
DMDC: Delayed Memory Dependence Checking through Age-Based Filtering ∗

Fernando Castro, Luis Pinuel, Daniel Chaver, Manuel Prieto, Michael Huang†, Francisco Tirado
University Complutense of Madrid

fcastror@fis.ucm.es,{lpinuel, dani02, mpmatias, ptirado}@dacya.ucm.es
†University of Rochester

michael.huang@rochester.edu

Abstract

One of the main challenges of modern processor design
is the implementation of a scalable and efficient mecha-
nism to detect memory access order violations as a result of
out-of-order execution of memory instructions. Traditional
CAM-based associative queues can be very slow and energy
hungry. In this paper we introduce two new management
schemes. The first one is a filtering scheme based on simple
age-tracking. This scheme can easily avoid 95-98% of asso-
ciative load queue (LQ) searches using only a few registers.
This translates into significant power savings. More impor-
tantly, however, this filtering makes our second scheme, De-
layed Memory Dependence Checking (DMDC), practical.
With a small hash table, DMDC completely avoids the need
for an associative LQ and relies on indexing-based check-
ing at the commit phase and hence cuts the energy spent on
LQ by an average of 95%. At an average of about 0.3%,
the performance impact is negligible. When the energy cost
of the increased execution time is factored in, the processor
still makes net energy savings of about 3-8%, depending on
the configuration and the applications.

1. Introduction

With high operation frequency, modern out-of-order pro-
cessors often need to buffer a very large amount of instruc-
tions to be able to overlap useful processing with relatively
long latencies associated with accesses to lower levels of the
memory hierarchy. Processor features such as multithread-
ing further increase the demand on the instruction buffer-
ing capability. However, increasing the number of in-flight
instructions requires scaling up different microarchitectural
structures. This has significant impact on energy consump-

∗This work has been supported in part by the Spanish government
through the research contract CYCIT-TIN 2005/5619, the Hipeac Euro-
pean Network of Excellence, and by the National Science Foundation
through the grant 0509270.

tion, especially if the structure is accessed associatively.
One such example is the logic that enforces correct

memory-based dependences, commonly referred to as the
load-store queue (LSQ), and typically implemented as two
separated queues: the load queue (LQ) and the store queue
(SQ). Conventional implementations of these queues con-
tain complete addresses and are allocated in the instructions
program order. To enable early execution of loads with-
out compromising program correctness, memory instruc-
tions are tracked by the two queues and associative searches
are used to find the correct producer or to detect dependence
violations.

This associative search operation is a major concern for
the scalability of these queues as not only energy consump-
tion increases, the latency of accesses also worsens with
the increase of queue size and may present complications
in the logic design. As such, a range of implementations
that avoid associative searches have been explored recently.
The main observation behind these designs is that memory
dependencies are very infrequent and hence, through clever
filtering or prediction, it is possible to reduce the number of
associative accesses.

In this paper, we first introduce a filtering scheme that
reduces the associative check frequency of the LQ through
explicit tracking of instruction age. (We call the technique
YLA-based filtering). Unlike previous filtering proposals,
the design’s hardware cost is (almost) negligible: only one
dedicated global register is enough in the basic implementa-
tion. Inspired by this filtering technique, we propose a new
LQ management technique (denoted asdelayed memory de-
pendence checking, or DMDC), which delays the checking
for premature loads until the commit phase and is performed
in a sequential fashion with only table indexing. As a re-
sult, an associative LQ is no longer needed. The design
significantly reduces energy consumption to carry out the
functionality of the LQ and incurs a very small performance
degradation.

The rest of the paper is organized as follows. Section 2
recaps the conventional design of the LQ. Sections 3 and 4



present our YLA-based filtering scheme and delayed mem-
ory dependence checking mechanism respectively. Sec-
tion 5 describes the experimental framework employed, and
Section 6 analyzes the experimental results. Section 7 dis-
cusses related work. Finally, Section 8 concludes.

2. Conventional Design

Out-of-order microprocessors typically allow early exe-
cution of loads for high performance, even if some older
stores have not yet been resolved1. Thus, when an ear-
lier store does access the same memory location, the data
returned by the earlier speculative load becomes incorrect
and the processor must take a corrective action to ensure
the sequential semantics. This dependence enforcement is
achieved using age-ordered LQ and SQ.

When a load executes, in parallel with the cache access,
its address is checked with all older stores in the SQ. If a
match is detected, the youngest store forwards the data to
the load (load forwarding). Conversely, when a store ex-
ecutes, it must check the LQ looking for younger loads to
the same address that have executed prematurely. When
matches are found, the processor needs to re-execute (or,
replay) premature loads and their dependents. To simplify
implementation, however, processors typically replay many
more instructions (such as all instruction groups following
the store [22]), as these premature loads are rare in gen-
eral and sometimes extra logic is employed to further reduce
their occurrence [8].

Coherence The LQ also serves the purpose of maintain-
ing load-load ordering for coherence. A cache-coherent de-
sign requireswrite serialization: all writes to the same loca-
tions have to appear in the same order to all processors. In
a system implementing a relaxed consistency model [8,22],
even though a load from one processor need not have a de-
fined order with a store from another processor, this follow-
ing sequence of events (all to the same memory location)
is illegal as it violates write serialization: (a) loadi issues,
obtaining some dataX; (b) an invalidation message then ar-
rives due to a store from another processor; (c) finally, load
j, older in program order thani, issues and obtains the new
dataY. This effectively makes the store ofY appears earlier
than the store ofX. In this case, the common practice is to
replay from loadi to ensure that it gets newer data.

