) 1676–1685
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Particle-in-cell simulations with charge-conserving current deposition
on graphic processing units

Xianglong Kong a,b,⇑, Michael C. Huang c, Chuang Ren a,b,d, Viktor K. Decyk e

a Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
b Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627, USA
c Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
d Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
e Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 May 2010
Received in revised form 15 November 2010
Accepted 19 November 2010
Available online 26 November 2010

Keywords:
Graphics processing unit (GPU)
Computer unified device architecture
(CUDA)
Particle-in-cell (PIC) plasma simulation
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.11.032

⇑ Corresponding author at: Department of Mecha
E-mail address: xkon@lle.rochester.edu (X. Kong
We present an implementation of a 2D fully relativistic, electromagnetic particle-in-cell
code, with charge-conserving current deposition, on parallel graphics processors (GPU)
with CUDA. The GPU implementation achieved a one particle-step process time of
2.52 ns for cold plasma runs and 9.15 ns for extremely relativistic plasma runs, which
are respectively 81 and 27 times faster than a single threaded state-of-art CPU code. A par-
ticle-based computation thread assignment was used in the current deposition scheme and
write conflicts among the threads were resolved by a thread racing technique. A parallel
particle sorting scheme was also developed and used. The implementation took advantage
of fast on-chip shared memory, and can in principle be extended to 3D.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Particle-in-cell (PIC) methods are a well-established first-principles model that can provide a kinetic description of a plasma
by following trajectories of an ensemble of charged particles in self-consistent electromagnetic fields [1]. An atomic compu-
tation cycle in a fully-explicit, electromagnetic PIC code consists basically of three parts: field solver for evolving electromag-
netic fields by solving Maxwell’s equations on a grid using finite-difference; particle pusher for calculating the Lorentz force
on the particles by interpolating the fields to particle positions and advancing particles by solving the Newton’s equation;
current deposition for determining the current density on the grid from the particle motion. Due to their first-principle nature,
PIC simulations generally require intensive computation and PIC codes have long been at the frontier of high performance
computing. The local nature of the PIC algorithms makes it highly efficient for the codes to run in a massively parallel fashion
using domain decomposition. For example, the state-of-art multi-dimensional PIC code OSIRIS [2,3] achieved an 86% effi-
ciency on the IBM BlueGene/P cluster Argonne Intrepid with 32768 CPUs. PIC codes have been widely used to study com-
plicated behaviors of plasmas. However, grand challenge applications such as inertial confinement fusion require
computation at extreme scales. PIC codes constantly need to adapt to new computing platforms.

Over the past few years, modern graphics processing units (GPUs) for commodity PC hardware have evolved into pro-
grammable massively parallel general computation devices. For example, NVIDIA GeForce GTX 280 claims a peak throughput
of operations of nearly 1TFLOPS. The enormous computational potential of GPUs has recently motivated many research
. All rights reserved.

nical Engineering, University of Rochester, Rochester, NY 14627, USA.
).

http://dx.doi.org/10.1016/j.jcp.2010.11.032
mailto:xkon@lle.rochester.edu
http://dx.doi.org/10.1016/j.jcp.2010.11.032
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685 1677
activities on computation on many-core processors. For example, Bowers et al. [4] developed the 3D PIC code VPIC, which
took advantage of the computing capability of IBM Cell microprocessors. An intrinsic figure of merit for computation speed
in PIC codes is the average time spent in moving one particle for one time step, Tps. VPIC achieved a Tps = 5.9 ns for a cold
plasma using the Cell, compared with a Tps = 155 ns for OSIRIS on an Intel i7 processor [5]. The utility of GPUs for gen-
eral-purpose high-performance computations was initially limited by the fact that programs needed to be translated into
graphic languages such as OpenGL or Cg. In 2007, NVIDIA released CUDA [6], a programming model using a language that
is an extension to the standard C, which makes it much easier to program general-purpose GPU’s (GPGPU). Recently, Decyk
et al. implemented an electrostatic PIC code using CUDA, achieving a Tps = 2.3 ns on an NVIDIA Tesla card [7]. These re-
searches showed that the bottleneck for PIC codes is data movement rather than actual computation [4,7]. The key to reduc-
ing Tps is data locality.

