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Abstract

effort, and costs [1] reduces the appeal of otherwise sound

ideas, limits our choice, and forces suboptimal comprogiise

Optimizing the common case has been an adage in decades dfurthermore, due to the tightly-coupled nature of mondith
processor design practices. However, as the system coityplex conventional microarchitecture, conservatism or safegrgim

and optimization techniques’ sophistication have incezhsub-
stantially, maintaining correctness under all situatiph®wever
unlikely, is contributing to the necessity of extra conaéism

necessary for each component and each layer of the desin sta
quickly accumulates and erodes common-case efficacy. With
mounting PVT (process, voltage, and temperature) variatio

in all layers of the system design. The mounting process,concerns [2], the degree and extent of conservatism wilj onl

voltage, and temperature variation concerns further add to
the conservatism in setting operating parameters. Exeessi

increase. The combination of high cost and low return makes i
increasingly difficult to justify implementing a new ideadan

conservatism in turn hurt performance and efficiency in the we need to look for alternative methodology that allows us
common case. However, much of the system’s complexity comde truly focus on the common case. One promising option
from advanced performance features and may not compromisaes to explicitly decouple the circuitry for performance and

the whole system’s functionality and correctness evenrifeso
components are imperfect and introduce occasional errdrs.
propose to separate performance goals from the correctpeabk
using anexplicitly-decoupledarchitecture.

In this paper, we discuss one such incarnation where an inde-

correctness goals, allowing the realization of each aspect
be more efficient and more effective. Decoupling is a classic
time-tested technique and seminal works on various types of
decoupling in architecture [3]-[7] have attested its daffeness
and advanced the knowledge base. Building on this fourmatio

pendent core serves as aptimistic performance enhancement we propose to explorexplicitly-decoupledarchitecture (EDA).

engine that helps accelerate the correctness-guarargeeane
by passing high-quality predictions and performing acdera
prefetching. The lack of concern for correctness in therojstic

By “explicit”, we mean two things. First, the decoupling istn
simply providing a catch-all mechanism for a monolithic lrg
performance microarchitecture to address rare-case atogss

core allows us to optimize its execution in a more effectiveissues. Rather, from ground up, the design is explicitlyasaed

fashion than possible in optimizing a monolithic core with
correctness requirements. We show that such a decoupléghdes
allows significant optimization benefits and is much lessitiga

to conservatism applied in the correctness domain.

1. Introduction

Achieving high performance is a primary goal of processor
microarchitecture design. While designs often target trarmon
case for optimization, they have to be correct under all €ase
Consequently, while there are ample opportunities for querf
mance optimization and novel techniques are constantlygbei
invented, their practical application in real product desifaces
ever higher barriers and costs, and diminishing effectgsn
Correctness concern, especially in thorny corner casessica
nificantly increase design complexity and dominate vetifoca
efforts. The reality of microprocessor complexity, its idgs

This work is supported by NSF CAREER award CCF-0747324 asal ial
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into a performance and a correctness domain. By design, the
performance domain onlgnablesand facilitates high perfor-
mance in a probabilistic fashion. Information communidate

the correctness domain is treated as fundamentally spgaeula
Therefore, correctness issues in the performance domdin wi
only affect its performance-boosting capability and beeom
a performance issue for the whole system. This allows true
focus on the common case and reduction of design complexity,
which in turn permits the implementation of ideas previgusl
deemed impractical or even incorrect. An effective perfance
domain allows designers to use simpler, throughput-ceignt
designs for the correctness domain and focus on other pahcti
considerations such as system integrity.

Second, the architecture design is not just conceptualty bu
also physically partitioned into performance and correstn
domains. The physical separation extends to the whole rayste
stack from software and microarchitecture down to circuit a
device. Physical separation allows the entire system stack
to beoptimistically designed{] conveniently and economically



provides the same mechanism for ultimate correctness gigea We could simply use another copy of original program binary

and O permits custom software-hardware interface in the per- as the optimistic thread. This is straightforward but suboal.

formance domain, which opens up more cross-layer cooperati A skeletal version of the program that contains only insforcs

opportunities to implement ideas difficult to accomplistthivi relevant to future control flow and data accesses is enough.

a single layer. There is no need to include computation that is only neces-
Explicitly decoupled architecture represents a very broadsary for producing the right program output and non-esaénti

design space. What aspect of performance improvement is begor lookahead. We can rely on software analysis to generate

achieved in such a decoupled fashion, and how to exploit thesuch a “skeleton” in a probabilistic fashion. In this papauy

lack of concern for correctness to design novel optimizatio software analysis is done on the program’s binary. Perfiagmi

techniques and indeed synergistic techniques from differe the tasks on binaries has the significant benefit of hidinghall

layers are but a small set of questions that need to be a@dress implementation details beneath the contractual interfetaeen

To narrow down the exploration, in this paper we are focusing  the hardware and the programs, and maintaining semantrybin

using the EDA principle to improve traditional ILP (insttian- compatibility: In eachncarnationof an EDA, we can customize

level parallelism) lookahead, and study the effect of using the instruction set of the optimistic core without worryiagout

practical, complexity-effective techniques to manageg|oand future compatibility obligations.

more importantly, unpredictable latencies associatel tianch

and load processing. The discussed design is by no means a

mature final product, but rather a proof of concept that holhef

helps to reveal some insights. Executes
The rest of the paper is organized as follows: Section 2 skeleton

explains some high-level design decisions; Section 3 dis-

cusses the basic support needed to enable an explicitly-

decoupled execution; Section 4 discusses several opjt@tin

to achieve complexity-effective performance optimizafi&ec-

tion 5 presents quantitative analyses; Section 6 discustsed ]

work; and Section 7 summarizes and discusses some future i

Work'_ Due to space constraints, some details are left in theFigure 1. The optimistic core, the correctness core, and the organization

technical report [8]. of the memory hierarchy. The optimistic core [ explicitly sends branch

predictions to the correctness core via the branch outcome queue (BOQ)
2. Hig h-Level Design Decisions and O naturally performs prefetching with its own memory accesses.