Detecting this sequence is not trivial, however. In [22],
every invalidation will search the entire LQ to mark a bit for
any matching loads. Every load will also search the entire
LQ. If a matching younger entry is found and the aforemen-

1A store has two operands – the address and the data – which can be
separately handled [22]. The store isresolvedwhen the address is ready.
If only the address of a store is ready, the SQ can not perform forwarding
and instead willreject the consumer load to issue later [22]. We assume
such an implementation in this paper.

tioned bit is set, the sequence has occurred and the correc-
tive action is taken. As modern processors are almost all
cache-coherent, at least with respect to DMA operations,
write serialization becomes a standard feature even for uni-
processors.

In summary, in a typical implementation, the LQ is being
searched very frequently, by all stores, loads, and external
invalidation messages. As current processors are routinely
designed to have a capacity of hundreds of in-flight instruc-
tions, the LQ also needs to have a fairly large size to support
that capacity. Clearly, large associative queues with wide
entries (full address) and multiple ports are undesirable in
wide-issue, high-frequency designs. In addition to creating
timing challenges, they consume significant energy.

3. YLA-Based Filtering

Rationale for age-based filtering Although processors
are designed to allow out-of-order issue of memory instruc-
tions, in typical programs, the actual sequence of memory
instructions is often not wildly different from the program
order. When memory instructions happen to issue in pro-
gram order, many of the queue searches become unneces-
sary. For example, when a load or a store searches the LQ,
the intention is to identify anyyoungerload to the same
address that has already issued. The knowledge that no
younger load has ever issued can help avoid accessing the
queue altogether. To know that, we can track explicitly the
ageof loads. Specifically, the age of the youngest load is-
sued.

The YLA register We keep a dedicated register to hold
the age (e.g., the ROB ID with some simple extension)
of the youngest issued load. We call the registerYLA
(Youngest issued Load Age). When a store is resolved, it
compares its age with that recorded in YLA. If the store is
younger, the LQ search is omitted. We call that a YLA-hit.
Otherwise (YLA-miss), a potential violation of memory or-
dering can exist and the store must search the LQ as usual.

As a load executes, the YLA register is updated if the
load is younger than the recorded age. Since this update
happens at execution time, loads from wrong paths can cor-
rupt YLA. Though this does not affect the correctness, it af-
fects the filtering effectiveness. Precisely repairing theYLA
during misprediction recovery is both difficult and unneces-
sary. A simple and effective remedy is to reset the YLA
register to the branch’s age during recovery (if the branch’s
age is older than the content of YLA).

Multiple YLA registers Dependence violations are only
possible if both the store being executed and the younger
issued loads access the same memory location. Therefore,
the YLA-based filtering can be enhanced by taking into ac-
countsomeaddress information.

The idea is to use multiple YLA registers to cover dif-



ferent address banks and to spread loads and stores among
them according to their memory addresses (a few bits are
enough). This can increase the probability of YLA hits,
thereby reducing LQ searches.

Filtering for stores Finally, we note that the same prin-
ciple of age-based filtering can be extended to the SQ. For
instance, we can use a dedicated register to keep track of
the age of the oldest in-flight store. Any load older than the
recorded age can bypass SQ searching. Our experiments
show that such loads are not rare (about 20%). This sug-
gests that such filtering can be worthwhile. For the rest of
the paper, however, we will focus on LQ filtering only.

4. Delayed Memory Dependence Checking

Although the simple age-based filtering is already very
effective in reducing the associative searches for the LQ,
its main appeal lies in the new opportunities of more effec-
tive designs it enables. As only a small portion of stores
need to check for possible premature loads, the associa-
tive searching can be substituted with energy-efficient albeit
slower processes. To this end, we have explored one such
option that we callDelayed Memory Dependence Checking
(DMDC).

4.1. Main Idea

The main idea is that for every store, (a) instead of us-
ing associative searches of the LQ, we employ a sequential
process to inspect each possible load, and (b) we delay the
process to commit time.

The high-level procedure consists of 3 steps as follows.

1. The YLA-based filtering logic classifies stores into two
disjoint sets at issue time: those that do not need to
check for premature loads as no younger loads have is-
sued earlier and those that do need additional checking.
For convenience, we call themsafestore andunsafe
store respectively. This safety information is recorded
in the SQ.

2. As an unsafe store commits, it triggers a specialcheck-
ing modeto start the sequential checking process.

3. During the checking mode, as a load completes, we
test to see if a memory dependence violation has hap-
pened at execution time.

From a high-level point of view, the reason such a pro-
cess is viable is two-fold. First, although a sequential
process gets less done per cycle (e.g., only checking one
load against a store), the throughput is sufficient as only a
small portion of stores need to enable the delayed check-
ing. Second, as actual memory dependence violation is typ-
ically very rare, the small delay incurred in identifying de-
pendence violation (by postponing the checking to commit
time) will not result in a significant slowdown.

4.2. Proposed Implementation

From an implementation point of view, delaying mem-
ory dependence violation check is a challenging task as we
need to propagate information through some media to be
used at a later time. The information includes address and
execution timing. Unfortunately, the timing information is
implicitly embedded in the queue: When a store issues, by
inspecting the LQ, it is easy to know which loads have al-
ready executed. When we delay the checking, the LQ no
longer provides the correct timing information.

A naive implementation of DMDC would call for ex-
plicit recording of execution time of loads and stores. Fur-
thermore, the address and timing information of an unsafe
store would have to be moved from the SQ to some special
storage after the store has been committed.