In this paper we present an implementation of a 2D electromagnetic PIC simulation code on GPU using CUDA. A key
obstacle in writing an electromagnetic code for GPU is the many conditional branches exist in the current deposition algo-
rithm, which are absent in the charge deposition part of an electrostatic code. We have succeeded in implementing a charge-
conserving current deposition scheme that greatly reduces computational thread divergency. In addition, we have developed
a sorting algorithm suitable for explicit PIC codes that help achieve high data localization. The code has also taken advantage
of the high bandwidth allowed by the shared memory on GPU’s. This implementation can be extended to 3D, subject to
shared memory size constraints.

The rest of this paper is organized as follows. In Section 2, the details of the CUDA implementation of the PIC code are
presented. In Section 3, the performance results for our implementation are given and compared with the CPU version.
Our conclusions are summarized in Section 4.
2. CUDA implementation

2.1. CUDA overview

The Compute Unified Device Architecture (CUDA) [6] is a programming model developed by NVIDIA for general purpose
computing on GPUs. The CUDA programming model is based upon the concept of C function-like kernels which are executed
multiple times in parallel by multiple different threads. The threads are organized into one-, two- or three-dimensional
blocks. A group of 32 adjacent threads forms a warp. Threads are created, managed, scheduled, and executed in warps.
Threads within the same block can cooperate by sharing data and synchronizing their execution. Threads within a warp
can communicate and exchange information even more efficiently than threads within a block. However, threads in different
blocks cannot cooperate with each other efficiently. The threads of a block execute concurrently on one streaming multipro-
cessor (SM) in the GPU. Each SM consists of single precision scalar processors (SP) (current architecture also includes double
precision SMs), each capable of executing an independent thread. On-chip shared memory and registers are also located on
the SMs. The amount of on-chip memory is very limited in comparison to the total global memory available on the GPU. Glo-
bal memory is the main memory of the GPU but it is located off-chip and therefore has a considerable latency.

2.2. Data structures

In a PIC simulation, field related quantities are discretized on a spatial grid. We use three 1D arrays, namely E, B, J, to store
the serialized 2D grid data of electric fields, magnetic fields and current densities, respectively. We use the CUDA built-in
vector type float4 [6] as the data type of the arrays. The first three components of each float4 array element are used to rep-
resent the corresponding field components in the (x,y,z) directions. The fourth component can be reserved to store diagnos-
tic results, such as field energy.

The description of a particle in 2D PIC simulation usually needs six quantities: positions in the (x,y) direction, momenta in
the (x,y,z) direction and the particle charge weight (A variable charge is useful in simulating large density variation). The
particle position representation used in our code consists of the indices of the containing cell and the offsets from the lower
boundaries of the cell, to better maintain accuracy. Two arrays, namely xCell and xPos, with CUDA build-in data type int2 and
float2 respectively, are allocated to store the containing cell indices and the offsets. Empirically, the 64-bit built-in data type,
such as float2 and int2, can offer a slightly higher global memory access bandwidth the 32-bit data type, such as float and int
[8]. The data of the momenta and charge are bundled into a float4 array u. The first three components of each element of u
represent the momenta in the (x,y,z) directions, and the last component keeps the charge. We will discuss the order in which
the particles are arranged in the data array in Section 2.3.

2.3. Current deposition

Many PIC codes use the charge-conserving current deposition schemes [9] from TRISTAN [10] to avoid solving the Poisson’s
equation. The movement of a particle from P0 at (x0,y0) to P1 at (x1,y1) is split into multiple parts if the particle goes through
cell boundaries. Usually, the Courant condition for the field solver limits the time step so that the particle moves less than the
dimension of a single cell in each direction in one step. In this case, this can lead to five kinds of possible current splits



Fig. 1. Illustration of the current splits of the modified-TRISTAN method.

1678 X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685
(Fig. 1). In CUDA, a warp serially executes each branch path taken, disabling threads that are not on that path. The data
dependent conditional branches corresponding to different current split cases in the TRISTAN algorithm make it unsuitable
to be implemented directly on GPU, since the conditional branches can significantly reduce the instruction throughput by
causing threads in the same warp to diverge.

