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ABSTRACT
This paper presents CHeckpointed Early Resource RecYcling
(Cherry), a hybrid mode of execution based on ROB and checkpoint-
ing that decouples resource recycling and instruction retirement. Re-
sources are recycled early, resulting in a more efficient utilization.
Cherry relies on state checkpointing and rollback to service excep-
tions for instructions whose resources have been recycled. Cherry
leverages the ROB to (1) not require in-order execution as a fallback
mechanism, (2) allow memory replay traps and branch mispredic-
tions without rolling back to the Cherry checkpoint, and (3) quickly
fall back to conventional out-of-order execution without rolling back
to the checkpoint or flushing the pipeline.

We present a Cherry implementation with early recycling at three
different points of the execution engine: the load queue, the store
queue, and the register file. We report average speedups of 1.06
and 1.26 in SPECint and SPECfp applications, respectively, relative
to an aggressive conventional architecture. We also describe how
Cherry and speculative multithreading can be combined and com-
plement each other.

1 INTRODUCTION
Modern out-of-order processors typically employ a reorder buffer
(ROB) to retire instructions in order [18]. In-order retirement en-
ables precise bookkeeping of the architectural state, while making
out-of-order execution transparent to the user. When, for example,
an instruction raises an exception, the ROB continues to retire in-
structions up to the excepting one. At that point, the processor’s
architectural state reflects all the updates made by preceding instruc-
tions, and none of the updates made by the excepting instruction or
its successors. Then, the exception handler is invoked.

One disadvantage of typical ROB implementations is that individ-
ual instructions hold most of the resources that they use until they
retire. Examples of such resources are load/store queue entries and
physical registers [1, 6, 21, 23]. As a result, an instruction that com-
pletes early holds on to these resources for a long time, even if it
does not need them anymore. Tying up unneeded resources limits
performance, as new instructions may find nothing left to allocate.

To tackle this problem, we propose CHeckpointed Early Resource
RecYcling (Cherry). Cherry is a mode of execution that decouples
the recycling of the resources used by an instruction and the retire-
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ment of the instruction. Resources are released early and gradually
and, as a result, they are utilized more efficiently. For a processor
with a given level of resources, Cherry’s early recycling can boost
the performance; alternatively, Cherry can deliver a given level of
performance with fewer resources.

While Cherry uses the ROB, it also relies on state checkpointing
to roll back to a correct architectural state when exceptions arise for
instructions whose resources have already been recycled. When this
happens, the processor re-executes from the checkpoint in conven-
tional out-of-order mode (non-Cherry mode). At the time the ex-
ception re-occurs, the processor handles it precisely. Thus, Cherry
supports precise exceptions. Moreover, Cherry uses the cache hier-
archy to buffer memory system updates that may have to be undone
in case of a rollback; this allows much longer checkpoint intervals
than a mechanism limited to a write buffer.

At the same time, Cherry leverages the ROB to (1) not require in-
order execution as a fallback mechanism, (2) allow memory replay
traps and branch mispredictions without rolling back to the Cherry
checkpoint, and (3) quickly fall back to conventional out-of-order
execution without rolling back to the checkpoint or even flushing
the pipeline.

To illustrate the potential of Cherry, we present an implementa-
tion on a processor with separate structures for the instruction win-
dow, ROB, and register file. We perform early recycling at three key
points of the execution engine: the load queue, the store queue, and
the register file. To our knowledge, this is the first proposal for early
recycling of load/store queue entries in processors with load specu-
lation and replay traps. Overall, this Cherry implementation results
in average speedups of 1.06 for SPECint and 1.26 for SPECfp appli-
cations, relative to an aggressive conventional architecture with an
equal amount of such resources.

Finally, we discuss how to combine Cherry and Speculative Mul-
tithreading (SM) [4, 9, 14, 19, 20]. These two checkpoint-based
techniques complement each other: while Cherry uses potentially
unsafe resource recycling to enhance instruction overlap within a
thread, SM uses potentially unsafe parallel execution to enhance in-
struction overlap across threads. We demonstrate how a combined
scheme reuses much of the hardware required by either technique.

This paper is organized as follows: Section 2 describes Cherry
in detail; Section 3 explains the three recycling mechanisms used in
this work; Section 4 presents our setup to evaluate Cherry; Section 5
shows the evaluation results; Section 6 presents the integration of
Cherry and SM; and Section 7 discusses related work.



2 CHERRY: CHECKPOINTED EARLY
RESOURCE RECYCLING

The idea behind Cherry is to decouple the recycling of the resources
consumed by an instruction and the retirement of the instruction. A
Cherry-enabled processor recycles resources as soon as they become
unnecessary in the normal course of operation. As a result, resources
are utilized more efficiently. Early resource recycling, however, can
make it hard for a processor to achieve a consistent architectural state
if needed. Consequently, before a processor enters Cherry mode, it
makes a checkpoint of its architectural registers in hardware (Sec-
tion 2.1). This checkpoint may be used to roll back to a consistent
state if necessary.

There are a number of events whose handling requires gathering
a precise image of the architectural state. For the most part, these
events are memory replay traps, branch mispredictions, exceptions,
and interrupts. We can divide these events into two groups:

The first group consists of memory replay traps and branch mis-
predictions. A memory replay trap occurs when a load is found to
have issued to memory out of order with respect to an older memory
operation that overlaps [1]. When the event is identified, the offend-
ing load and all younger instructions are re-executed (Section 3.1.1).
A branch misprediction squashes all instructions younger than the
branch instruction, after which the processor initiates the fetching of
new instructions from the correct path.

The second group of events comprises exceptions and interrupts.
In this paper we use the term exception to refer to any synchronous
event that requires the precise architectural state at a particular in-
struction, such as a division by zero or a page fault. In contrast,
we use interrupt to mean asynchronous events, such as I/O or timer
interrupts, which are not directly associated with any particular in-
struction.

The key aspect that differentiates these two groups is that, while
memory replay traps and branch mispredictions are a common, di-
rect consequence of ordinary speculative execution in an aggressive
out-of-order processor, interrupts and exceptions are extraordinary
events that occur relatively infrequently.

As a result, the philosophy of Cherry is to allow early recycling
of resources only when they are not needed to support (the rela-
tively common) memory replay traps and branch mispredictions.
However, recycled resources may be needed to service extraordi-
nary events, in which case the processor restores the checkpointed
state and restarts execution from there (Section 2.3.3).

To restrict resource recycling in this way, we identify a ROB entry
as the Point of No Return (PNR). The PNR corresponds to the oldest
instruction that can still suffer a memory replay trap or a branch
misprediction (Figure 1). Early resource recycling is allowed only
for instructions older than the PNR.

Instructions that are no older than the PNR are called reversible.
In these instructions, when memory replay traps, branch mispredic-
tions, or exceptions occur, they are handled as in a conventional out-
of-order processor. It is never necessary to roll back to the check-
pointed state. In particular, exceptions raised by reversible instruc-
tions are precise.

Instructions that are older than the PNR are called irreversible.
Such instructions may or may not have completed their execution.
However, some of them may have released their resources. In the
event that an irreversible instruction raises an exception, the pro-
cessor has to roll back to the checkpointed state. Then, the pro-
cessor executes in conventional out-of-order mode (non-Cherry or
normal mode) until the exception re-occurs. When the exception
re-occurs, it is handled in a precise manner as in a conventional pro-
cessor. Then, the processor can return to Cherry mode if desired
(Section 2.3.3).