We choose a much simpler implementation with two ap-
proximations. First, we use approximate timing information
of the loads. When a load overlaps with the store in question
and may have executed before the store, we conservatively
replay the load. This way, we avoid the need to maintain
execution timestamps. Second, we map full memory ad-
dresses to a hash table called thechecking table. Two mem-
ory accesses are considered overlapping when they hash to
the same entry.

The algorithm is simple. When a store’s address is
resolved, the YLA registers are consulted to determine
whether the store is safe. If not, some younger load may
have executed prematurely. The age can be as young as that
indicated in the YLA register corresponding the store’s ad-
dress bank. We will remember that age, and check every
load in between. These loads effectively form achecking
window.

The architectural support for the design is straightfor-
ward. In addition to the YLA registers and the checking
table discussed above, we only need a globalend checkreg-
ister. Furthermore, we no longer need the LQ to be asso-
ciative. A FIFO-allocated queue to record the address is
enough. In fact, as we will only use the address to index
the checking table, we only need a queue to record the hash
keys. The operation procedure is as follows.

• Issue – store:If a store is unsafe, theend checkreg-
ister is updated with the content of the YLA register
corresponding to the store’s address bank – unless the
end checkregister already records a younger age.

• Issue – load:When a load issues, we record its hash
table entry.

• Commit – store: As an unsafe store commits, it sets
the corresponding entry in the checking table and trig-
gers thechecking modeif not already active.

• Commit – load: During the checking mode, as a load
commits, it indexes the checking table. A marked entry
indicates apossibledependence violation and a replay



is performed. Otherwise, no further action is required.
After the load pointed to by theend checkregister com-
mits, the checking mode is terminated and the check-
ing table is cleaned up.

Exploiting safe loads A very important and cost-effective
optimization to the above design is to identifysafe loads.
When a load issues, if all older stores have resolved their
addresses, then we can already rule out the possibility of a
store-load replay and mark the load as a safe load. During
commit, a safe load bypasses the checking process even in
checking mode. This not only saves energy, but more im-
portantly, avoids false replays due to the approximations.

The circuit support to identify safe loads is straightfor-
ward and will not affect SQ timing as it is much simpler
than the forwarding logic: Typically, the forwarding control
signal is generated as follows [14]. The physical address of
the load is sent to the SQ’s address CAM. The match signals
of all the entries then go through a mask logic that inhibits
match signals from entries younger than the load. These
masked match signals then go through a priority encoder to
find the youngest entry for forwarding (Figure 1-(a)).

match

Address

Address
CAM

Age of load

P
rio

rit
y 

E
nc

od
er

M
as

k 
Lo

gi
c

forward

(a)

Resolved

SQ

Age of Load

M
as

k 
Lo

gi
c

Precharge

Safe

(b)

Figure 1. (a) SQ forwarding logic and (b) safe load
detection logic.

To determine the safety of a load, we only need to feed
the bit indicating unresolved address into the same kind of
mask logic and use the masked result to pull down a global
line precharged to high: if any masked bit is high, then the
load is not safe (Figure 1-(b)).

In summary, the complexity of our proposed implemen-
tation of DMDC is very low as we use various approxima-
tions. The loss of information obviously leads to false re-
plays. However, as we will see later in Section 6, thanks to
the large number of load and stores identified as safe, the
number of false replays is very limited and thus the perfor-
mance degradation is low.

4.3. Supporting Coherence and Consistency

DMDC essentially uses simplified forms to record the
timing and address information of loads. Thus, coherence

and consistency functionalities of the conventional LQ can
also be supported, albeit with more conservative policies.

The performance impact of these approximations de-
pends on the exact consistency model supported and the
characteristics of the coherence traffic. A thorough explo-
ration of the design space and necessary remedies is outside
the scope of this paper. Here we will only focus on ensur-
ing write serialization as it is required for all cache-coherent
systems.

Recall that write serialization is violated only whenall
conditions are satisfied at the same time: loads executed
out of order, an external invalidation happened in between,
and all accesses are to the same location. In reality, even
the combination of a subset of the conditions may be infre-
quent enough that preventing them from happening has in-
significant performance implications. For instance, one can
perform a replay if an in-flight load overlaps with an invali-
dation. This essentially enforces sequential consistency. In-
tuitively, when external invalidation rate is sufficientlylow,
this is a viable option.

In our system, the timing information of loads is not pre-
served. Thus, we will need to conservatively perform a re-
play on the younger load, when two same-location loads
are both in-flight while an invalidation happens. This can
be detected as follows.

We extend the checking table to have one extra bit per en-
try to capture the invalidation address – now each entry has
an INV bit in addition to the original bit, which we call the
WRTbit. When an external invalidation arrives, the check-
ing mode is also activated. But instead of setting the WRT
bit, we set the INV bit of the appropriate entries.

To properly determine the end of the checking period,
we need additional YLA registers. This is because for store-
load dependence checking, YLA registers are best banked
by word address. Since invalidations are at cache line gran-
ularity, we add another set of YLA registers banked by
cache line address. With two sets of YLA registers, every
address maps to one in each set. Of course, a load will need
to update the two and a store is safe as long as one of the
two records an older age.

When committing a load during the checking period, the
hash table is indexed. If the WRT bit is set, we replay as
before. If only the INV bit is set, we do not replay, but set
the WRT bit instead. This ensures that if a second load to
that location is discovered in the checking period, a replay
will happen.