There was previous work on IF-free current deposition schemes which assumes a zigzag particle trajectory in one time
step [11]. It was faster than the TRISTAN method but less accurate. We have developed a new algorithm based on the TRIS-
TAN method. The new algorithm has a non-diverged form so that all currents will follow the same path to deposit. The basic
idea is to split the movements of all particles into three parts by two splitting points PA and PB, regardless whether the par-
ticle cross the cell boundary or not (Fig. 1). The locations of PA and PB depend on how many boundaries the particle move-
ment crosses:

(1) If the movement does not cross any boundary (Fig. 1(a)), PA and PB are at the same location where the extension line of
P0P1 intersects with the containing cell boundary.

(2) If the movement crosses one boundary (Fig. 1(b) and (c)), PA and PB are at the same intersection on the cell boundary.
(3) If the movement crosses two boundaries (Fig. 1(d) and (e)), PA and PB are at the two intersections on the two bound-

aries, with PA nearer to P0 than PB.

After the splitting points PA and PB are located, the current pieces P0PA and PBP1 are deposited onto the grids, and PAPB is
deposited only when PA and PB are at different locations. This algorithm can be implemented using logical functions available
in CUDA, to eliminate all conditional branches except the one related to depositing PAPB. In the case of a particle staying in
the cell (Fig. 1(a)), the algorithm requires more computations than directly depositing P0P1, which is a small price to pay for
reducing thread divergency. In addition, our current deposition scheme may split a current into more current pieces than the
original TRISTAN scheme, which may cause additional round-off error. Current smoothing can be implemented to reduce the
round-off error.

We have implemented the above modified-TRISTAN method by assigning one CUDA thread to each particle. This particle-
based thread assignment is different from the cell-based thread assignment used in Ref. [7]. In theory, the cell-based thread
assignment has the advantage of requiring less computation and being able to avoid write conflicts, compared to the parti-
cle-based thread assignment [12]. However, the particle-based thread assignment has the advantage of employing a large
number of threads. We resolve the write conflicts by a ‘‘thread racing’’ technique that is similar to the ‘‘threads tagging’’ tech-
nique, which is (a form of speculative execution) in the NVIDIA’s histogram calculation example [13].

Since the particle data is loaded from the global memory sequentially by sequential threads in a warp, the data accessed
by threads in a half warp should be kept in the same segment in the global memory (coalesced) [6]. During the current depo-
sition process, the current density on a grid point is updated multiple times, from multiple particles near that grid point. It is
important to keep the accumulating current density array in the shared memory to avoid redundant transfers from global
memory. However, since the size of the shared memory is limited, we cannot store the entire current density array, but only
a small fraction of it in the shared memory for each thread block. Therefore, the particles need to be sorted so that the par-
ticles processed by a CUDA thread block deposit their self-generated currents only to the fraction of current density array
loaded in that block. The sorting method will be discussed in the Section 2.4.



X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685 1679
In our implementation, we group the cells into clusters, and the particles in a cell cluster are processed by a single CUDA
thread block. Since the particles near the border of the cluster may move out to the cells outside the cluster, the current den-
sity array used by each block needs to have ghost cells outside the cluster (Fig. 2).

However, the ghost cells for any of two adjacent clusters can overlap. Since the threads in different blocks cannot com-
municate efficiently, adding the accumulated current density in the overlapping area to the current density array in the glo-
bal memory can cause write conflicts among different blocks. To deal with this issue, we use a four-color scheme to deposit
the currents in adjacent clusters separately. The basic idea of the scheme is shown in Fig. 3, where any two adjacent clusters
always have different colors. Thus, there is no overlapping area for the clusters with the same color. The current deposition
routine is executed four times, each time for clusters with a different color.