~While lookahead techniques have the potential to Uncoveryanaging deviance. The removal of correctness constraints in
significant amount of ILP, conventional microarchitecBIfe:- the performance domain provides the freedom to explore- cost
pose practical limitations on its effectiveness due to rthei gffactive performance-boosting mechanisms and avoidssige
monolithic implementation. Correctness requirementtinthe  conservativeness. However, it would inevitably lead toialéon
design freedom to explore probabilistic mechanisms andesiak from the desired result. For example, approximations in the
conventional lookahead resource-intensive: registeisvanous  gyeleton generation, a logic simplification in the arctitee
queue entries need to be reserved for every in-flight inBome  gesign, or device glitches due to insufficient margin cacalise
making deep lookahead very expensive to support. Morether,  the architectural state in the performance domain to deviat
design complexity is also high as introduction of any spaeih  from the desired state. If the design heavily depends on vast
necessitates fastidious planning of contingencies. amounts of predictions and on the preciseness of the peetlict

In contrast to this "integrated” lookahead design, in an EBA  irtormation from the performance domain, such deviatiores a

decoupled agent is to provide the lookahead effort. Fumioee, |iely to result in costly remedies in the correctness domeid
we also want to minimize the mutual dependence between thg itimately limit our freedom in exploring unconventionahc
lookahead agent on the normal processing agentdgitienistic optimistic techniques.
and thecorrectnesscore, respectively in our design shown in "4 pyild in an inherent tolerance for such deviations, we do

Figure 1). This decision has implications on how we maintain rely on the optimistic core to provide value predicticrsl
autonomy of the cores and manage the deviance between themy,y graw branch direction predictions from it. This is done
Autonomy. A key point of our design is that the optimistic using a FIFO structurBranch Outcome Queu80Q) as shown
core can bespecializedto perform lookahead more effectively in Figure 1. This also allows us to detect the control flow
by leveraging the lack of correctness constraints. To ma@nt divergence between the two threads. When this happens, the
autonomy of the lookahead with respect to normal processing correlation between the execution of the two threads iscedu

we use an independent thread of control — the optimisticathre and at some point, the state of the optimistic core needs to be
Having its own thread of control in the optimistic core alde a reinitialized to maintain its relevance in lookahead. W thas

lows us to freely exploit speculative, optimistic softwarelyses  a recovery In this paper, for simplicity, a recovery is triggered

or transformations. whenever a branch misprediction is detected in the coresstn
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core and a recovery involves copying architectural registate is not sufficient to sustain a speed advantage for the ogianis
from the correctness core to the optimistic core. We noté¢ tha thread. While extremely biased branches (identified thinoug
while we are actively exploring alternatives, we have natrfd profiling) can be removed or turned into unconditional bias

a design with superior performance. reducing the need for some branch condition computatide|yso
Even with the recovery mechanism, memory writes in the relying on this is also insufficient.
performance domain are still fundamentally speculative rzeed A simple but important observation is that the optimistic

to be contained within its local cache hierarchy. We use onethread has access to the architectural memory hierarchy in
private cache (LO, for notional convenience). By simplyrsig the correctness domain and therefore can obtain the data fro
the rest of the memory hierarchy between the two cores, wememory when the producer store is sufficiently upstream én th
can tap into the rest of the architectural state in a complexi instruction sequence that at the time of load — it would haenb
effective manner. LO never writes back anything to the rést o executed by the correctness core. We do not need to inclede th
the hierarchy. store and its backward slice in the skeleton. Note that this i

Related work. While we will discuss related work in more detail /S0 exploited earlier in [S].

later, it is worth highlighting here the key differences.tBlohat .
the differences are often the result of difference in goal. 3.2. Archlt.ectural Support . .
Decoupling correctness and performance issues is not a new 1he architectural support required to enable our expjicitl
concept. We want to make a case for a more explicit, up-frontdecoupled architecture is also limited. For the most pasthb
approach to decoupling, which makes performance optiioizat  cOres operate as self-sufficient, stand-alone entitiee. ity

and correctness guarantee more independent than pridFrast. relatively significant coupling between the two cores i tife
is reflected in correctness core’s memory hierarchy also serves as ther lowe

levels of the memory hierarchy for the optimistic core. Note
that, the accesses from the optimistic core to L1 is infreque
as it only happens when the LO misses. Hence, extra traffic due
fo servicing LO misses is insignificant. Indeed, as we withah
quantitatively later, the increase in L1 traffic is more tladfset

by the decrease of L1 accesses from the correctness conedgeca
of better branch prediction.

1) The division of labor in the two cores: The optimistic
core is only attempting to facilitate high performance by
passing hints and other meta data. In the common case
it only provides good hints, whereas the leading cores in
[3], [7], [9] will produce complete and correct results.