As for interrupts, because of their asynchronous nature, they are
always handled without any rollback. Specifically, processor execu-
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Figure 1: Conventional ROB and Cherry ROB with the Point
of No Return (PNR). We assume a circular ROB implemen-
tation with Head and Tail pointers [18].

tion seamlessly falls back to non-Cherry mode (Section 2.1). Then,
the interrupt is processed. After that, the processor can return to
Cherry mode.

The position of the PNR depends on the particular implementa-
tion and the types of resources recycled. Conservatively, the PNR
can be set to the oldest of (1) the oldest unresolved branch instruc-
tion (UB), and (2) the oldest memory instruction whose address is
still unresolved (UM ). Instructions older than oldest(UB ; UM ) are
not subject to reply traps or squashing due to branch misprediction.
If we define UL and US as the oldest load and store instruction,
respectively, whose address is unresolved, the PNR expression be-
comes oldest(UB ; UL; US). In practice, a more aggressive defini-
tion is possible in some implementations (Section 3).

In the rest of this section, we describe Cherry as follows: first, we
introduce the basic operation under Cherry mode; then, we describe
needed cache hierarchy support; next, we address events that cause
the squash and re-execution of instructions; finally, we examine an
important Cherry parameter.

2.1 Basic Operation under Cherry Mode
Before a processor can enter Cherry mode, a checkpoint of the ar-
chitectural register state has to be made. A simple support for check-
pointing includes a backup register file to keep the checkpointed
register state and a retirement map at the head of the ROB. Of
course, other designs are possible, including some without a retire-
ment map [23].

With this support, creating a checkpoint involves copying the ar-
chitectural registers pointed to by the retirement map to the backup
register file, either eagerly or lazily. If it is done eagerly, the copy-
ing can be done in a series of bursts. For example, if the hardware
supports four data transfers per cycle, 32 architectural values can
be backed up in eight processor cycles. Note that the backup regis-
ters are not designed to be accessed by conventional operations and,
therefore, they are simpler and take less silicon than the main phys-
ical registers. If the copying is done lazily, the physical registers
pointed to by the retirement map are simply tagged. Later, each of
them is backed up before it is overwritten.

While the processor is in Cherry mode, the PNR races ahead of
the ROB head (Figure 1), and early recycling takes place in the irre-
versible set of instructions. As in non-Cherry mode, the retirement
map is updated as usual as instructions retire. Note, however, that
the retirement map may point to registers that have already been
recycled and used by other instructions. Consequently, the true ar-
chitectural state is unavailable—but reconstructible, as we explain



below.
Under Cherry mode, the processor boosts the IPC through more

efficient resource utilization. However, the processor is subject to
exceptions that may cause a costly rollback to the checkpoint. Con-
sequently, we do not keep the processor in Cherry mode indefinitely.
Instead, at some point, the processor falls back to non-Cherry mode.

This can be accomplished by simply freezing the PNR. Once all
instructions in the irreversible set have retired, and thus the ROB
head has caught up with the PNR, the retirement map reflects the
true architectural state. By this time, all the resources that were
recycled early would have been recycled in non-Cherry mode too.
This collapse step allows the processor to fall back to non-Cherry
mode smoothly. Overall, the checkpoint creation, early recycling,
and collapse step is called a Cherry cycle.

Cherry can be used in two ways. One way is to enter Cherry
mode only as needed, for example when the utilization of one of the
resources (physical register file, load queue, etc.) reaches a certain
threshold. This situation may be caused by an event such as a long-
latency cache miss. Once the pressure on the resources falls below
a second threshold, the processor returns to non-Cherry mode. We
call this use on-demand Cherry.

Another way is to run in Cherry mode continuously. In this case,
the processor kepts executing in Cherry mode irrespective of the
regime of execution, and early recycling takes place all the time.
However, from time to time, the processor needs to take a new
checkpoint in order to limit the penalty of an exception in an irre-
versible instruction. To generate a new checkpoint, we simply freeze
the PNR as explained before. Once the collapse step is completed, a
new checkpoint is made, and a new Cherry cycle starts. We call this
use rolling Cherry.

2.2 Cache Hierarchy Support
While in Cherry mode, the memory system receives updates that
have to be discarded if the processor state is rolled back to the check-
point. To support long Cherry cycles, we must allow such updates
to overflow beyond the processor buffers. To make this possible,
we keep all these processor updates within the local cache hierar-
chy, disallowing the spill of any such updates into main memory.
Furthermore, we add one Volatile bit in each line of the local cache
hierarchy to mark the updated lines.

Writes in Cherry mode set the Volatile bit of the cache line that
they update. Reads, however, are handled as in non-Cherry mode.1

Cache lines with the Volatile bit set may not be displaced beyond the
outermost level of the local cache hierarchy, e.g. L2 in a two-level
structure. Furthermore, upon a write to a cached line that is marked
dirty but not Volatile, the original contents of the line are written
back to the next level of the memory hierarchy, to enable recovery
in case of a rollback. The cache line is then updated, and remains in
state dirty (and now Volatile) in the cache.

If the processor needs to roll back to the checkpoint while in
Cherry mode, all cache lines marked Volatile in its local cache hier-
archy are gang-invalidated as part of the rollback mechanism. More-
over, all Volatile bits are gang-cleared. On the other hand, if the pro-
cessor successfully falls back to non-Cherry mode, or if it creates a
new checkpoint while in rolling Cherry, we simply gang-clear the
Volatile bits in the local cache hierarchy.

These gang-clear and gang-invalidation operations can be done
in a handful of cycles using inexpensive custom circuitry. Figure
2 shows a bit cell that implements one Volatile bit. It consists of
a standard 6-T SRAM cell with one additional transistor for gang-
clear (inside the dashed circle). Assuming a 0:18�m TSMC process,

1Read misses that find the requested line marked Volatile in a lower level
of the cache hierarchy also set (inherit) the Volatile bit. This is done to ensure
that the lines with updates are correctly identified in a rollback.
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Figure 2: Example of the implementation of a Volatile bit
with a typical 6-T SRAM cell and an additional transistor for
gang-clear (inside the dashed circle).

and using SPICE to extract the capacitance of a line that would gang-
clear 8Kbits (one bit per 64B cache line in a 512KB cache), we
estimate that the gang-clear operation takes 6-10 FO4s [13]. If the
delay of a processor pipeline stage is about 6-8 FO4s, gang-clearing
can be performed in about two processor cycles. Gang-invalidation
simply invalidates all lines whose Volatile bit is set (by gang-clearing
their Valid bits).

Finally, we consider the case of a cache miss in Cherry mode that
cannot be serviced due to lack of evictable cache lines (all lines in
the set are marked Volatile). In general, if no space can be allocated,
the application must roll back to the checkpoint. To prevent this from
hapenning too often, one may bound the length of a Cherry cycle,
after which a new checkpoint is created. However, a more flexible
solution is to include a fully associative victim cache in the local
cache hierarchy, that accommodates evicted lines marked Volatile.
When the number of Volatile lines in the victim cache exceeds a
certain threshold, an interrupt-like signal is sent to the processor. As
with true interrupts (Section 2.3.2), the processor proceeds with a
collapse step and, once in non-Cherry mode, gang-clears all Volatile
bits. Then, a new Cherry cycle may begin.