Within a cluster, write conflicts between parallel threads could still occur when updating the accumulating current den-
sity stored in the shared memory. The write conflicts can be solved easily by using floating point number atomic operations
which are supported for the device with compute capability 2.0 [6]. However, even without a device of compute capability
2.0, we can still use an intra-warp technique similar to the ‘‘threads tagging’’ technique in the NVIDIA’s histogram calculation
example [13] to solve the write conflict issue. The pseudo-code of the implementation of the new technique is shown in List
1.The approach is similar to a ‘‘floating point number atomic operation’’. In the original ‘‘threads tagging’’ technique, the five
most significant bits of the quantity that need to be updated are masked and replaced with the tag of the thread, which only
works for data with sufficiently narrow bit widths represented with a native integral type. To deal with floating point num-
bers, we introduce an array of the volatile type for threads racing in the shared memory. This racing array has the same
dimension as the accumulating current density array of the cluster. For each attempt, at first, instead of adding the data
to the accumulating current density array directly, the threads in the same warp write their tags to the corresponding loca-
tions in the racing array. If two or more threads try to write their tags to the same location in the racing array, only one
thread is guaranteed to succeed [6], and that thread can continue to update the data in the accumulating current density
array. After successfully adding their data, the threads withdraw from the subsequent races. All the remaining threads will
continue the execution until all the threads in the warp successfully add their data to the accumulating current density array
and exit the loop. Finally, the accumulating current density array is added to the current density array in the global memory.
Fig. 2. The area of current density array for each block is surrounded by dash-dot line. The area of the cluster is represented by the solid line. The cells
between the dash-dot line and solid line are ghost cells. Particle movements are represent by the arrows with a dot representing the start point of the
particle.

Fig. 3. (Color online) Illustration of the four-color scheme. The dash grid represents the cells. The solid grid represents the clusters.



List 1. The pseudo-code of the implementation of current deposition.

1680 X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685
2.4. Particle sorting

In order to ensure that all particles in a cluster are stored contiguously and can deposit to the accumulating current den-
sity array in the shared memory, they need to be sorted based on the cluster index every time step. Since they can only move
less than a certain distance in a time step, most of the particles stay in the same cluster if the size of cluster is not too small.
The order of the particles within a cluster is irrelevant for our deposition scheme. Therefore, performing a full particle sort is
unnecessary and too time-consuming. We have developed a four-pass scheme that can efficiently fulfill the sorting require-
ment and rearrange the particle data. An important feature of this scheme is that the particle data undergo minimum reshuf-
fling and the data rearrange time is greatly reduced compared to a full sort. The time complexity of our sorting scheme is
O(gN), where N is the total particle number and g is the fraction of the particles that cross the cluster boundaries in each step.

To achieve this, we divide each particle-related array (xCell, xPos, u), into segments, one segment for each cluster. The size
of each segment is always larger than the total size of the particle data in the cluster, leaving a buffer region to store the data
of the particles that will move into this cluster from the adjacent clusters. The number of particles in each cluster is recorded
by an array bufferIndex whose dimension is equal to the number of clusters. If we refer to the section that a single particle
will occupy in the particle-related arrays as a slot, then the elements in bufferIndex can be understood as the local index of the
first slot of the buffer in a segment. Compared to the defragmentation step in Ref. [12], which requires sorting within a clus-
ter first, our data structure with buffer can effectively reduce the data movement within a cluster.

The steps of the four-pass sort scheme are as follows:

(0) At the end of the current deposition routine, the particles are pushed to new positions, and the xCell and xPos arrays
are updated. By examining the data in the xCell array, one can determine which cluster a particle has moved into. Since
a particle either stays in the same cluster, or moves to one of the eight adjacent clusters, we can use 4 bits of an integer
to code the nine distinct possibilities (There are eight possible adjacent clusters to move into, plus staying in the cur-
rent one). The migration codes of four particles are combined into one integer to reduce the amount of data
movement.

(1) Two adjacent clusters (Fig. 4(a)) in the horizontal direction are combined into a bi-cluster (Fig. 6(a)). This requires that
the number of clusters in a row be even. If the number is odd, extra empty cells need to be padded to the edge of the
original simulation space to make it even. This padding needs to be done in the data initialization step for the entire
code. A CUDA thread block is assigned to a bi-cluster.

(2) In this step, the migration codes of the particles in the left cluster of the bi-cluster are checked, and the particles that
move to the right cluster are rearranged. Each slot in the data region of the left cluster is assigned to a CUDA thread. If
the particle moves to the right cluster, the particle data in the corresponding slot is copied to the first slot of the buffer
region of the right cluster. Since there may be multiple particles moving to the right cluster, the thread racing method
described in the current deposition routine is again used here. Upon a successful copy (say, particle 3 in Fig. 4(c.1)), the
corresponding migration code of the leaving particle is reset. The data in the last slot of the data region in the left



Fig. 4. (a) Illustration of particle movement in the first bi-cluster. The particles are identified by a unique particle ID only for illustration purpose. (b)
Illustration of the data structure of the first bi-cluster in the particle-related arrays. The arrows point to the first slot in the buffer region. (c) Illustration of
the step (2) of the particle sorting. (c.1) Particle 3 and 5 move to the right cluster, which makes slot 3, and 5 enter the loop. Slot 3 successfully copies its data
(particle 3) to slot 12 in the first attempt, thereafter particle 5 fill into slot 3. (c.2) Slot 3 copies its data (particle 5) to slot 13, because particle 5 moves to the
right cluster. Thereafter particle 4 fills into slot 3. As a result, the data region of the left cluster stores the data of particle 0, 1,2, 4, and the data region of the
right cluster stores the data of particle 3, 5, 6, 7, 8, 9.