2) The minimal mutual dependence between them: Neither

does the trailing core require a large amount of accurate . .
g a g Another support needed is the recovery mechanism. A branch

information from the leading core (such as architectural i BOO) | dt the b h directi
state to jump start future execution [5]), nor does the outcome queue (BOQ) is used to pass on the branch direction

leading core heavily depend on the trailing core to perform information from the optimistic core to the correctnessecor
its task [6] When such a prediction is detected in the correctness core as

incorrect, a recovery is triggered. The correctness coegndr

the pipeline and passes the architectural register statk toa

the optimistic core. Since the LO cache is corrupted because
The potential of explicitly-decoupled architecture ligsthe of wrong-path execution, some cleansing may be helpful. For

opportunities it opens up fafficientandeffectiveoptimizations. simplicity, we reset the entire LO cache upon a recoveryoAls

The required support to allow the optimistic core to perform the fetch stage of the correctness core is frozen when the BOQ

3. Basic Support

self-sustained lookahead is rather basic and limited. is empty. This ensures the “alignment” of the branches: thd n
branch outcome to be deposited by the optimistic core in the
3.1. Software Support BOQ is always intended for the next branch encountered by the

A key requirement for the envisioned system to work effec- COffectness core.
tively is that the optimistic core has sustaina performance ad- .
vantage over the correctness core so as to afleeplookahead. 4+ Opportunities
A key opportunity is that the skeleton only needs to perform By separating out correctness concerns, EDA allows desgne
proper data accessing, which is only part of the program, andto make different trade-offs and devise more effective qerf
may be able to skip the remainder. This is not a new concept.mance optimization strategies. A primary implication otde-
Indeed, the classic access/execute decoupled archéefdlir  pling is that not all mis-speculations need to be correctezl/en
exploits the same principle to allow the access stream tp sta detected in the performance domain. In a conventional desig
ahead. However, the challenge is that our optimistic core isthat tightly couples correctness and performance, the ity
significantly more independent and has to do enough work toof such detection and recovery logic may significantly &ffec
ensure a highly accurate control flow. As it turns out, using cost-effectiveness of the implementation, reduce the appke
conventional analysis on the binary, we can not succegsfed| an otherwise sound idea, and can even defeat the purpose of
move a sufficient number of instructions: about 10-12% dyiocam speculation. In EDA, designs can use new, probabilistichmec
instructions (most of which prefetches) can be removed fiteen ~ anisms to explore optimization opportunities in a more cost
program binary without affecting the program control flovii§ effective way and avoid the complex algorithms and cirguitr



that place stringent requirements on implementation. \Weudis to total instances. We walk down the list and exclude the top

a few opportunities that we have explored. ranking stores until the total short instances from thenpasses
10,000th of total dynamic instruction count. Since trimgin
4.1. Skeleton Construction stores from the skeleton changes which loads belong to the

skeleton and affect the ratio for ranking, we iterate thelysmia
a few times for a better result.
Finally, we insert prefetch instructions for those loadelly

Recall that the skeleton does not need to contain longrdista
stores and their computation chain. However, the communica

tion re_lationship betv_veen Ioad; and stores.is not alwayar,cle to miss in the cache and are not already included in the shelet
especially when dealing only with program binaries. Foatedy, Whether to include a particular load is also determined by it

our binary parsing only needs to approach the analysis in a ) . . . . .
probabilistic fashion, and we can use profiling to easilyagbt cost-benefit ratio. The benefit (of adding a prefetch) is appr

. . o imated as the miss penalty multiplied by the miss probabilit
a statistical picture of |oad-store commulmcatlon pageffhe The cost is approximated by the number of instructions added
al t 0 [10] to perform the analysis and transformations % compute the address. If the rat_io_is lower than a threshold
) (empirically set to 3), the prefetch is inserted.
Profiling. We first perform a profiling step to obtain certain
information parsing the binary alone can not. First of alp w
can obtain the destinations of indirect jump instructiofkgain,
we do not need to capture all possible destinations, thanttset
lack of correctness requirement for the optimistic coreththis
information, we can make the control flow graph more complete
Secondly, we collect statistics about short-distance-kiace
communications. Using a training input, we obtain the lit o
stores withshort instancesA short instance is a dynamic store
instance whose consumer load is less thap instructions
downstream. We sef;;, to 5000 in this paper. We found that
the profile results are not sensitive dgy,. For every store with
short instances, we tally the total number of dynamic instan
as well as short instances. For the latter, the statistiedumther
subdivided based on the identity of their consumer loadss iBh
needed in later analysis because whether a short instarttersna

dep_ends on if the_c_;onsumer Ioa_ld is _p_art of th? skelet_on. case of empty loops: when the loop branch is biased and
F|r_1a||y, the profll_lng run also identifies load mstructl_omat turned into an unconditional branch, the optimistic thregltibe
are likely to miss in the (L2) cache and branches with strong “trapped” in the loop until the trailing correctness threzaiches

b|as|es: The ste;nzt]calf miss Lreq.ur:anmes a(;z, recolrdm(i;jiateir I up, finishes the same loop, and generates a recovery. Not only
analysis. Branch bias factored with cost (additiona ons will the optimistic thread forfeit any lead upon reachingth

added) is used to lapel some branches as biased. In generaé’mpty loop, it also wastes energy from then on until recovery
these branches have a bias greater than 99.9%. doing absolutely nothing useful