4.4. Other Design Options

Local DMDC In our implementation, theend checkreg-
ister is a global register in that there can be multiple unsafe
stores in-flight and they all update the register as they issue
(can only increase the checking window size). Thus, when
an unsafe store commits and activates the checking mode,



the register may have been pushed forward to the end of an-
other store’s checking window. In the worst case, the end of
the checking period can be perpetually pushed forward and
never reached, creating an endless checking period. With-
out the chance to clean the table, false replays will become
more numerous.

An alternative to using the global register is to use
“local” information: Each unsafe store can remember its
boundary of checking period and only update the register at
commit time.

Handling multiple data sizes Unfortunately for memory
order tracking, memory accesses are performed at differ-
ent sizes. Tracking accesses at a coarse granularity (e.g.,
double-word) will incur unnecessary replays. In this paper,
we index the checking table using quad-word address, but
use a 4-bit bitmap to discern accesses with a smaller width.
An adaptive approach that tracks different widths depend-
ing on the address is also possible [11].

Checking queue In the design discussed above, we use
a hash table to record the store address information. The
primary advantage is the conceptual simplicity. As multi-
ple unsafe stores can have overlapping checking periods, a
load may need to be checked against the address of mul-
tiple stores. A hash table can accommodate any number
of stores, and loads only need indexing. An alternative is
to use an associative checking queue to keep track of the
address of unsafe stores. Of course, when the queue over-
flows, a replay is necessary.

5. Experimental Framework

We have evaluated our proposed design using a heavily-
modified version of SimpleScalar [4] with the Wattch ex-
tension [3]. The modeling of the LSQ is modified to faith-
fully reflect the state of the art in modern microprocessors.
We allow the issues of loads with unresolved older stores.
The store queue supports load rejection [22] and rejected
load retries later. The processor also handles partial mem-
ory matches between memory addresses.

In the applications and simulation windows we studied,
true store-load replays are very rare, on the orders of a few
per million instructions on average. Even with our approx-
imations, replays remain rare. Thus, PC-based prediction
and replay prevention mechanisms seem unnecessary and
are not modeled for either the baseline or our designs. Some
of the simulation parameters are listed in Table 1. We have
experimented with 3 machine configurations to understand
the issue of scalability. For brevity, we only report those on
config2.

The evaluation is performed using all 26 benchmarks
from the SPEC CPU2000 suite. For the experiments, we
simulate single sim-point regions [20] of one hundred mil-
lion instructions.

Processor core

Issue/decode/commit width:8/8/8
Functional units:INT 8+2 mul/div, FP 8+2 mul/div
Branch predictor:Bimodal and Gshare combined
-Gshare:8K entries, 13 bit history
-Bimodal/Meta table/BTB entries:4K/8K/4K (4 way)
Branch misprediction penalty: 7 cycles

Memory hierarchy

L1 instruction cache:64KB, 1 way, latency= 2 cycles
L1 data cache:32KB, 2 way, latency= 2 cycles, 2 ports
L2 unified cache:1MB, 8 way, 128B line, latency= 15 cycles
Memory access:120 cycles

Simulated configurations

config 1: Issue queue= 32INT/ 32FP, ROB=128, LQ/SQ= 48/32,
Registers= 100INT / 100FP, Checking table= 1024

config 2: Issue queue= 48INT/ 48FP, ROB=256, LQ/SQ= 96/48,
Registers= 200INT / 200FP, Checking table= 2048

config 3: Issue queue= 64INT/ 64FP, ROB=512, LQ/SQ= 192/64,
Registers= 400INT / 400FP, Checking table= 4096

Table 1. Simulation parameters.

6. Evaluation

In this section, we perform some quantitative analysis
to further understand the rationale behind age-based mech-
anisms and the effectiveness of the proposed design. For
brevity, applications are treated as two groups – integer
(INT) and floating-point (FP) – and most results are only
shown as the average of metrics, often normalized to the
conventional configurations (baselines).

6.1. YLA-Based Filtering

We first inspect the basic YLA design. As shown in
Figure 2, with even a single YLA register, an average of
71% (INT) and 80% (FP) of stores can be marked as safe,
and their LQ searches filtered out. With multiple address-
interleaved YLAs, these percentages are even higher. As
shown in Figure 2, with 8 registers, they are about 95-98%.

Recall that to support invalidations, we use another set
of YLA registers to determine the end of an invalidation-
triggered checking window. In that case, the YLA regis-
ters have to be cache-line-interleaved. Naturally, one possi-
bility is to use only one set of cache-line-interleaved YLA
registers. However, as we can see in Figure 2, quad-word-
interleaved YLA registers are far more effective to handle
in-flight stores. Indeed, using 16 line-interleaved YLA reg-
isters, we are only able to mark about as many safe stores as
using 4 quad-word-interleaved YLA registers. Therefore,
we choose to employ two sets of 8 registers each using dif-
ferent interleaving.

Energy savings Using YLAs alone can save a significant
number of LQ searches. As a result energy consumption in
the LQ is also reduced. With 8 YLA registers, the reduction
in LQ energy is about 32.4%. That translates into about



INT applications

40

50

60

70

80

90

100

1 2 4 8 16

Number of YLAs

L
Q
 s
e
a
rc
h
e
s
 f
il
te
re
d
 (
%
)

YLAs quad-word interleaved YLAs cache-line interleaved

FP applications

40

50

60

70

80

90

100

1 2 4 8 16

Number of YLAs

L
Q
 s
e
a
rc
h
e
s
 f
il
te
re
d
 (
%
)

YLAs quad-word interleaved YLAs cache-line interleaved

Figure 2. Percentage of safe stores marked using
YLA registers with different interleaving. Each bar
shows the average percentage of the group of applica-
tions, whereas the “I-beams" shows the range of the
value within the group of the applications.