X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685 1681
cluster (particle 5 in Fig. 4(c.1)) is copied to the vacant slot. The corresponding element in the bufferIndex for the left
cluster decreases by 1. This ‘‘one particle leaves, one particle fills in’’ copy procedure needs to continue until the par-
ticle that ultimately fills in this slot does not move to the right cluster (Fig. 4(c.2)).

(3) Check the migration codes of the particles in the right cluster in the bi-cluster, and rearrange the particles moving to
the left cluster, similar to step (2).

(4) Shift the location of bi-cluster to the right by one cluster (see Fig. 6(b)).
(5) Repeat the steps (2) and (3). For the bi-cluster which consists of the cluster in the first column and cluster in the last

column, the cluster in the last column is regarded as the right cluster in the bi-cluster. By completing this step, all the
particles moving to adjacent clusters in the horizontal direction have been rearranged.

(6) By applying a similar procedure as in steps (2)–(5) to bi-clusters in the vertical direction, the particles moving to adja-
cent clusters in the vertical direction can be rearranged. One should also notice that the particles moving to the cluster
in the diagonal direction (such as the upper-left cluster) are rearranged correctly by going through a horizontal sort
followed by a vertical sort.

However, for simulations with highly non-uniform particle distributions, buffer overflows may occur when the number of
particle in a cluster exceeds the number of slot of that cluster. To deal with this, we adopt a flexible data structure (See
Fig. 4(b)), with an additional array startIndex whose dimension is equal to bufferIndex. The array startIndex can be used to
store the first particle index in each segment so that the number of slots in each cluster can vary. When particle-slot ratio
in a cluster exceeds a certain threshold A, a global data rearrangement (See Fig. 5) is triggered to increase the buffer size of
this cluster by reducing the buffer size of another cluster whose particle-slot ratio is below another threshold B.



Fig. 5. Illustration of a global data rearrangement involving three clusters. The grey areas represent the data region. The white areas represent the buffer
region. As a result, the buffer of the right cluster is increased by decreasing the buffer of the left cluster. In each step, the data movement is done by using the
CUDA function cudaMemcpy.

1682 X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685
2.5. Field solver

In this part, the two time-evolved Maxwell’s equations are solved [9] in each time step to update the electromagnetic
fields defined on a staggered grid in the simulation space [2]. The CUDA implementation for this part is straightforward.

For example, the x component of the electric field Ex is solved by the following explicit differential equation:
Table 1
Perform

Proc

Parti
Curr
Parti
Field
Tota
Ex;i1;i2;¼ Ex;i1;i2 � 4pdt � Jx;i1;i2 þ c dt � Bz;i1;i2 � Bz;i1;i2�1

dy
;

where i1and i2 are the indices of the corresponding grid point.
The above equation can be implemented straightforwardly and easily by assigning one CUDA thread to each Ex,i1,i2 at the

grid point.

2.6. Particle pusher

Once the electromagnetic fields are updated, the particles are pushed to new momenta in this part. Since the particles are
already sorted based on the index of their containing cluster, we can assign a CUDA thread block to each cluster, and each
particle is processed by a CUDA thread. The implementation is rather straightforward. Since every particle needs the elec-
tromagnetic field array for interpolation, the electromagnetic field arrays of each cluster are loaded into the shared memory
in each block to avoid redundant data transfer from the global memory. Each thread interpolates the electromagnetic field to
the current particle position and the particle is pushed to a new momentum according the relativistic Newton’s equation.
(The positional move is performed in current deposition where the particle migrations codes are calculated.)
3. Performance results