2.3 Squash and Re-Execution of
Instructions

The main events that cause the squash and possible re-execution
of in-flight instructions are memory replay traps, branch mispre-
dictions, interrupts, and exceptions. We consider how each one is
handled in Cherry mode.

2.3.1 Memory Replay Traps and Branch
Mispredictions

Only instructions in the reversible set (Figure 1) may be squashed
due to memory replay traps or branch mispredictions. Since re-
sources have not yet been recycled in the reversible set, these events
can be handled in Cherry mode conventionally. Specifically, in a re-
play trap, the offending load and all the subsequent instructions are
replayed; in a branch misprediction, the instructions in the wrong
path are squashed and the correct path is fetched.

2.3.2 Interrupts

Upon receiving an interrupt while in Cherry mode, the hardware
automatically initiates the transition to non-Cherry mode by entering
a collapse step. Once non-Cherry mode is reached, the processor
handles the interrupt as usual.



Note that Cherry handles interrupts without rolling back to the
checkpoint. The only difference with respect to a conventional pro-
cessor is that the interrupt may have a slightly higher response time.
Depending on the application, we estimate the increase in the re-
sponse time to range from tens to a few hundred nanoseconds. Such
an increase is tolerable for typical asynchronous interrupts. In the
unlikely scenario that this extra latency is not acceptable, the sim-
plest solution is to disable Cherry.

2.3.3 Exceptions

A processor running in Cherry mode handles all exceptions pre-
cisely. An exception is processed differently depending on whether
it occurs on a reversible or an irreversible instruction (Figure 1).
When it occurs on a reversible one, the corresponding ROB entry
is marked. If the instruction is squashed before the PNR gets to it
(e.g. it is in the wrong path of a branch), the (false) exception will
have no bearing on Cherry. If, instead, the PNR reaches that ROB
entry while it is still marked, the processor proceeds to exit Cherry
mode (Section 2.1): the PNR is frozen and, as execution proceeds,
the ROB head eventually catches up with the PNR. At that point,
the processor is back to non-Cherry mode and, since the excepting
instruction is at the ROB head, the appropriate handler is invoked.

If the exception occurs on an irreversible instruction, the hard-
ware automatically rolls back to the checkpointed state and restarts
execution from there in non-Cherry mode. Rolling back to the
checkpointed state involves aborting any outstanding memory op-
erations, gang-invalidating all cache lines marked Volatile, gang-
clearing all Volatile bits, restoring the backup register file, and start-
ing to fetch instructions from the checkpoint. The processor exe-
cutes in conventional out-of-order mode (non-Cherry mode) until
the exception re-occurs. At that point, the exception is processed
normally, after which the processor can re-enter Cherry mode.

It is possible that the exception does not re-occur. This may be the
case, for example, for page faults in a shared-memory multiproces-
sor environment. Consequently, we limit the number of instructions
that the processor executes in non-Cherry mode before returning to
Cherry mode. One could remember the instruction that caused the
exception and only re-execute in non-Cherry mode until such in-
struction retires. However, a simpler, conservative solution that we
use is to remain in non-Cherry mode until we retire the number of in-
structions that are executed in a Cherry cycle. Section 2.4 discusses
the optimal size of a Cherry cycle.

2.3.4 OS and Multiprogramming Issues

Given that the operating system performs I/O mapped updates and
other hard-to-undo operations, it is advisable not to use Cherry mode
while in the OS kernel. Consequently, system calls and other entries
to the kernel automatically exit Cherry mode.

However, Cherry blends well with context switching and multi-
programming. If a timer interrupt mandates a context switch for
a process, the processor bails out of Cherry mode as described in
Section 2.3.2, after which the resident process can be preempted
safely. If it is the process who yields the CPU (e.g. due to a blocking
semaphore), the system call itself exits Cherry mode, as described
above. In no case is a rollback to the checkpoint necessary.

2.4 Optimal Size of a Cherry Cycle
The size of a Cherry cycle is crucial to the performance of Cherry.
In what follows, we denote by Tc the duration of a Cherry cycle
ignoring any Cherry overheads. For Cherry to work well, Tc has
to be within a range. If Tc is too short, performance is hurt by the
overhead of the checkpointing and the collapse step. If, instead, Tc
is too long, both the probability of suffering an exception within

a Cherry cycle and the cost of a rollback are high. The optimal
Tc is found somewhere in between these two opposing conditions.
We now show how to find the optimal Tc. For simplicity, in the
following discussion we assume that the IPC in Cherry and non-
Cherry mode stays constant at s�IPC and IPC, respectively, where s
denotes the average overhead-free speedup delivered by the Cherry
mode.

We can express the per-Cherry-cycle overhead To of running in
Cherry mode as:

To = ck + pece (1)

where ck is the overhead caused by checkpointing and by the re-
duced performance experienced in the subsequent collapse step,
pe is the probability of suffering a rollback-causing exception in a
Cherry cycle, and ce is the cost of suffering such an exception. If
exceptions occur every Te cycles, with Tc < Te, we can rewrite:

pe =
Tc
Te

(2)

Notice that the expression for pe is conservative, since it assumes
that all exceptions cause rollbacks. In reality, only exceptions trig-
gered by instructions in the irreversible set cause the processor to
roll back, and thus the actual pe would be lower.

To calculate the cost of suffering such an exception, we assume
that when exceptions arrive, they do so half way into a Cherry cycle.
In this case, the cost consists of re-executing half Cherry cycle at
non-Cherry speed, plus the incremental overhead of executing (for
the first time) another half Cherry cycle at non-Cherry speed rather
than at Cherry speed. Recall that, after suffering an exception, we
execute the instructions of one full Cherry cycle in non-Cherry mode
(Section 2.3.3). Consequently:

ce = s
Tc
2

+ (s� 1)
Tc
2

(3)

The optimal Tc is the one that minimizes To=Tc. Substituting Equa-
tion 2 and Equation 3 in Equation 1, and dividing by Tc yields:

To
Tc

=
ck
Tc

+

�
s�

1

2

�
Tc
Te

(4)

This expression finds a minimum in:

Tc =

s
ckTe

s� 1

2

(5)

Figure 3 plots the relative overhead To=Tc against the duration
Tc of an overhead-free Cherry cycle (Equation 4). For that experi-
ment, we borrow from our evaluation section (Section 5): 3.2GHz
processor, ck = 18:75ns (60 cycles), and s = 1:06. Then, we plot
curves for duration of interval between exceptions Te ranging from
200�s to 1000�s. The minimum in each curve yields the optimal
Tc (Equation 5). As we can see from the figure, for the parameters
assumed, the optimal Tc hovers around a few microseconds.