1.7% processor-wide energy savings. Note that the savings
are obtained without a performance impact.

Comparison with address-only filtering YLA exploits
an important characteristic of load and store execution to
rule out dependence violation: their relative timing. Us-
ing only one age register, we can already filter out a very
significant portion (70-80%) of stores. When address in-
terleaving is employed, the effect is quite dramatic – only
a few percent of stores are left un-filtered. In comparison,
this is much more effective than if only address information
is used, such as with a bloom filter [18]. These can be seen
from Figure 3.

6.2. DMDC

6.2.1 Main results

We first look at the main results of using a DMDC design
to replace the conventional LQ. Figure 4 shows the perfor-
mance impact and the energy savings (both in the LQ only
and processor-wide) in 3 configurations.

The figure illustrates the following points. First, by elim-
inating the need for associative LQ, most of the energy con-
sumption of the LQ is eliminated. The added energy com-
pared to that is very insignificant, about a few percent of
the original value. As a result, overall energy reduction in
implementing the LQ functionality is about 95-97%, de-
pending on the configuration. Note that we are not con-

INT applications

30

40

50

60

70

80

90

100

BF=32 BF=64 BF=128 BF=256 BF=512 BF=1024 1 YLA 8 YLA

L
Q
 s
e
a
rc
h
e
s
 f
il
te
re
d
 (
%
)

FP applications

30

40

50

60

70

80

90

100

BF=32 BF=64 BF=128 BF=256 BF=512 BF=1024 1 YLA 8 YLA

L
Q
 s
e
a
rc
h
e
s
 f
il
te
re
d
 (
%
)

Figure 3. Comparison of the filtering capability of us-
ing 1 or 8 YLA registers and bloom filters (BF) with
different sizes (H0 hashing function [18] is used).

sidering coherence requirements, which will be dealt with
in Section 6.2.4. If that is considered, the baseline LQ en-
ergy consumption can be far higher as not only far more
searches to the LQ are performed, the LQ itself needs to be
multi-ported, increasing the cost of every search.

-1

0

1

2

3

4

5

6

INT FP

S
lo
w
d
o
w
n
 (
%
)

Config1 Config2 Config3

90

92

94

96

98

100

INT FP

L
Q
 E
n
g
. 
S
a
v
in
g
s
 (
%
)

0

2

4

6

8

10

12

14

INT FP

T
o
ta
l 
E
n
g
. 
S
a
v
in
g
s
 (
%
)

Figure 4. LQ energy savings (a), performance degra-
dation (b), and total processor-wide energy savings of
DMDC in 3 processor configurations.

Second, the performance degradation is very limited.
The main reason is that false replays as a result of DMDC’s
approximations are relatively rare. Inconfig2for example,
the average number of false replays is about 168 and 35 per
1 million committed instructions for INT and FP applica-
tions respectively. The worst-case performance degradation
is about 1.3% and 3.5% for INT and FP applications, re-
spectively. The performance can increase as well, as seen
in the best-case results in the FP applications. This is be-
cause in DMDC, without the associative LQ, the limit on
the number of in-flight load instructions can be easily made



much higher.
Third, as the machine scales up its capacity of in-flight

instructions, and in particular, the size of the associative
LQ, the portion of energy spent there also increases. As
a result, the energy savings from DMDC become more pro-
nounced. Overall, taking into account the energy overhead
from the performance degradation and extra circuit, DMDC
can make a net energy savings of about 3-8% depending on
the machine configuration.

6.2.2 In-depth analysis

Next, we will discuss various statistics collected during
the simulations to better understand the inner working of
the mechanism.

Checking window Table 2 shows some statistics of the
checking window. On average, a checking window covers
about 33 instructions and has 10 loads in between. Out of
these, about 4 loads are determined as safe at issue time.
The rest needs to go through the checking process. Clearly,
with only about 2-5% of stores characterized as unsafe, and
each one only needs to be cross-checked with a handful of
loads, the sequential process used in DMDC is sufficient to
provide the throughput for dependence enforcement.

instructions loads safe loads
INT 33.6 10.3 3.57
FP 33.0 10.1 4.10

Table 2. Number of instructions, loads, and safe loads
within a checking window.

On average, the processor spends about 10% and 2.5% of
the cycles in checking mode for INT and FP applications re-
spectively. As there are more safe stores in FP applications
in general, it is more likely to finish the current checking
window before encountering another unsafe store. On aver-
age, 63% of the windows contain just one unsafe store. In
INT applications, this becomes 57%. Having multiple un-
safe stores increases the number of entries marked and thus
the chance of a load hashing into a marked entry causing a
replay. This is part of the reason why INT applications have
more false replays due to hashing (more details later).

Safe loads Safe loads are quite numerous. On average,
81% (INT) and 94% (FP) of loads are safe. However, as
seen in Table 2, the percentage of safe loads is much smaller
inside the checking window but still non-trivial, about 35-
40%. (This is not surprising as the checking mode is trig-
gered only when there are out-of-order executions – and
hence non-safe loads.)

The primary benefit of detecting safe loads is to cut down
the number of false replays. Indeed, with the safe-load
mechanism, the number of false replays is reduced by an

average of 52% and as high as 97% in integer applications.
In other words, without safe loads, the number of replays
will double. The simple circuit to detect safe loads is clearly
worthwhile. In floating-point applications, the reductionis
less significant, about 20%.