We have benchmarked the performance of our GPU code against the well-tested CPU PIC code OSIRIS, with a series of
simulations involving both cold and warm plasmas. The correctness of the GPU algorithms was verified by comparing the
fields and currents from the two codes. For the simulations shown in Tables 1 and 2 and Fig. 6, a simulation box of
78.0 � 70.0 (c/xp)2 with 780 � 700 cells and 20 million electrons (36 particles per cell) were used. Periodic boundary con-
ditions were used. The electrons in the warm plasma runs had an initial semi-relativistic Maxwellian distribution with an

isotropic temperature, f ðpx; py; pzÞ ¼ 2pp2
th

� �3
2 exp � px2þpy2þpz2

2p2
th

� �
. Here pi’s (i = x,y,z) are the particle momentum and are
ance results of simulations with Te0 = 0 eV.

edure Tps (ns) Speed up Percentage of bandwidth limit (%)

GPU CPU

cle pusher 0.58 114.31 197 59
ent deposition 1.39 73.01 53 25
cle sorting 0.38 63.19 166 7.4
solver 0.14 1.81 13 45

l 2.52 205.06 81 31



Table 2
Performance results of simulations with Te0 = 1 keV.

Procedure Tps (ns) Speed up Percentage of bandwidth limit (%)

GPU CPU

Particle pusher 0.69 128.62 186 50
Current deposition 3.27 75.54 23 11
Particle sorting 0.67 62.48 93 4.6a

Field solver 0.14 1.82 13 45
Total 4.81 221.87 46 16

a This result was calculated by assuming that about 0.53% of the total particles move out of the cluster after one time step.

Fig. 6. Each cell in the figure represents a cluster. Two cells with a black bar on them represents a bi-cluster. (a) The bi-cluster combination pattern in step
(1) and (b) the bi-cluster combination pattern in step (4).

X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685 1683
related to the particle velocity vi’s through pi = cmevi with c ¼ ð1� m2=C2Þ�
1
2. The initial electron temperature can be defined

as Te0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

th þ 1
q

� 1
� �

meC2. All simulations were run for 1000 time steps with a time step of 0:07x�1
p . In the OSIRIS runs,

the particles were sorted every 25 time steps, whereas in the GPU runs they were sorted every time step. In the GPU runs, the
size of a cluster was chosen to be 13 � 7 cells, yielding an accumulating current density array for the cluster of 16 � 10 ele-
ments. The size of the buffer region for the particle arrays was set to be 30% of the size of data region.

All the OSIRIS simulations were with double precision run on a PC with an Intel Core 2 Duo E7200 2.53 GHz CPU, using
only a single core, and 4 GB of RAM. The GPU code was run on the same PC with a GeForce GTX 280 graphic card manufac-
tured by EVGA� with 1 GB memory and standard core clock speed of 1.3 GHz. The operation system was Ubuntu 9.04 with
the Linux kernel 2.6.28. The OSIRIS code was compiled with GFortan 4.3.2 and GCC 4.3.2. For the GPU code, CUDA (version
2.3) in combination with NVIDA graphics card driver (driver version 190.18) were used. The NVIDIA CUDA Compiler (NVCC)
and GCC 4.3.2 were used to compile the GPU code. Both codes were compiled with the optimization options –O3 enabled for
the corresponding compilers.

In Table 1, the times spent in each process are listed for both GPU and CPU codes for a cold plasma run where virtually no
particle leaves the cell. Also listed are the GPU speed-up over CPU and the GPU performance measured against the band-
width limit, defined as T(BL)/T(GPU). The bandwidth limited time T(BL) is the time necessary to just move the data needed
for each process, without any computation, at the peak memory bandwidth of 141.7 GB/s. We choose T(BL) as the ultimate
performance benchmark because for PIC codes the performance is limited more by bandwidth than by math operation
capability.



Fig. 7. (Color online) Performance of simulations with different plasma temperatures.