3 EARLY RESOURCE RECYCLING
To illustrate Cherry, we implement early recycling in the load/store
unit (Section 3.1) and register file (Section 3.2). Early recycling
could be applied to other resources as well.
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Figure 3: Example of Cherry overheads for different inter-
vals between exceptions (Te) and overhead-free Cherry cycle
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3.1 Load/Store Unit
Typical load/store units comprise one reorder queue for loads and
one for stores [1, 21]. Either reorder queue may become a perfor-
mance bottleneck if it fills up. In this section we first discuss a con-
ventional design of the queues, and then we propose a new mecha-
nism for early recycling of load/store queue entries.

3.1.1 Conventional Design

The processor assigns a Load Queue (LQ) entry to every load in-
struction in program order, as the instruction undergoes renaming.
The entry initially contains the destination register. As the load exe-
cutes, it fills its LQ entry with the appropriate physical address and
issues the memory access. When the data are obtained from the
memory system, they are passed to the destination register. Finally,
when the load finishes and reaches the head of the ROB, the load
instruction retires. At that point, the LQ entry is recycled.

Similarly, the processor assigns Store Queue (SQ) entries to every
store instruction in program order at the renaming stage. As the store
executes, it generates the physical address and the data value, which
are stored in the corresponding SQ entry. An entry whose address
and data are still unknown is said to be empty. When both address
and data are known, and the corresponding store instruction reaches
the head of the ROB, the update is sent to the memory system. At
that point, the store retires and the SQ entry is recycled.

Address Disambiguation and Load-Load Replay

At the time a load generates its address, a disambiguation step is
performed by comparing its physical address against that of older
SQ entries. If a fully overlapping entry is found, and the data in the
SQ entry are ready, the data are forwarded to the load directly. How-
ever, if the accesses fully overlap but the data are still missing, or if
the accesses are only partially overlapping, the load is rejected, to be
dispatched again after a number of cycles. Finally, if no overlapping
store exists in the SQ that is older than the load, the load requests
the data from memory at once.

The physical address is also compared against newer LQ entries.
If an overlapping entry is found, the newer load and all its subse-
quent instructions are replayed, to eliminate the chance of an inter-
vening store by another device causing an inconsistency.

This last event, called load-load replay trap, is meaningful only in
environments where more than one device can be accessing the same
memory region simultaneously, as in multiprocessors. In uniproces-

sor environments, such a situation could potentially be caused by
processor and DMA accesses. However, in practice, it does not oc-
cur: the operating system ensures mutual exclusion of processor and
DMA accesses by locking memory pages as needed. Consequently,
load-load replay support is typically not necessary in uniprocessors.

Figure 4(a) shows an example of a load address disambiguation
and a check for possible load-load replay traps.
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Figure 4: Actions taken on load (a) and store (b) operations
in the conventional load/store unit assumed in this paper. L
and Lx stand for Load, while S and Sx stand for Store.

Store-Load Replay

Once the physical address of a store is resolved, it is compared
against newer entries in the LQ. The goal is to detect any exposed
load, namely a newer load whose address overlaps with that of the
store, without an intervening store that fully covers the load. Such
a load has consumed data prematurely, either from memory or from
an earlier store. Thus, the load and all instructions following it are
aborted and replayed. This mechanism is called store-load replay
trap [1].

Figure 4(b) shows an example of a check for possible store-load
replay traps.

3.1.2 Design with Early Recycling

Following Cherry’s philosophy, we want to release LQ and SQ en-
tries as early as it is possible to do so. In this section, we describe
the conditions under which this is the case.



Optimized LQ

As explained before, a LQ entry may trigger a replay trap if an older
store (or older load in multiprocessors) resolves to an overlapping
address. When we release a LQ entry, we lose the ability to compare
against its address (Figure 4). Consequently, we can only release a
LQ entry when such a comparison is no longer needed because no
replay trap can be triggered.

To determine whether or not a LQ entry is needed to trigger a
replay trap, we use the UL and US pointers to the ROB (Section 2).
Any load that is older thanUS cannot trigger a store-load replay trap,
since the physical addresses of all older stores are already known.
Furthermore, any load that is older than UL cannot trigger a load-
load replay trap, because the addresses of all older loads are already
known.

In a typical uniprocessor environment, only store-load replay
traps are relevant. Consequently, as the US moves in the ROB, any
loads that are older than US release their LQ entry. In a multiproces-
sor or other multiple-master environment, both store-load and load-
load replay traps are relevant. Therefore, as the US and UL move in
the ROB, any loads that are older than oldest(UL; US) release their
LQ entry.2 To keep the LQ simple, LQ entries are released in order.

Early recycling of LQ entries is not limited by UB ; it is fine
for load instructions whose entry has been recycled to be subject
to branch mispredictions. Moreover, it is possible to service ex-
ceptions and interrupts inside the irreversible set without needing a
rollback. This is because LQ entries that are no longer needed to
detect possible replay traps can be safely recycled without creating
a side effect. In light of an exception or interrupt, the recycling of
such a LQ entry does not alter the processor state needed to service
that exception or interrupt. Section 3.3 discusses how this blends in
a Cherry implementation with recycling of other resources.

Since LQ entries are recycled early, we partition the LQ into two
structures. The first one is called Load Reorder Queue (LRQ), and
supports the address checking functionality of the conventional LQ.
Its entries are assigned in program order at renaming, and recycled
according to the algorithm just described. Each entry contains the
address of a load.

The second structure is called Load Data Queue (LDQ), and sup-
ports the memory access functionality of the conventional LQ. LDQ
entries are assigned as load instructions begin execution, and are re-
cycled as soon as the data arrive from memory and are delivered to
the appropriate destination register (which the entry points to). Be-
cause of their relatively short-lived nature, it is reasonable to assume
that the LDQ does not become a bottleneck as we optimize the LRQ.
LDQ entries are not assigned in program order, but the LDQ must
be addressable by transaction id, so that the entry can be found when
the data come back from memory.

Finally, note that, even for a load that has had its LRQ entry re-
cycled, address checking proceeds as usual. Specifically, when its
address is finally known, it is compared against older stores for
possible data forwarding. This case only happens in uniproces-
sors, since in multiprocessors the PNR for LQ entries depends on
oldest(UL; US).

Optimized SQ

When we release a SQ entry, we must send the store to the memory
system. Consequently, we can only release a SQ entry when the old
value in the memory system is no longer needed. For the latter to
be true, it is sufficient that: (1) no older load is pending address dis-
ambiguation, (2) no older load is subject to replay traps, and (3) the
store is not subject to squash due to branch misprediction. Condition

2Note that the LQ entry for the load equal to oldest(UL; US) cannot trig-
ger a replay trap and, therefore, can also be released. However, for simplicity,
we ignore this case.

(1) means that all older loads have already generated their address
and, therefore, located their “supplier”, whether it is memory or an
older store. If it is memory, recall that load requests are sent to mem-
ory as soon as their addresses are known. Therefore, if our store is
older than UL, it is guaranteed that all older loads that need to fetch
their data from memory have already done so. Condition (2) implies
that all older loads are older than oldest(US) (typical uniprocessor)
or oldest(UL; US) (multiprocessor or other multiple-master system),
as discussed above. Finally, condition (3) implies that the store itself
is older than UB . Therefore, all conditions are met if the store itself
is older than oldest(UL; US ; UB).3

There are two additional implementation issues related to ac-
cesses to overlapping addresses. They are relevant when we send
a store to the memory system and recycle its SQ entry. First, we
would have to compare its address against all older entries in the SQ
to ensure that stores to overlapping addresses are sent to the cache
in program order. To simplify the hardware, we eliminate the need
for such a comparison by simply sending the updates to the mem-
ory system (and recycling the SQ entries) in program order. In this
case, in-order updates to overlapping addresses are automatically
enforced.