False replays Recall that DMDC makes two approxima-
tions in the dependence check: address and timing. We can
thus break down the false replays according to the approx-
imations that triggered them. This breakdown is shown in
Table 3. In timing approximation, a load may be suspected
of violating dependence with an older store even though
the load actually issued after the store. There are two sub-
categories. In the first case (X), the load indeed falls into the
checking window of the store. In the second case (Y), the
load does not even fall into determined checking window of
the store. However, when multiple checking windows are
merged together, a load will effectively be checked against
other stores, even though it does not belong to their original
checking window.

Load issued Load issued after store
before store X Y

IN
T Address match – 109 (65%) 37 (22%)

Hashing conflict 19 (11%) 0.8 (1%) 2.1 (1%)

F
P Address match – 11 (32%) 13 (37%)

Hashing conflict 9.0 (26%) 0.3 (0%) 1.7 (5%)

Table 3. Breakdown of the number of false replays
per 1 million committed instructions. The two subcate-
gories are as follows. X: load falls into the “real" check-
ing window of the store. Y: load is checked because
multiple checking windows are merged together.

The first interesting thing to observe from the table is
that the large majority of false replays are triggered because
of either the timing approximation or the address (hashing)
approximation but not both. This suggests that we can im-
prove upon the two approximations largely independently.

Secondly, with the particular configuration studied (2K-
entry checking table), imperfect hashing is not the domi-
nant cause of false replays, accounting for around 11% and
26% of all replays for INT and FP applications respectively.
Thus, increasing the size of the checking table will have
limited effectiveness due to diminishing returns.

6.2.3 Design options

Local vs. global In local DMDC, we extend the microar-
chitecture to locally record checking window for every un-
safe store. This way, the checking windows are less likely
to overlap to form bigger ones. The effect is shown in Ta-
ble 4: windows are 13-25% shorter and contain proportion-
ally fewer loads. The percentage of safe loads, however,
reduces faster. This is expected as the shrinking windows



are more likely to exclude safe loads.

instructions loads safe loads
INT 25.3 7.92 2.27
FP 28.9 8.61 3.01

Table 4. Number of instructions, loads, and safe loads
within a checking window in local DMDC implementa-
tion.

The main benefit of having small windows is having
more chances to clear the table to avoid unnecessary false
replays. To that end, the local DMDC approach is quite ef-
fective. The average number of replays per 1 million com-
mitted instructions reduces from 168 to 134 (by 20%) for
integer codes and from 35.4 to 23.7 (by 33%) for floating-
point codes. Table 5 shows the breakdown of false replays,
which can be compared to Table 3. Although the statistics
are imperfect for pinning down exactly which replays are
avoided2, they do suggest that false replays due to overlap-
ping windows (the Y column) are indeed mitigated.

Load issued Load issued after store
before store X Y

IN
T Address match – 91 (68%) 21 (15%)

Hashing conflict 20 (15%) 1.1 (1%) 1.4 (1%)

F
P Address match – 11 (45%) 0.6 (2%)

Hashing conflict 10 (43%) 0.7 (3%) 1.6 (7%)

Table 5. Breakdown of the number of false replays
(per million committed instructions) in local DMDC.

Overall, because false replays are already rare even in
global DMDC, the difference in energy and performance
between global and local versions of DMDC is not dra-
matic, as can be seen in Figure 5. The local version mod-
erately improves the effectiveness at the expense of a small
increase in design complexity. One thing worth noting is
that under local DMDC, the worst-case performance degra-
dation of any single application is noticeably lower, espe-
cially in FP applications.

Associative queue vs. hashing table Instead of using a
hash table, we can keep unsafe stores’ address in an asso-
ciative queue and check loads against all valid addresses in
the queue. This way, we will not have replays due to hash-
ing conflicts, but instead will have to replay when the queue
cannot accommodate a new store. Based on statistics of
the degree of overlapping checking windows, we estimate
that the checking table we used (2K entries) is equivalent

2Note that the breakdown can fluctuate because (a) having different
replays changes the timing of execution and thus can affect whether other
loads will cause a replay, and (b) different timing can affect the way we
categorize false replays in our simulator in certain situations.

INT applications

0

0,4

0,8

1,2

1,6

2

Config1 Config2 Config3

S
lo
w
d
o
w
n
 (
%
)

FP applications

-0,5

1

2,5

4

5,5

Config1 Config2 Config3

S
lo
w
d
o
w
n
 (
%
)

Global DMDC Local DMDC

Figure 5. The comparison of slowdown between local
and global DMDC.

to a 16-entry associative queue in terms ofaveragenum-
ber of replays. Note that this estimate can only serve as a
rough equivalency measure because individual applications
behave wildly differently. If we calculate a per-application
equivalent queue size, the results will be so divergent that
their average is perhaps no longer meaningful.

6.2.4 The impact of invalidations

In this paper, our focus is uni-processors or small-scale
multi-core systems running single-threaded applications.
Thus, as mentioned earlier, the discussion so far does not
include the effect of coherence activities. The conventional
baseline configuration also does not consider coherence.

While a detailed analysis in a true multiprocessing en-
vironment is left for future work, we have performed some
experiments using injected random invalidations at certain
rates. The changes to a range of statistics are recorded and
summarized in Table 6. Despite the imperfection in this
methodology, we can still obtain some insights.