Binary analysis. With this profile information, we then proceed In these cases, by not executing the branch, we avoid un-
to build a program skeleton. The goal of the skeleton is teedip necessary waste in the optimistic core and may even manage
track the original program’s control flow and be able to passto avoid a costly recovery. It is straightforward to identif

on branch prediction information and issue timely prefesch  these branches using the parser. The only issue when sgippin
Thus, the first thing we do is to mark branch instructions asthem is that of branch “alignment”: Because there is a one-
selected in the skeleton. Next, traversing the data-flowplyra to-one correspondence of branches between the optimistic a
backward, we mark all the instructions on the backward shice  correctness thread (so as to use a simple FIFO for the BOQ), if
the branch instructions. Branches considered extremelgeldi  the optimistic thread skips a branch, the correctness dhweth

are turned into NOPs or unconditional branches and thexefor (mis)interpret the next piece of prediction as that of thigséd

they do not have any backward slice. Following this, we need t branch, thus losing alignment.

deal with memory dependences and include producer stoaés th  We maintain alignment by replacing the branch to be skipped
feed into the loads included in the current skeleton. Our goa with a special branch instruction in the skeleton. Spedificae

is to minimize the total computation due to included stored a add three types of branches: BDC, BUT, and BUF as discussed
at the same time keep the total number of short instances fronin Table 1.

excluded stores small. The aforementioned profile infoionat

about short instance helps us to determine which stores to4.2. Cost-Effective Architectural Support

keep. We ignore short instances involving a load not inadude  Due to space constraints, out of the several architectural
in the skeleton and sort stores with increasing ratio of shor mechanisms we studied we only discuss a few, with a particula

Eliminating useless branches.Note that in terms of what infor-
mation to pass between the two domains in an EDA and how to
obtain that information in the performance domain, the giesi
space is vast. The basic skeleton we formed is a code that not
only strives to stay on the right path to maintain relevar,

also attempts to executverybranch in the original semantic
binary. This is a design choice, not a necessity to suppap de
lookahead. We explore this option because handling freiquen
branch misprediction is a necessity that affects all mikrioigec-

tural components. If the correctness domain can expectrayhig
accurate stream of branch predictions, its microarchitectan

be fundamentally simplified. Because of this choice, we fbun
that the skeleton includes branches completely uselesgsfor
own execution. These include empty if-then-else strustamed
sometimes empty loops as shown in Figure 2. In these cases,
including the branch can be very inefficient, especially e t



Add_ress ! B"_“"y direction. Figure 3-(b) shows another kind of masking. Iis th
: example, under certain conditions, the loaded value isaladc
?rgr:qlt Hg’ Ofx]i’ZOfO:;eﬁlc out in the computation and no longer matters. In summary, in
Tt Y24 8(ah) »‘ many cases, the exact value of a load does not matter and it

0x12002e5f 4:
0x12002e5f 8:

divt £25, f19, 22 thread is sufficiently ahead. We only feed a substitute vatuen

Ll dt f25, 24(a0) ! is more important to flush the long-latency instruction ofit o
! 'Sﬂtbt ;%g f8(220)f25 }% the system so as to continue useful work downstream rather
, L than to wait for the memory to respond — unless the optimistic

%
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0x12002e618: “br | zero, 0x12002628 the distance between the two threads is below a threshold. Th
0x12002e61c: Idg_u zero, O(sp) = distance is measured by the number of branch predictiortsein t
: lcpysn 11, f11, f22 4§ BOQ
: vcpys  f11, f11, f21 'k '
0x12002e628: cnptlt f22, f13, f27
0x12002e62c: cnptle f12, f21, 28 ldi 110, 16(19) no=x
@) . bi s zero, t10, t12
Address Binary

subl t10, t8, t11

0x12001f 99c: _addg v0, vO0, vO subl t8, t10, t10

|
|
1
1 i subqg v0, t0, a2 P> subl t12, a4, a5 t11 = |x-t8|
, L cnovge a2, a2, vo 38 I ds f10, 7748(at) | load x subl a4, t12, t12
/| addg v0, v0, vO i @ cptlt 0, 10, f10 cmovit t1l, t10, t11/]N\ 45 = |x-a4|
''i subg v0, t0, a2 iq fbeq 10, Label if x>f0) ... cnovit a5, t12, a5
i cnovge a2, a2, vo o) subl a5, t11, a5 ab =a5-tll
'i subq al, 0x2, al i 9 Label : = Ix-adl - Ix-ti
riaddg _ v0, vO, VO i @ (0)
0x12001f 9bc: | bgt al, 0x12001f 9a0 Figure 3. The inherent masking effect in real programs.
0x12001f 9¢0: i subqg v0, t0, a2
I
' Biased conditional branch turned into In terms of determining the substitute value, we can obWous
Unco”f(it')t)'onal branch in the skeleton. use a conventional value predictor or even a special-perpos
Figure 2. Examples of empty if-then-else block (a) and loop (b) in the predICto_r _[11]' However, we opt for the_mUCh simpler appfoac
skeleton of real applications. Instructions selected in the skeleton are of providing a 0, partly because it is the most frequently
shown in bold. occurring value in general.
Symbol Correctness thread interpretation and action We note that an apparent alternative is to explicitly flush
BDC (don’t-care) |Branch prediction unavailable for this branch. out the dependence chain of the load instruction as done in