Second, note that a store is not sent to the memory system until
all previous loads have been resolved (store is older than UL). One
such load may be to an address that overlaps with that of the store.
Recall that loads are sent to memory as soon as their addresses are
known. The LRQ entry for the load may even be recycled. This case
is perfectly safe if the cache system can ensure the ordering of the
accesses. This can be implemented in a variety of ways (queue at
the MSHR, reject store, etc.), whose detailed implementation is out
of the scope of this work.

3.2 Register File
The register file may become a performance bottleneck if the proces-
sor runs out of physical registers. In this section, we briefly discuss
a conventional design of the register file, and then propose a mecha-
nism for early recycling of registers.

3.2.1 Conventional Design

In our design, we use a register map at the renaming stage of the
pipeline and one at the retirement stage. At renaming, instructions
pick one available physical register as the destination for their op-
eration and update the renaming map accordingly. Similarly, when
the instruction retires, it updates the retirement map to reflect the
architectural state immediately after the instruction. Typically, the
retirement map is used to support precise exception handling: when
an instruction raises an exception, the processor waits until such in-
struction reaches the ROB head, at which point the processor has a
precise image of the architectural state before the exception.

Physical registers holding architectural values are recycled when
a retiring instruction updates the retirement map to point away from
them. Thus, once a physical register is allocated at renaming for an
instruction, it remains “pinned” until a subsequent instruction super-
sedes it at retirement. However, a register may become dead much
earlier: as soon as it is superseded at renaming, and all its consumer
instructions have read its value. From this moment, and until the
superseding instruction retires, the register remains pinned in case
the superseding instruction is rolled back for whatever reason, e.g.
due to branch misprediction or exception. This effect causes a sub-
optimal utilization of the register file.

3Note that it is safe to update the memory system if the store is equal to
oldest(UL; US ; UB). However, for simplicity, we ignore this case.



3.2.2 Design with Early Recycling

Following Cherry’s philosophy, we recycle dead registers as soon as
possible, so that they can be reallocated by new instructions. How-
ever, we again need to rely on checkpointing to revert to a correct
state in case of an exception in an instruction in the irreversible set.

We recycle a register when the following two conditions hold.
First, the instruction that produces the register and all those that
consume it must be (1) executed and (2) both free of replay
traps and not subject to branch mispredictions. The latter implies
that they are older than oldest(US ; UB) (typical uniprocessor) or
oldest(UL; US ; UB) (multiprocessor or other multiple-master sys-
tem), as discussed above.

The second condition is that the instruction that supersedes the
register is not subject to branch mispredictions (older than UB).
Squashing such an instruction due to a branch misprediction would
have the undesirable effect of reviving the superseded register. No-
tice, however, that the instruction can harmlessly be re-executed
due to a memory replay trap, and thus ordering constraints around
fUL; USg are unnecessary. In practice, to simplify the imple-
mentation, we also require that the instruction that supersedes the
register be older than oldest(US ; UB) (typical uniprocessor) or
oldest(UL; US ; UB) (multiprocessor or other multiple-master sys-
tem).

In our implementation, we augment every physical register with a
Superseded bit and a Pending count. This support is similar to [17].
The Superseded bit marks whether the instruction that supersedes
the register is older than oldest(US ; UB) (or oldest(UL; US ; UB)
in multiprocessors), which implies that so are all consumers. The
Pending count records how many instructions among the consumers
and producer of this register are older than oldest(US ; UB) (or
oldest(UL; US ; UB) in multiprocessors) and have not yet completed
execution. A physical register can be recycled only when the Su-
perseded bit is set and the Pending count is zero. Finally, we also
assume that instructions in the ROB keep, as part of their state, a
pointer to the physical register that their execution supersedes. This
support exists in the MIPS R10000 processor [23].

As an instruction goes past oldest(US ; UB) (or
oldest(UL; US ; UB) in multiprocessors), the proposed new
bits in the register file are acted upon as follows: (1) If the
instruction has not finished execution, the Pending count of every
source and destination register is incremented; (2) irrespective of
whether the instruction has finished execution, the Superseded bit of
the superseded register, if any, is set; (3) if the superseded register
has both a set Superseded bit and a zero Pending count, the register
is added to the free list.

Additionally, every time that an instruction past oldest(US ; UB)
(or oldest(UL; US ; UB) in multiprocessors), finishes executing, it
decrements the Pending count of its source and destination registers.
If the Pending count of a register reaches zero and its Superseded bit
is set, that register is added to the free list.

Overall, in Cherry mode, register recycling occurs before the re-
tirement stage. Note that, upon a collapse step, the processor seam-
lessly switches from Cherry to non-Cherry register recycling. This
is because, at the time the irreversible set is fully collapsed, all early
recycled registers in Cherry (and only those) would have also been
recycled in non-Cherry mode.

3.3 Putting It All Together
In this section we have applied Cherry’s early recycling approach
to three different types of resources: LQ entries, SQ entries, and
registers. When considered separately, each resource defines its own
PNR and irreversible set. Table 1 shows the PNR for each of these
three resources.

When combining early recycling of several resources, we define

Resource PNR Value
LQ entries (uniprocessor) US
LQ entries (multiprocessor) oldest(UL; US)
SQ entries oldest(UL; US ; UB)
Registers (uniprocessor) oldest(US ; UB)
Registers (multiprocessor) oldest(UL; US ; UB)

Table 1: PNR for each of the example resources that are
recycled early under Cherry.

the dominating PNR as the one which is farthest from the ROB head
at each point in time. Exceptions on instructions older than that
PNR typically require a rollback to the checkpoint; exceptions on
instructions newer than that PNR can simply trigger a collapse step
so that the processor falls back to non-Cherry mode.

However, it is important to note that our proposal for early recy-
cling of LQ entries is a special case: it guarantees precise handling
of extraordinary events even when they occur within the irreversible
set (Section 3.1.2). As a result, the PNR for LQ entries need not be
taken into account when determining the dominating PNR. Thus, for
a Cherry processor with recycling at these three points, the dominat-
ing PNR is the newest of the PNRs for SQ entries and for registers.
In a collapse step, the dominating PNR is the one that freezes until
the ROB head catches up with it.

4 EVALUATION SETUP
Simulated Architecture

We evaluate Cherry using execution-driven simulations with a de-
tailed model of a state-of-the-art processor and its memory subsys-
tem. The baseline processor modeled is an eight-issue dynamic su-
perscalar running at 3.2GHz that has two levels of on-chip caches.
The details of the Baseline architecture modeled are shown in Ta-
ble 2. In our simulations, the latency and occupancy of the structures
in the processor pipeline, caches, bus, and memory are modeled in
detail.