Invalidations per 1000 cycles 0 1 10 100

IN
T

% cycles in checking mode 10 10.3 12.2 23.2
Relative checking window size 1 1.01 1.11 1.37
Relative false replay rate 1 1.1 1.47 4.59
Slowdown 0.31 0.34 0.46 1.36

F
P

% cycles in checking mode 2.5 3.0 7.8 27.7
Relative checking window size 1 1.25 1.92 3.49
Relative false replay rate 1 1.36 1.72 5.35
Slowdown 0.36 0.38 0.48 1.16

Table 6. Changes to key statistics under external in-
validations of different rates.

From the table, we can see that with up to 10 invalida-
tions per 1000 cycles, the increase in all statistics remain
moderate. Clearly, the design is capable of handling such
traffic. When invalidations are as frequent as 1 every 10 cy-
cles, the systemstartsto show sign of stress: false replays
are about 5 times higher than without any invalidations and
the slowdown is also becoming more noticeable. However,
with the slowdown still around only 1%, the design is per-
haps still acceptable. In environments with invalidation rate
higher than 1 per 10 cycles, additional mechanisms to filter



these invalidations become desirable.

7. Related Work

In recent years, many schemes are designed to improve
the conventional LSQ. Most designs still consist of two sep-
arate logic blocks (corresponding to the SQ and LQ), one
handles forwarding at the load issue time, the other verifies
the correctness of the earlier forwarding. Some schemes
continue to rely on associative queues in these two blocks,
but cut down their access frequency using, for example, fil-
tering. Others use alternative circuit structure, often indexed
queue, to replace or augment the associative queues.

Sethumadhavan et al. [18] propose to usebloom filters
to cut down the access of the queues. With a much smaller
hardware budget, our age-based filtering is much more ef-
fective in cutting down unnecessary searches. However, we
have yet to explore the implementation for SQ filtering.

Age-based filtering allows us to use a completely differ-
ent process for verification: a sequential checking delayed
to commit time (DMDC). In terms of the effect, it is very
similar to Cain and Lipasti’s work [5], though the imple-
mentation is very different. DMDC still uses the conven-
tional approach of ruling out dependence or coherence vi-
olation through address and timing information, albeit with
approximations. The value-based approach ignores that in-
formation and only uses the value information. The down-
side of the approach is the elevated memory bandwidth re-
quirement. To reduce this requirement, timing and address
information can no longer be ignored as it enables effective
filtering [5,17].

A central enabling factor for DMDC is that the relative
timing information is very useful in ruling out dependence
violations. While timing information is implicitly encoded
in the conventional age-ordered LQ/SQ, explicitly record-
ing and comparing age enables powerful techniques. Roth
also explores age information in [17]. Through a hash ta-
ble, a load can know if the last store to the same memory
location has already retired before it is decoded. If so, load
re-execution is not necessary. The intended applications
of the two mechanisms are different and so are the design
choices. For example, false negatives in [17] result in load
re-execution. In contrast, a false negative causes a replayin
our design, which is much more costly. As such we need to
keep false replays very rare. Also, while we have a conven-
tional SQ without speculation, [17] is designed to support
techniques such as SQ speculation. As such, our age infor-
mation tracks execution timing, whereas theirs essentially
tracks the commit time of a store.

Garg et al. replace the associative LQ with a hash ta-
ble explicitly tracking age information [11]. Each entry
of the tables records the youngest load executed whose
address hashes into the entry. Upon store’s execution, if

the age recorded in the entry is younger, a replay is trig-
gered. DMDC improves upon this design in important
ways. Rather than using one table to maintain age and (par-
tial) address information as in [11], we use a two-step ap-
proach with decoupled data structures. Only a few age reg-
isters are used to store timing information. A separate hash
table only encodes address information without the need to
store age information, which costs more bits. This is not
only hardware-efficient, but also energy-efficient. Further-
more, only a much smaller set of loads and stores access
the checking table to detect possible violations, reducing
energy even more. Finally, delaying the process to commit
time not only simplifies circuitry, but also naturally avoids
pollution to the checking table.

In addition to the work discussed above, two other papers
also optimize the LQ. This is done with dependence pre-
diction [6] or with the help from software analysis to mark
loads guaranteed not to cause dependence violation [13].

While our work optimizes the verification logic, another
set of related work optimizes the forwarding logic. Many
proposals rely on memory dependence prediction [7, 15] to
narrow the range of stores to forward from. Park et al. [16]
employ the store-load pair predictor to predict the neces-
sity of searching the SQ, thereby saving SQ search band-
width. A number of two-level designs [1, 2, 10, 23] keep
only a subset of in-flight stores in the smaller, faster first-
level structure. This structure is allocated to stores predicted
by dependence predictor or simply according to execution
or program order. The larger second-level structure is either
slower, address-banked, or without forwarding capability.
A number of approaches have been proposed to predict the
exact store for a load to forward from. This is either done
entirely in hardware [19,21] or with software support using
a feedback-directed approach [9].

Finally, Garg et al. propose Slackened Memory Depen-
dence Enforcement, where loads and stores are allowed to
communicate via an L0 cache with minimum effort to cor-
rectly enforce dependence and simply rely on re-execution
to provide a correctness guarantee [12].

8. Conclusions

In this paper, we have introduced an alternative to CAM-
based LQs. The design is based on a new age-based filtering
mechanism. The central observation behind the proposed
design is that even with out-of-order execution, a significant
majority of loads and stores demonstrate partial ordering.
With the presence of the associative SQ, this partial ordering
can rule out store-load replays in a large majority of cases.
This makes a fully-associative LQ an overkill.