BUF (until fall-thru)|Branch prediction unavailable for the loop. Siop . . . . ..
drawing from BOQ until this branch falls through, [12]. The primary benefit of our approach is its simplicityn A

BUT (unill taken) |Branch prediction unavailable for the Toop. Stop independent logic determines when to use value substitatii
drawing from BOQ until this branch is taken. when it is used, the rest of the core is unchanged — there is no
Table 1. Replacing useless branches in the skeleton. extra logic to explicitly tag results as invalid and propggthe
“poison”. Secondarily, as our examples show, in some cases,
the exact value may not matter much. Explicitly flushing the
emphasis on simplicity of the designs as in practice, carapg#d apparent dependence chain without executing them pretleats
techniques tend to be avoided by real-world designers. prefetching benefit.
Clearly, zero value substitution does not always work well.
h In particular, when the value is some form of an address,
substituting a zero is often a sure way to get into troublaght}
weight solution we adopted is to identify “address” loadsgs
the parser and encode them differently to prevent the haslwa
from doing zero value substitution. In other words, thesad
will stall if they miss in the L2. We choose this because the

Simplistic value substitution. Stalling induced by off-chip ac-
cesses can seriously impact the optimistic thread. Given t
freedom we enjoy in the optimistic core, there are quite a
few options to avoid waiting for an off-chip memory access.
Perhaps the simplest (and indeed a simplistic) way is to gjve
waiting and feed some arbitrary value to the load instrurctio
order to naturally flush it out of the pipeline. This may seem N
senseless as a wrong value may cause the optimistic threafardware support needed is minimum.
to veer off the correct control flow and render it irrelevant Delayed release of prefetcheslf the optimistic thread achieves
and maybe even harmful. However, there are several naturalery deep lookahead, we do not want the prefetches to be
tolerance mechanisms that come to the rescue: the datadloadessued too early. Thus we record the addresses inpoetetch
may not be control-flow related but is part of the prefetching address buffe(PAB) together with a timestamp indicating the
effort; the load may even be dynamically dead; and the error i appropriate future moment to release it. This time is seteo b
the value may be masked by further computation or compasison about one memory access latency prior to estimated executio
We show two examples of masking from real benchmarks. time of the load in the correctness thread. One subtle issue
Figure 3-(a) shows a very typical code sequence where thewe encountered is the timing of address translation. Since
loaded value is compared to a constant to determine branchoading with a virtual address can cause a TLB miss, which can



potentially take another off-chip access, we try to put stared a misprediction, the core can drain the right-path instounst
address into the PAB. However, if the translation causesB TL and reset the pipeline — no partial repair is needed. Hence,
miss, instead of blocking and waiting for the TLB to fill, we checkpointing of RAT upon branch instruction is no longer
keep the virtual address and perform the translation when th necessary. This has a secondary effect of reducing theljildgsi
prefetch is released from the PAB. of stalling when running out of RAT checkpoints.

Managing stale data. As discussed above, the optimistic core  Additionally, the characteristics of the program execatio

is relying on the correctness core to provide the data whenth® Correctness core is different from that in a conventiona
the distance between a load and its producer store is long. T¢Ore- First, cache misses are significantly mitigated. Tius
allow the data to be obtained from the correctness coee, ~ core Will be less sensitive to the reduction of in-flight st

from the L1 cache or beyond, stale data should be removed!On capacity. Second, with the optimistic core taking cafe
from the LO cache to force an access to the L1. Fortunately,/°0kahead, latency of various operations becomes lessatsio

the cache’s replacement algorithm, which typically usedJtR  |0ng as the throughput is sufficient. For example, the system
like policies, already purges some stale data out of the each OVerall performance will be less sensitive to modest freqye
naturally. We also explored other proactive options, idalg ~ canges in the correctness core. This makes it easy to use
turning the store into invalidations and adding a timerelshs conservatism to deal with variations. Third, advanced uesst

eviction mechanism. None of these approaches brings enouglf! the microarchitecture can be avoided. For example, hiad-
consistent benefits (1-2% performance gain in our simuiajio prediction is widely used in order to schedule dependents of

to justify the extra complexity. In our final design, we leave !oads as early as possi_ble [_13]' The result 9f such spe_oulati
the cache replacement to probabilistically evict undesiache 1S €Xtra complexity dealing with mis-speculation and supipg
lines. We couple that with periodically forced recoverigmio ~ Scheduling replaygl4]. We can do away with such speculation
recovery has occurred for a long time (150,000 cycles in our N the correctness core. Another example is to simplify gseie

experiments), we force the optimistic core to synchronizthw 09i¢ With some form of in-order constraints, such as inesrd
the correctness core, cleaning the registers and the LO. issuewithin any reservation station/queue. This would eliminate

the circuitry to compact empty entries and simplify the waixe

. . select loop.