Processor

Frequency: 3.2GHz
Fetch/issue/commit width: 8/8/12
I. window/ROB size: 128/384
Int/FP registers : 192/128
Ld/St units: 2/2
Int/FP/branch units: 7/5/3
Ld/St queue entries: 32/32
MSHRs: 24

Branch penalty: 7 cycles (minimum)
Up to 1 taken branch/cycle
RAS: 32 entries
BTB: 4K entries, 4-way assoc.
Branch predictor:

Hybrid with speculative update
Bimodal size: 8K entries
Two-level size: 64K entries

Cache L1 L2 Bus & Memory

Size: 32KB 512KB
RT: 2 cycles 10 cycles
Assoc: 4-way 8-way
Line size: 64B 128B
Ports: 4 1

FSB frequency: 400MHz
FSB width: 128bit
Memory: 4-channel Rambus
DRAM bandwidth: 6.4GB/s
Memory RT: 120ns

Table 2: Baseline architecture modeled. In the table, MSHR,
RAS, FSB and RT stand for Miss Status Handling Register,
Return Address Stack, Front-Side Bus, and Round-Trip time
from the processor, respectively. Cycle counts refer to pro-
cessor cycles.

The processor has separate structures for the ROB, instruction
window, and register file. When an instruction is issued, it is placed
in both the instruction window and the ROB. Later, when all the in-
put operands are available, the instruction is dispatched to the func-
tional units and is removed from the instruction window.



In our simulations, we break down the execution time based on
the reason why, for each issue slot in each cycle, the opportunity to
insert a useful instruction into the instruction window is missed (or
not). If, for a particular issue slot, an instruction is inserted into the
instruction window, and that instruction eventually graduates, that
slot is counted as busy. If, instead, an instruction is available but
is not inserted in the instruction window because a necessary re-
source is unavailable, the missed opportunity is attributed to such
a resource. Example of such resources are load queue entry, store
queue entry, register, or instruction window entry. Finally, instruc-
tions from mispredicted paths and other overheads are accounted for
separately.

We also simulate four enhanced configurations of the Baseline ar-
chitecture: Base2, Base3, Base4, and Limit. Going from Baseline to
Base2, we simply add 32 load queue entries, 32 store queue entries,
32 integer registers, and 32 FP registers. The same occurs as we go
from Base2 to Base3, and from Base3 to Base4. Limit has an unlim-
ited number of load/store queue entries and integer/FP registers.

Cherry Architecture

We simulate the Baseline processor with Cherry support (Cherry).
We estimate the cost of checkpointing the architectural registers to
be 8 cycles. Moreover, we use simulations to derive an average over-
head of 52 cycles for a collapse step. Consequently, ck becomes 60
cycles. If we set the duration of an overhead-free Cherry cycle (Tc)
to 5�s, the ck overhead becomes negligible. Under these conditions,
equation 4 yields a total relative overhead (To=Tc) of at most one
percent, if the separation between exceptions (Te) is 448�s or more.
Note that, in equation 4, we use an average overhead-free Cherry
speedup (s) of 1.06. This number is what we obtain for SPECint ap-
plications in Section 5. In our evaluation, however, we do not model
exceptions. Neglecting them does not introduce significant inaccu-
racy, given that we simulate applications in steady state, where page
faults are infrequent.

Applications

We evaluate Cherry using most of the applications of the SPEC
CPU2000 suite [5]. The first column of Table 3 in Section 5.1 lists
these. Some applications from the suite are missing; this is due to
limitations in our simulation infrastructure. For these applications,
it is generally too time-consuming to simulate the reference input
set to completion. Consequently, in all applications, we skip the ini-
tialization, and then simulate 750 million instructions. If we cannot
identify the initialization code, we skip the first 500 million instruc-
tions before collecting statistics. The applications are compiled with
-O2 using the native SGI MIPSPro compiler.

5 EVALUATION

5.1 Overall Performance
Figures 5 and 6 show the speedups obtained by the Cherry, Base2,
Base3, Base4, and Limit configurations over the Baseline system.
The figures correspond to the SPECint and SPECfp applications,
respectively, that we study. For each application, we show two bars.
The leftmost one (R) uses the realistic branch prediction scheme of
Table 2. The rightmost one (P) uses perfect branch prediction for
both the advanced and Baseline systems. Note that, even is this case,
Cherry uses UB .

The figures show that Cherry yields speedups across most of the
applications. The speedups are more modest in SPECint applica-
tions, where Cherry’s average performance is between that of Base2
and Base3. For SPECfp applications, the speedups are higher. In
this case, the average performance of Cherry is close to that of Base4

and Limit. Overall, with the realistic branch prediction, the average
speedup of Cherry on SPECint and SPECfp applications is 1.06 and
1.26, respectively.

If we compare the bars with realistic and perfect branch predic-
tion, we see that some SPECint applications experience significantly
higher speedups when branch prediction is perfect. This is the case
for both Cherry and enhanced non-Cherry configurations. The rea-
son is that an increase in available resources through early recycling
(Cherry) or by simply adding more resources (Base2 to Base4 and
Limit) increases performance when these resources are successfully
re-utilized by instructions that would otherwise wait. Thus, if branch
prediction is poor, most of these extra resources are in fact wasted
by speculative instructions whose execution is ultimately moot. In
perlbmk, for example, the higher speedups attained when all config-
urations (including Baseline) operate with perfect branch prediction
is due to better resource utilization. On the other hand, SPECfp
applications are largely insensitive to this effect, since branch pre-
diction is already very successful in the realistic setup.

In general, the gains of Cherry come from recycling resources.
To understand the degree of recycling, Table 3 characterizes the ir-
reversible set and other related Cherry parameters. The data corre-
sponds to realistic branch prediction. Specifically, the second col-
umn shows the average fraction of ROB entries that are used. The
next three columns show the size of the irreversible set, given as a
fraction of the used ROB. Recall that the irreversible set is the dis-
tance between the PNR and the ROB head (Figure 1). Since the irre-
versible set depends on the resource being recycled, we give separate
numbers for register, LQ entry, and SQ entry recycling. As indicated
in Section 3.3, the PNR in uniprocessors is oldest(US ; UB) for reg-
isters, US for LQ entries, and oldest(UL; US ; UB) for SQ entries.
Finally, the last column shows the average duration of the collapse
step. Recall from Section 3.3 that it involves identifying the newest
of the PNR for registers and for SQ entries, and freezing it until the
ROB head catches up with it.

Apps
Used Irreversible Set Collapse
ROB (% of Used ROB) Step
(%) Reg LQ SQ (Cycles)

SP
E

C
in

t

bzip2 29.9 24.3 55.8 19.5 292.3
crafty 28.8 33.4 97.6 28.6 41.9
gcc 19.1 19.0 82.3 17.8 66.9
gzip 28.5 65.5 81.7 8.5 47.1
mcf 30.1 14.6 37.7 13.8 695.6
parser 30.7 26.1 80.7 21.8 109.2
perlbmk 12.2 24.6 89.9 20.5 23.3
vortex 39.3 26.3 87.1 24.9 64.4
vpr 32.9 25.2 83.6 21.5 165.1
Average 27.9 28.7 77.4 19.7 167.3

SP
E

C
fp

applu 62.2 61.6 62.4 60.7 411.5
apsi 76.8 82.3 83.1 81.6 921.1
art 88.0 54.3 62.6 29.2 1247.3
equake 41.6 61.6 69.1 57.3 135.2
mesa 29.8 35.1 44.6 34.6 33.7
mgrid 65.1 91.5 93.5 91.3 335.9
swim 59.4 64.8 65.4 64.7 949.1
wupwise 71.9 90.3 71.2 87.9 190.7
Average 61.9 67.7 78.3 63.4 528.1

Table 3: Characterizing the irreversible set and other related
Cherry parameters.