Age-based filtering is done using a few address-
interleaved registers to keep track of the age of youngest
loads issued. These registers can filter out 95-98% of



stores from further dependence-violation checking. For the
remaining stores, these registers delineate the window of
loads that need further inspection. Thanks to the effective
filtering, the remaining loads and stores can be easily in-
spected using a sequential checking process, thereby elim-
inating the need for a large, fully-associative LQ. Further-
more, for design simplicity, this process is delayed to the
commit time. We call this Delayed Memory Dependence
Checking (DMDC).

We have explored a specific implementation of DMDC
using a hash table to communicate address information be-
tween loads and stores. In addition to detecting memory
dependence violation, DMDC can also enforce coherence
and consistency requirements. The architectural support is
straightforward and achieves the functionality of the con-
ventional LQ at merely 5% of its energy cost. The design
incurs only a very small number of false replays. The per-
formance degradation, at 0.3%, is negligible. The overall
processor-wide energy savings ranges from 3-8% depend-
ing on the configuration and the application suite.

In addition to the basic design, we have also performed
in-depth analyses, optional design optimizations, and a
study on the impact of external invalidation messages.
Specifically, we found that for a small-scale bus-based mul-
tiprocessors, the proposed design is capable of handling a
moderate level of invalidation traffic (up to 1 per 10 cycles).
A more systematic study of the dependence checking logic
in multiprocessor domain is our future work.

References

[1] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint Pro-
cessing and Recovery: Towards Scalable Large Instruction
Window Processors. InInternational Symposium on Mi-
croarchitecture, pages 423–434, Dec. 2003.

[2] L. Baugh and C. Zilles. Decomposing the Load-Store Queue
by Function for Power Reduction and Scalability.IBM Jour-
nal of Research and Development, 50(2-3):287–298, 2006.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions. In International Symposium on Computer Architec-
ture, pages 83–94, June 2000.

[4] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. Technical report 1342, Computer Sciences Department,
University of Wisconsin-Madison, June 1997.

[5] H. Cain and M. Lipasti. Memory Ordering: A Value-based
Approach. InInternational Symposium on Computer Archi-
tecture, pages 90–101, June 2004.

[6] F. Castro, D. Chaver, L. Pinuel, M. Prieto, M. Huang, and
F. Tirado. Load-Store Queue Management: an Energy Effi-
cient Design based on a State Filtering Mechanism. InInter-
national Conference on Computer Design, Oct. 2005.

[7] G. Chrysos and J. Emer. Memory Dependence Prediction
Using Store Sets. InInternational Symposium on Computer
Architecture, pages 142 –153, June–July 1998.

[8] Compaq Computer Corporation.Alpha 21264/EV6 Micro-
processor Hardware Reference Manual, Sept. 2000. Order
number: DS-0027B-TE.

[9] C. Fang, S. Carr, S. Onder, and Z. Wang. Feedback-Directed
Memory Dismabiguation Throuh Store Distance Analysys.
In International Conference on Supercomputing, June 2006.

[10] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai.
Scalable Load and Store Processing in Latency Tolerant Pro-
cessors. InInternational Symposium on Computer Architec-
ture, pages 446–457, June 2005.

[11] A. Garg, F. Castro, M. Huang, L. Pinuel, D. Chaver, and
M. Prieto. Substituting Associative Load Queue with Sim-
ple Hash Table in Out-of-Order Microprocessors. InInter-
national Symposium on Low-Power Electronics and Design,
Oct. 2006.

[12] A. Garg, M. Rashid, and M. Huang. Slackened Memory De-
pendence Enforcement: Combining Opportunistic Forward-
ing with Decoupled Verification. InInternational Sympo-
sium on Computer Architecture, pages 142–153, June 2006.

[13] R. Huang, A. Garg, and M. Huang. Software-Hardware Co-
operative Memory Disambiguation. InInternational Sym-
posium on High-Performance Computer Architecture, pages
248–257, Feb. 2006.

[14] S. Meier. Store Queue Multimatch Detection, Feb. 2003.US
Patent No. 6,523,109.

[15] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dy-
namic Speculation and Synchronization of Data Depen-
dences. InInternational Symposium on Computer Architec-
ture, pages 181–193, June 1997.

[16] I. Park, C. Ooi, and T. Vijaykumar. Reducing Design Com-
plexity of the Load/Store Queue. InInternational Sympo-
sium on Microarchitecture, pages 411–422, Dec. 2003.

[17] A. Roth. Store Vulnerability Window (SVW): Re-Execution
Filtering for Enhanced Load Optimization. InInternational
Symposium on Computer Architecture, pages 458–468, June
2005.

[18] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, and
S. Keckler. Scalable Hardware Memory Disambiguation for
High ILP Processors. InInternational Symposium on Mi-
croarchitecture, pages 399–410, Dec. 2003.

[19] T. Sha, M. Martin, and A. Roth. Scalable Store-Load For-
warding via Store Queue Index Prediction. InInternational
Symposium on Microarchitecture, Dec. 2005.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically Characterizing Large Scale Program Behavior. In
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 45–57,
Oct. 2002.

[21] S. Stone, K. Woley, and M. Frank. Address-Indexed Memory
Disambiguation and Store-to-Load Forwarding. InInterna-
tional Symposium on Microarchitecture, Dec. 2005.

[22] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture.IBM Journal of Re-
search and Development, 46(1):5–25, Jan. 2002.

[23] E. Torres, P. Ibanez, V. Vinals, and J. Llaberia. Store Buffer
Design in First-Level Multibanked Data Caches. InInterna-
tional Symposium on Computer Architecture, June 2005.