4.3. Complexity Reduction In short, a whole array of complexity-performance tradsoff
One important advantage of using EDA is the possibility can be performed. As we do not have quantitative models of the

to significantly reduce the circuit and design complexity of complexity benefit in terms of design effort reduction otticell

microarchitectural structures. In the optimistic core, wan path length reduction, we show the performance sensitivity

afford to focus only on the common case and have designshese complexity reduction measures in Section 5. In paatic

that do not always work. In the correctness core, we can usewe show that the performance impact of a simplification is in

simpler algorithms and less ambitious implementationshaset  general much lower than in a conventional monolithic microa

is less need taggressivelyexploit ILP. It can use a simpler, chitecture.

throughput-optimized microarchitecture and smallers leswer- Optimistic core. Logic blocks in the optimistic core can also be

hungry structures. Because the core bears the burden of guar,

; : : . simplified. Such a simplification can even trade off correst
anteeing the correctness, a much simpler implementation ca for lower complexity and better circuit timing. Take the cplex
have a series of benefits. For instance, having fewer timing

" . memory dependence logic for example. We first eliminate the
critical paths means that the Who!e core is less vulnerable t LQ altogether, ignoring any potential replays due to memory
PVT variation concerns. Using a simpler and smaller core als dependency or coherence/consistency violation. We atspliy
makes fault tolerance easier and more efficient. Here weausiésc

. - . forwarding in the SQ by removing the priority encoding logic
a few st.ralghtforwarql opportunities to reduce cqmplexmymi which is considered a scalability bottleneck of SQ. Rathant
a generic microarchitecture to serve as cores inside an EDA

We | th lorati f il th hoi q relying on the priority encoder to select the right store amo
e leave the exploration of special-purpose throughplette multiple candidates for forwarding, we ensure that at mos o
design as future work.

store (the youngest) will respond to a search. This is a€lkidy
Correctness core. Perhaps the most important simplification disabling the entry of an older store with the same addrees up
opportunity comes from branch handling in the correctnessthe issue of a new store [8].Finally, we bypass TLB access and
core, thanks to the much more accurate branch directions prouse virtual address to search the SQ, ignoring virtual adre
vided by the optimistic core. Conventional architecturguiees aliasing.

immediate reaction upon a detected misprediction and needs

the capability to (a) quickly restore register alias tabiA() 5. Experimental Analysis

mapping; and (b) purgenly wrong-path instructions and their .

state from various microarchitectural structures sucthasgsue ~ 9-1. EXxperimental Setup

queue, the LSQ, and the re-order buffer. In contrast, becaus Simulator support. We perform our experiments using an exten-
mispredictions are truly rare (see Section 5), the corexsgrtore  sively modified version of SimpleScalar [15]. Support wadex
does not need instant reaction. Instead, upon the detecfion to allow modeling of EDA and of value-driven simulation. We



made extensive modifications to increase fidelity in the mymo
subsystem and microarchitectlirand to support leakage and
dynamic power analysis. For brevity, the details are leff8h

Baseline core

87476

128

INT 2+1 mul +1 div, FP|
2+1 mul +1 div

(32, 32) / (80, 80)

Aggressive core
1676712

512

INT 3+1 mul +1 div, FP 3+1
mul +1 div

(64, 64) / (400, 400)

Fetch/Decode/Commit
ROB
Functional units

Issue Q / Reg. (int,fp)

LSQ(LQ,SQ) 64 (32,32) 2 search portg 128 (64,64) 2 search portg
Branch predictor Bimodal + Gshare Bimodal + Gshare
- Gshare 8K entries, 13 bit history | 1M entries, 20 bit history

- Bimodal/Meta/BTB
Br. mispred. penalty
L1 data cache

4K/8K/4K (4-way) entries|
at least 7 cycles

32KB, 4-way, 64B line, 2
cycles, 2 ports

)64KB, 1-way, 128B, 2 cy

1M/1M/64K (4-way) entrieq
at least 7 cycles
48KB, 6-way, 64B line, 2
cycles, 3 ports
128KB, 2-way, 128B, 2 cy¢
L2 cache (uni. shared) 1MB, 8-way, 128B, 15 cy¢ 1MB, 8-way, 128B, 15cyc
Memory access latency400 cycles 400 cycles

Correctness core: Baseline core without branch predictor and with circyi
simplifications associated to RAT logic as discussed|
Section 4.3.
Baseline core with microarchitectural design discusg
in Section 4.2 LO cache: (16KB, 4-way, 32B line,
cycle, 2 ports). Round trip latency to L1 is 6 cycles
BOQ: 512 entries; PAB: 256 entries; register co
latency (during recovery): 32 cycles
Process specifications: Feature Size: 45nm; Frequency: 3 GHZj4: 1 V

Table 2. System configuration.

L1 I cache (not shareq

Optimistic core:

Communication:

Applications, inputs, and architectural configurations. We use
highly-optimized Alpha binaries of SPEC CPU2000 bench-
marks. For profiling, we use theain input and run the applica-
tions to completion. For evaluation, we simulate 100 millio
instructions after skipping over the initialization paoni as
indicated in [16] usingef input. Our baseline core configuration,
is a generic high-end microarchitecture loosely modeledraf
POWERA4’s core [17]. To provide a reference for the lookahead
effect of EDA, we also use a very aggressively configured.core
Details of the configurations are shown in Table 2.

5.2. Benefit Analysis

A primary benefit of EDA is that it allowsomplexity-effective
designs — by using simple mechanisms but targeting higlaainp
performance bottlenecks. EDA allows design effort to beufau
more on exploring new opportunities rather than on ensuaimg
optimization technique actually works in silicon all theng.
Unfortunately, we are not yet capable of quantifying design
effort nor can our current design — far from mature — be used to
convincingly justify the upfront cost of explicit separati and
the resulting partial redundancy.