Consider the SPECint applications first. The irreversible set for
the LQ entries is very large. Its average size is about 77% of the used
ROB. This shows that US moves far ahead of the ROB head. On
the other hand, the irreversible set for the registers is much smaller.
Its average size is about 29% of the used ROB. This means that
oldest(US ; UB) is not far from the ROB head. Consequently, UB
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is the pointer that keeps the PNR from advancing. In these applica-
tions, branch conditions often depend on long-latency instructions
and, as a result, they remain unresolved for a while. Finally, the ir-
reversible set for the SQ entries is even smaller. Its average size is
about 20%. In this case, PNR is given by oldest(UL; US ; UB) and it
shows that UL further slows down the move of the PNR. In these ap-
plications, load addresses often depend on long-latency instructions
too.

In contrast, SPECfp applications have fewer conditional branches
and they are resolved faster. Furthermore, load addresses follow a
more regular pattern and are also resolved earlier. As a consequence,
the PNRs for register and SQ entries move far ahead of the ROB
head. The result is that Cherry delivers a much higher speedup for
SPECfp applications (Figure 6) that for SPECint (Figure 5).

We note that the larger irreversible sets for the SPECfp appli-
cations imply a higher cost for the collapse step. Specifically, the
average collapse step goes from 167 to 528 cycles as we go from
SPECint to SPECfp applications. A long collapse step increases the
term ck in Equation 4, which forces Tc to be longer.

5.2 Contribution of Resources
Figures 7 and 8 show the contribution of different components to
the execution time of the SPECint and SPECfp applications, respec-
tively. Each application shows the execution time for three config-
urations, namely Baseline, Cherry, and Limit. The execution times
are normalized to Baseline. The bars are broken down into busy time
(Busy) and different types of processor stalls due to: lack of physical
registers (Regs), lack of SQ entries (SQ), lack of load queue entries
(LQ). A final category (Other) includes other losses, including those
due to branch mispredictions or lack of entries in the instruction

window. Section 4 discussed how we obtain these categories.
The Baseline bars show that of the three potential bottlenecks tar-

geted in this paper, the LQ is by far the most serious one. Lack of
LQ entries causes a large stall in SPECint and, especially, SPECfp
applications.

Our proposal of early recycling of LQ entries is effective in both
the SPECint and SPECfp applications. Our optimization reduces
most of the LQ stall. It unleashes extra ILP, which in turn puts
more pressure on the SQ, register file, and other resources. Even
though Cherry does recycle some SQ entries and physical registers,
the net effect of our oprimizations is an increased level of saturation
on these two resources for both SPECint and SPECfp applications.

One reason why Cherry is not as effective in recycling SQ entries
and registers is that their PNRs are constrained by more conditions.
Indeed, the PNR for registers is oldest(US ; UB), while the one for
SQ entries is oldest(UL; US ; UB). In particular, UB limits the im-
pact of Cherry noticeably.

Overall, to enhance the impact of Cherry, we can improve in two
different ways. First, we can design techniques to advance the PNR
for SQ entries and registers more aggressively. However, this may
increase the risk of a rollback. Second, recycling within the current
irreversible set can be done more aggressively. This adds complex-
ity, and may also increase the risk of rollbacks.

5.3 Resource Utilization
To gain a better insight into the performance results of Cherry, we
measure the usage of each of the targeted resources. Figure 9 shows
cumulative distributions of usage for each of the resources. From top
to bottom, the charts refer to LQ entries, SQ entries, integer regis-
ters, and floating-point registers. In each chart, the horizontal axis is
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configurations.
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Figure 8: Breakdown of the execution time of the SPECfp applications for the Baseline (B), Cherry (C), and Limit (L)
configurations.

the cumulative percentage of time that a resource is allocated below
the level shown in the vertical axis. Each chart shows the distribu-
tion for the Baseline, Limit, and two Cherry configurations. The
latter correspond to the real number of allocated entries (CherryR)
and the effective number of allocated entries (CherryE). The effec-
tive entries include both the entries that are actually occupied and
those that would have been occupied had they not been recycled.
The difference between CherryE and CherryR shows how effective
Cherry is in recycling a given resource. Finally, the area under each
curve is proportional to the average usage of a resource.

The top row of Figure 9 shows that LQ entry recycling is very
effective. Under Baseline, the LQ is full about 45% and 65% of
the time in SPECint and SPECfp applications, respectively. With
Cherry, in more than half of the time, all the LQ entries are recycled.
We see that the LQ is almost full less than 15% of the time. More-
over, the effective number of LQ entries is significantly larger than
the actual size of the LQ.

The second row of Figure 9 shows that, as expected, the recycling
of SQ entries is less effective. In SPECint applications, the effective
size of the SQ under Cherry surpasses the actual size of that resource
significantly in only 6% of the time. However, the potential demand
for SQ entries (in the Limit configuration) is much larger. The situa-
tion in SPECfp applications is slightly different. The SQ entries are
recycled somewhat more effectively.

The last two rows of Figure 9 show the usage of integer (third
row) and floating-point (bottom row) registers. In the SPECint ap-
plications, the recycling of registers is not very effective. The reason
for this is the same as for SQ entries: the PNR is unable to suffi-
ciently advance to permit effective recycling. In contrast, the PNR
advances quite effectively in SPECfp applications. The resulting de-
gree of register recycling is very good. Indeed, the effective number
of integer registers approaches the potential demand. The potential
demand for floating-point registers is larger and is difficult to meet.

However, the effective number of floating-point registers in Cherry
is larger than the actual size of the register file 50% of the time. In
particular, it is more than twice the actual size of the register file
15% of the time.

6 COMBINING CHERRY AND
SPECULATIVE MULTITHREADING

6.1 Similarities and Differences
Speculative multithreading (SM) is a technique where several tasks
are extracted from a sequential code and executed speculatively in
parallel [4, 9, 14, 19, 20]. Value updates by speculative threads are
buffered, typically in caches. If a cross-thread dependence violation
is detected, updates are discarded and the speculative thread is rolled
back to a safe state. The existence of at least one safe thread at all
times guarantees forward progress. As safe threads finish execution,
they propagate their nonspeculative status to successor threads.

Cherry and SM are complementary techniques: while Cherry
uses potentially unsafe resource recycling to enhance instruction
overlap within a thread, SM uses potentially unsafe parallel exe-
cution to enhance instruction overlap across threads. Furthermore,
Cherry and SM share much of their hardware requirements. Conse-
quently, combining these two schemes becomes an interesting op-
tion.

Cherry and SM share two important primitives. The first one is
support to checkpoint the processor’s architectural state before en-
tering unsafe execution, and to roll back to it if the program state
becomes inconsistent. The second primitive consists of support to
buffer unsafe memory state in the caches, and either merge it with
the memory state when validated, or invalidate it if proven corrupted.