1684 X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685
Since there were more particles than cells, the simulations spent most of the time in the three particle-related processes:
particle pusher, current deposition, and particle sorting. The GPU particle pusher achieved a high 59% bandwidth limit, showing
the advantage of the particle data coalescence and storing the cluster field data in the shared memory. Notice the last column
of Table 1 was calculated against the peak bandwidth limit for data copy within the GPU memory. The actual bandwidths for
read/write and between the memory and shared memory/register are smaller. It achieved a speed-up of 197 over the CPU
particle pusher. The GPU current deposition achieved a lower 25% bandwidth limit because there were write conflicts that
needed to be resolved via the thread racing technique. Even so, it still achieved a speed-up of 53 over the CPU code. The smal-
ler speed-up compared to particle pusher reflects the relative inefficiency of the thread racing technique used. The GPU par-
ticle sorting achieved a speed-up over CPU of 166 but only a 7.4% of the bandwidth limit. Since virtually no particle moves,
there was no particle data rearrangement and the time was spent entirely on reading the migration code array from the glo-
bal memory into the shared memory and examining it. This showed that the bandwidth within a conditional loop is much
smaller than the quoted peak value. For the cold run, the GPU code achieved a Tps of 2.52 ns, a speed-up of 81 over the CPU
code.

The cold run represents the asymptotic limit for Tps. In warm plasma runs, Tps would increase, mainly due to the increase
of the current deposition and particle sorting times. In Table 2, information is listed for a warm plasma run of electron tem-
perature Te0 = 1 keV. Compared to the cold run, the current deposition time increased, reflecting the cost of thread divergence
when some of the particles crossed cell boundaries and some did not. The increase of the particle sorting time was from par-
ticle data rearrangement, now that a fraction of the particles crossed the cluster boundary. Our sorting scheme is about 14
times faster than a full sort based on the radix sorting algorithm [14] in the CUDA library. The particle crossing fraction lin-
early increases with the particle thermal velocity and decreases with the cluster size. For the cluster size used here, the cross-
ing fraction g was 0.53% for Te0 = 1 keV and would be capped at �8% for extremely relativistic Te0’s where most particles
move with the speed of light. The extra particle sorting time, compared with the cold run, increased linearly with g
(Fig. 7). In comparison, the subsequent increase of the current deposition time with Te0 is very weak and for g > 4% (Te0 = 1 -
MeV), the particle sorting time exceeded the current deposition time to become the dominant part of Tps. For extremely rel-
ativistic cases, g can be lowered if a larger cluster size, limited by the shared memory size, can be used. For the 1 keV-run, the
GPU code achieved a Tps of 4.81 ns, a speed-up of 46 over the CPU code. For the maximum g-case, it achieved a Tps of 9.15 ns,
a speed-up of 27 over the CPU code.
4. Discussion and conclusion

Although the algorithms presented in this paper are mainly 2D, they can in principle be extended to 3D. For the current
split scheme in current deposition, given that a particle can at most cross four cells in 3D case, the current can be deposited
by splitting into four parts and using an eight-color deposition scheme. For the particle sorting, we can use a six-pass scheme
in 3D instead of the four-pass scheme. Performance of a 3D code based on these algorithms is difficult to predict accurately.



X. Kong et al. / Journal of Computational Physics 230 (2011) 1676–1685 1685
On the one hand, there are more floating-point calculations pre particle-step in 3D than in 2D. Therefore, a greater speed-up
can be expected in 3D than in 2D. On the other hand, each thread in 3D may require more register and shared memory usage
than in 2D, which may lower the device occupancy and results in performance degradation. For a fixed amount of GPU
shared memory, the cluster size in 3D needs to be reduced. For example, a 16 KB shared memory can accommodate a
5 � 5 � 5 cluster size, compared to the 13 � 7 cluster size in 2D used here. For a 48 KB memory the cluster size can be in-
creased to 8 � 8 � 8.

There are techniques to resolve write conflicts without using thread racing in current deposition, such as the cell-based
charge deposition method used in Ref. [7]. Our present implementation was motivated by using the fast shared memory and
maintaining a large enough number of threads. This is especially important in 3D and high-order current deposition schemes
where the shared memory size limits the number of cells in a block to only a few or even one. Also, the algorithm here may
gain further speed-up through the native floating-point number atomic operations now supported for the device with com-
pute capability 2.x [6].

Due to floating point non-associativity, the thread racing technique used in the code is in principle non-deterministic in
the CUDA programming model. The associated randomness, due to round-off errors when particles are processed in a differ-
ent order, is no different from the randomness introduced when varying the number of processors on a distributed memory
machine. In practice, we found that our code is deterministic and reproducible on the hardware described here. In all bench-
mark runs shown here, the difference between the results from this code and the double-precision OSIRIS results was on the
order of single precision roundoff error. In addition, the plasma physics that PIC codes are used to study is concerned mainly
with the statistical macroscopic properties of a system, not its underlying microscopic states. Therefore, the theoretical addi-
tional randomness due to thread racing should be of little concern in practice.