In the following we hope to offer some evidence that this
paradigm is worth further exploration. A particular pointew
want to emphasize is the no single aspecg(absolute perfor-
mance) taken in isolation can be construed as a figure of merit
Put together, these results show that even with only intuiti
and straightforward techniques, the discussed desigh (a)il

achieves good performance boosting, (b) does not consum€

excessive energy, and (c) provides robust performance etterb

1. One such modification significantly changes baselineopedince. With-
out this, the benefit of our design — and decoupled architestin general —
will be exaggerated.

tolerance than conventional design to circuit-level issard to
the resulting conservatism.

Performance gain of optimism. Figure 4 shows the speedup
of the proposed EDA over a baseline core and the speedup
of expanding the baseline core into an impractically aggjves
monolithic core. Since our EDA is performing traditionalRL
lookahead, it is not surprising to see the two options foltbe
same trend: in general, floating-point codes tend to ben&fiem
noticeably. On average, EDA's speedup is more pronoundeel. T
geometric means are 1.49 (INT) and 1.96 (FP) compared to the
aggressive core’s 1.29 (INT) and 1.49 (FP).

0
bzip2 crafty eon gce gzip mcf pbmk  twolf  vortex

(a) Integer applications.

gap vpr  G.mean

30—

4.91 I Aggr. [ 1EDA

25
2.0

15

1.0

ammp applu apsi  art

egk facerc fma3d galgel lucas mesa mgrid sixtrk swim wup G.mean

(b) Floating-point applications.

Figure 4. Speedup of proposed EDA and an aggressively configured
monolithic core (Aggr.) over baseline for SPEC INT (a) and FP (b).
Detailed IPC results are left in [8].

While we are focusing on ILP exploitation, the effect can
be equally important in explicitly parallel programs. Wevha
applied the same methodology to parallel programs — iggorin
any opportunity to target shared-memory issues in the desfig
EDA — and have also observed significant performance gains.
Figure 5 summarizes the performance gain of SPLASH applica-
tions running on a CMP with EDA cores compared to that with
conventional cores. As a reference, a configuration witleeveis
many cores (16-way) is also shown. An important point to note
is that exploiting ILP is not guaranteed to be less effectnan
exploiting TLP (thread-level parallelism) for parallel d&s. As
can be seen, even for these highly-tuned scientific apitst
scaling to more cores does not give perfectly linear speeaap
in some cases producing (far) lower return than improvinB. IL
Exploring multiprocessor-aware optimistic techniquesBbA
will likely unleash even more performance potential.

2.00
1.75
1.50
1.25
1.00
0.75

I 5-viay ] o

barn cholky fft fmm lu radix G.mean

igure 5. Speedup of SPLASH applications running on an 8-way CMP.
ach conventional core in CMP system is replaced by an EDA core. For
contrast, the speedup of a 16-way CMP is also shown. In some cases,
enhancing ILP even outperforms doubling the number of cores.

ocean raytrc watsp

The results suggest that decoupled lookahead can uncover
some parallelism not already exploited in a state-of-thia¥a-



croarchitecture, at least for some applications. In sonsegahe
return is significant. Note that the specific numbers arersgay
as the design point is chosen to illustrate the potentiakrathan

optimized for energy-efficiency. For instance, no atteraphade
to shut down the optimistic core when it is not effective awd n
energy benefits of the architectural simplifications (Set#.3)

to showcase an optimized design. Indeed, as we show lager, thare taken into account. Moreover, aggressive assumptions a

correctness core can be much less aggressive with virtnally
performance impact. The key point is that this is achievetth wi
simple techniques designed to minimize circuit-impleraéioh
challenges. Given the correctness decoupling, the entnyeba
for implementing other optimizations in the performancengn

made to reduce residual energy consumption during idlig [8

Performance cost of conservatism in EDA.Unlike the optimistic

core where timing glitches or logic errors do not pose a threa
to system integrity, the correctness core faces the clgdlen
that it has to be logically correct and functioning reliably

should be considerably lower than in a conventional SyStem'despite adverse runtime conditions such as unpredictasle P

More investigation would discover other “low-hanging fsli

to achieve high performance with low complexity. In turne th
performance “currency” can be used to pay for other impdrtan
design goals.

Energy implications. An apparent disadvantage of an EDA is
that it is power-inefficient: roughly two cores are used ahne t

variations. Passive conservatism is perhaps still a measttioal
and effective approach to dealing with the challenge: avoid
complexity in the logic design, mitigate timing criticaltha, and
build in operating margins. The opportunity in an EDA is that
these acts of conservatism do not carry as high a (perfor@anc
price tag as in a conventional system. Below, we show that

program needs to execute twice and this may lead one to believindeed, when we increase the conservativeness in the design

that energy consumption would double. In reality, the eyperg

and configuration of the optimistic core, the performancpaot

overhead can be far less due to a number of factors. First, thas insignificant and much less pronounced than doing so in a

skeleton is after all not the entire program and in certaipliap

conventional monolithic design.

cations can be quite small (Section 5.3). Second, many gnerg First, we hypothesized earlier that the correctness coltéowi
components do not double. For instance, only the optimisticless sensitive to in-flight instruction capacity as it does meed

core wastes energy executing wrong-path instructionswviatig
mispredicted branches. Third, when a prefetch is successfu

to rely on aggressive ILP exploitation. We study this by grad
ually scaling down the microarchitectural resources. Fegud

is a good energy tradeoff to execute a few more instructionsshows the average performance impact. We scale other mEsour

to avoid a long-latency stall which burns power while doing

(issue queue, LSQ, and renaming registers) proportiorveillly

nothing. As can be seen in Figure 6, which shows normalizedthe size of ROB. We contrast this sensitivity with that of a
energy consumption with breakdown in both EDA and baseline conventional system. The figure clearly shows a much slower

systems, a significant performance improvement resultsviret

rising curve for EDA indicating less performance degraofati

energy consumption in EDA. Indeed, EDA results in an averagedue to reduction of microarchitecture “depth”.

of 11% energyreductionfor FP applications. Even for integer
codes, the energy overhead of EDA is only 10%.