Naturally, both SM and Cherry have additional requirements of
their own. SM often tags cached data and accesses with a thread
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Figure 9: Cumulative distribution of resource usage in
SPECint (left) and SPECfp (right) applications. The horizon-
tal axis is the cumulative percentage of time that a resource is
used below the level shown in the vertical axis. The resources
are, from top to bottom: LQ entries, SQ entries, integer phys-
ical registers, and floating-point physical registers.

ID, which identifies the owner or originator thread. Furthermore,
SM needs hardware or software to check for cross-thread depen-
dence violations. On the other hand, Cherry needs support to recy-
cle load/store queue entries and registers, and to maintain the PNR
pointer.

6.2 Combined Scheme
In a processor that supports both SM and Cherry execution, we pro-
pose to exploit both schemes by enabling/disabling speculative ex-
ecution and Cherry mode in lockstep. Specifically, as a thread be-
comes speculative, it also enters Cherry mode, and when it success-
fully completes the speculative section, it also completes the Cherry
cycle. Moreover, if speculation is aborted, so is the Cherry cycle,
and vice versa. We now show that this approach has the advantage
of reusing hardware support.

Enabling and disabling the two schemes in lockstep reuses the
checkpoint and the cache support. Indeed, a single checkpoint is re-
quired when the thread enters both speculative execution and Cherry
mode at once. As for cache support, SM typically tags each cache
line with a Read and Write bit which, roughly speaking, are set when
the speculative thread reads or writes the line, respectively. On the
other hand, Cherry tags cache lines with the Volatile bit, which is
set when the thread writes the line. Consequently, the Write and
Volatile bits can be combined into one.

With such support, when the thread is speculative, any write sets
the Write/Volatile bit. When the thread becomes nonspeculative, all
Read bits in the cache are gang-cleared. Then, the processor exits
Cherry mode and also gang-clears all Write/Volatile bits.

Special consideration has to be given to cache overflow situa-
tions. Under SM alone, the speculative thread stalls when the cache
is about to overflow. Under Cherry mode alone, an interrupt informs
the processor when the number of Volatile lines in the victim cache
exceeds a certain threshold. This advance notice allows the proces-
sor to return to non-Cherry mode immediately without overflowing
the cache. When we combine both SM and Cherry mode, we stall
the processor as soon as the advance notice is received. When the
thread later becomes nonspeculative, the thread can resume and im-
mediately return to non-Cherry. Thanks to stalling when the advance
notice was received, there is still some room in the cache for the
thread to complete the Cherry cycle and not overflow. This strategy
is likely to avoid an expensive rollback to the checkpoint.

Another consideration related to the previous one is the treatment
of the advance warning interrupt when combining Cherry and SM.
Note that the advance notice interrupt in Cherry requires no special
handling. Indeed, any interrupt triggers the ending of the current
Cherry—the advance warning interrupt is special only in that it is
signaled when the cache is nearly full. However, when Cherry and
SM are combined, the advance warning interrupt has to be recog-
nized as such, so that the stall can be performed before the proces-
sor’s interrupt handling logic can react to it. This differs from the
way other interrupts are handled in SM, where interrupts are typi-
cally handled by squashing the speculative thread and responding to
the interrupt immediately.

7 RELATED WORK
Our work combines register checkpointing and reorder buffer (ROB)
to allow precise exceptions, fast handling of frequent instruction re-
play events, and recycling of load and store queue entries and reg-
isters. Previous related work can be divided into the following four
categories.

The first category includes work on precise exception handling.
Hwu and Patt [7] use checkpointing to support precise exceptions in
out-of-order processors. On an exception, the processor rolls back to
the checkpoint, and then executes code in order until the excepting
instruction is met. Smith and Pleszkun [18] discuss several methods
to support precise exceptions. The Reorder Buffer (ROB) and the
History Buffer are presented, among other techniques.

The second category includes work related to register recycling.
Moudgill et al. [17] discuss performing early register recycling in
out-of-order processors that support precise exceptions. However,
the implementation of precise exceptions in [17] relies on either
checkpoint/rollback for every replay event, or a history buffer that
restricts register recycling to only the instruction at the head of that
buffer. In contrast, Cherry combines the ROB and checkpointing,
allowing register recycling and, at the same time, quick recovery
from frequent replay events using the ROB, and precise exception
handling using checkpointing. Wallace and Bagherzadeh [22], and
later Monreal et al. [16] delay allocation of physical registers to the
execution stage. This is complementary to our work, and can be
combined with it to achieve even better resource utilization. Lozano
and Gao [12], Martin et al. [15], and Lo et al. [11] use the compiler to
analyze the code and pass on dead register information to the hard-
ware, in order to deallocate physical registers. The latter approaches
require instruction set support: special symbolic registers [12], reg-
ister kill instructions [11, 15], or cloned versions of opcodes that
implicitly kill registers [11]. Our approach does not require changes
in the instruction set or compiler support; thus, it works with legacy
application binaries.



The third category of related work would include work that recy-
cles load and store queue entries. Many current processors support
speculative loads and replay traps [1, 21] and, to the best of our
knowledge, this is the first proposal for early recycling of load and
store queue entries in such a scenario.

The last category includes work that, instead of recycling re-
sources early to improve utilization, opts to build larger structures
for these resources. Lebeck et al. [10] propose a two-level hierar-
chical instruction window to keep the effective sizes large and yet
the primary structure small and fast. The buffering of the state of
all the in-flight instructions is achieved through the use of two-level
register files similar to [3, 24], and a large load/store queue. Instead,
we focus on improving the effective size of resources while keeping
their actual sizes small. We believe that these two techniques are
complementary, and could have an additive effect.

Finally, we notice that, concurrently to our work, Cristal et al. [2]
propose the use of checkpointing to allow early release of unfinished
instructions from the ROB and subsequent out-of-order commit of
such instructions. They also leverage this checkpointing support to
enable early register release. As a result, a large virtual ROB that
tolerates long-latency operations can be constructed from a small
physical ROB. This technique is compatible with Cherry, and both
schemes could be combined for greater overall performance.

8 SUMMARY AND CONCLUSIONS
This paper has presented CHeckpointed Early Resource RecYcling
(Cherry), a mode of execution that decouples the recycling of the re-
sources used by an instruction and the retirement of the instruction.
Resources are recycled early, resulting in a more efficient utiliza-
tion. Cherry relies on state checkpointing to service exceptions for
instructions whose resources have been recycled. Cherry leverages
the ROB to (1) not require in-order execution as a fallback mech-
anism, (2) allow memory replay traps and branch mispredictions
without rolling back to the Cherry checkpoint, and (3) quickly fall
back to conventional out-of-order execution without rolling back to
the checkpoint or flushing the pipeline. Furthermore, Cherry en-
ables long checkpointing intervals by allowing speculative updates
to reside in the local cache hierarchy.

We have presented a Cherry implementation that targets three re-
sources: load queue, store queue, and register files. We use simple
rules for recycling these resources. We report average speedups of
1.06 and 1.26 on SPECint and SPECfp applications, respectively,
relative to an aggressive conventional architecture. Of the three tech-
niques, our proposal for load queue entry recycling is the most ef-
fective one, particularly for integer codes.

Finally, we have described how to combine Cherry and specula-
tive multithreading. These techniques complement each other and
can share significant hardware support.
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