In summary, we have presented an implementation of a 2D electromagnetic PIC code, with charge-conserving current
deposition, on GPU with CUDA. The GPU implementation was found to run 27–81 times faster than a single-threaded
state-of-the-art CPU code, depending on the plasma temperature. It achieved a processing speed of 2.52 ns per particle
for cold plasma runs and 9.15 ns per particle for extremely relativistic plasma runs. The implementation took advantage
of the fast on-chip shared memory. The thread racing technique used also provides a general method of resolving write con-
flict among computation threads on GPU. The method presented here can in principle be extended to 3D.

We acknowledge useful conversations with Warren Mori and Alice Quillen. This work was supported by U.S. Department
of Energy under Grant Nos. DE-FG02–06ER54879 and DE-FC02–04ER54789 and by NSF under Grant Nos. PHY-0903797 and
CCF-0747324.

References

[1] C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, Institute of Physics, Bristol, 1991.
[2] R.G. Hemker, Particle-in-cell modeling of plasma-based accelerators in two and three dimensions, Ph. D. thesis, University of California, Los Angeles

(2000).
[3] R.A. Fonseca, L.O. Silva, F.S. Tsung, V.K. Decyk, W. Lu, C. Ren, W.B. Mori, S. Deng, S. Lee, T. Katsouleas, J.C. Adam, OSIRIS: a three-dimensional, fully

relativistic particle in cell code for modeling plasma based accelerators, Lecture Notes in Computer Science 2331 (2002) 342–351.
[4] K.J. Bowers, B.J. Albright, L. Yin, B. Bergen, T.J.T. Kwan, Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation,

Physics of Plasmas 15 (2008) 055703.
[5] W.B.Mori, Personal Communication.
[6] NVIDIA CUDA TM Programming Guide Version 3.0., NVIDIA Corporation, 2010.
[7] V.K. Decyk, T.V. Singh, S.A. Friedman, Graphical Processing Unit-Based Particle-in-Cell Simulations, in: Proceedings of the 10th International

Computational Accelerator Physics Conference (ICAP2009), San Francisco, CA, 2009.
[8] J.M. Nageswaran, N. Dutt, J.L. Krichmar, A. Nicolau, A.V. Veidenbaum, A configurable simulation environment for the efficient simulation of large-scale

spiking neural networks on graphics processors, Neural Networks 22 (2009) 791–800.
[9] J. Villasenor, O. Buneman, Rigorous charge conservation for local electromagnetic-field solvers, Computer Physics Communications 69 (1992) 306–316.

[10] O. Buneman, TRISTAN The 3-D Electromagnetic Particle Code, in: H. Matsumoto, Y. Omura (Eds.), Computer Space Plasma Physics: Simulation
Techniques and Software, Terra Scientific Publishing Company, Tokyo, 1993, pp. 67–84.

[11] T. Umeda, Y. Omura, T. Tominaga, H. Matsumoto, A new charge conservation method in electromagnetic particle-in-cell simulations, Computer Physics
Communications 156 (2003) 73–85.

[12] G. Stantchev, W. Dorland, N. Gumerov, Fast parallel Particle-To-Grid interpolation for plasma PIC simulations on the GPU, Journal of Parallel and
Distributed Computing 68 (2008) 1339–1349.

[13] V. Podlozhnyuk, Histogram calculation in CUDA, (2007) URL: <http://www.nvidia.com/object/cuda_sample_data-parallel.html#histogram256>.
[14] N. Satish, M. Harris, M. Garland, Designing Efficient Sorting Algorithms for Manycore GPUs, in: Proceedings of IEEE International Parallel and

Distributed Processing Symposium 2009, vol. 1, 2009.

http://www.nvidia.com/object/cuda_sample_data-parallel.html#histogram256

	Particle-in-cell simulations with charge-conserving current deposition on graphic processing units
	Introduction
	CUDA implementation
	CUDA overview
	Data structures
	Current deposition
	Particle sorting
	Field solver
	Particle pusher

	Performance results
	Discussion and conclusion
	References