D Main/Correctness Core . Optimistic Cor%

‘. Leakage D L2 Cache . Clock
T T

150

1.25F
1.00
0.75
0.50
0.25

0

bzip2 crafty eon gap gce mcf  plbmk twolf vortex vpr G.mean

9zip A .
(a) Integer applications.
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(b) Floating-point applications.
Figure 6. Normalized energy consumption of EDA (right bar) and
baseline systems (left bar). Each bar is further broken down into 5
different sub-categories.

While there is clearly room for improvement, we note that
the study is conservative in that the EDA configuration idhar

-20%

-8%

—&A— Baseline —A— Baseline
|V EDA —v—EDA

-16%

-12%
-8%

—a% "/V/V/V
0

112 96 80 64

Performance Impact
g 2
S

Performance Impact

o m’/v_/v
128 112 96 80 64
ROB Size ROB Size

(a) Integer applications. (b) Floating-point applications.

Figure 7. Performance impact on Baseline and EDA system with
reduction in in-flight instruction capacity.

Second, the microarchitectural design of the correctness c
can be simplified by avoiding complex performance features.
We discussed eliminating load-hit speculation and the sezoy
scheduling replay support in Section 4.3. Figure 8-(a) shthe
performance impact in EDA and in a conventional core. Clgarl
load-hit speculation is a useful technique in a conventionee.
With decoupled lookahead, its utility in the correctnesseco
is largely negligible — in fact, on average, we even achieve a
slight performance improvement for floating-point apptioas.
This is mainly because with effective lookahead, in floating
point applications, there are abundant ready instructiornhe
correctness core. Therefore, there is more potential codt a
little benefit in doing load-hit speculation. Figure 8-(b)osvs
the impact of simplifying the integer issue queue to be ideor
Similarly, this is creating a smaller performance penaltgart



would be in a conventional core. Again, this is because the
throughput for integer instructions is generally suffi¢iand the
resulting serialization is less costly than in a converdlaore.

Il Baseline ] ED.

-6%
-4%

—-8%
-20%
-6%

Impact
Impact
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-15% 4%

Perf. Impact

Perf.
Perf.

o

-10% _20%

~
2

-5% 0

INT INT INT
@ (b) (c)
Figure 8. Performance impact of architectural simplification — removing
load-hit speculation mechanism (a) and in-order int issue queue (b)
and modest clock frequency reduction (c) — in Baseline (BL) and EDA
systems.

FP FP FP

Third, building in extra timing margin is a simple way to
increase a chip’s reliability under runtime variations.virtwer,
in a conventional system, such margin directly impacts qguerf
mance. In an EDA, building in timing margin for the correcdae
core has less direct impact thanks to decoupling. To derraiest
this, we reduce the frequency of the correctness core by 10%
We show the performance degradation and contrast that to th
conventional system under the same frequency reductiam Fr

Figure 8-(c), we see that the EDA system has a much smaller.

sensitivity to such modest frequency reduction. Perforrean
degradation is less than 2% on average, 4-5 times smallar tha
that of a conventional system.

In summary, as expected, the overall EDA's performance is
insensitive to the simplification or extra conservatismadticed
to the correctness core — so long as its throughput is sufficie
This means that performance gained using complexity-tffec
optimistic techniques can be spent to reduce design effalt a
improve system integrity.

Sensitivity of performance domain circuit errors. In our EDA,
the correctness core is not merely providing a correctnafestys
net and we do not compare the entire output from the two
cores and resynchronize whenever there is a differenceras so
other designs with similar lead/trailing cores such as D@}
Tandem [18], and Paceline [19]. In our current implemeaotati
we only resynchronize when the leading thread veers off the
right control flow. (In a future incarnation, even this could
be relaxed.) This difference allows the optimistic core ® b
even less affected by circuit errors (such as due to inseffici
margins) than the lead cores in these related designs. &hibe
shown in a very limited experiment by systematically injegt
errors into the committed results and observe their impact o
our EDA.

Our injection is different in two respects from common
practice. First, we inject multi-bit errors. Unlike patgeinduced
errors which are found to cause mostly single-bit errorsgdly
due to limited energy a particle transfers to the siliconpartg
margin failure can cause multi-bit errors. Second, we onjgat
errors into committed results since we are only interested i
finding out the masking effect of our EDA execution model.
We use systematic sampling and flip all bits of the result
of a committed instruction. Our simulator, which tracksuel

in all microarchitectural components, allows us to faitlyfu
track the propagation of errors. Figure 9 shows the average
number of recoveries incurred per injection at differef¢ation
frequencies.
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Figure 9. Recoveries per injected error as a function of error injection
frequency (number of committed instructions per injected error).

We see that the number varies with the application and in
some cases, the lookahead activities can intrinsicallgraod
a large degree of circuit operation imperfection. For exEmp
for floating-point applications, out of 20 injected erromly
1 results in a recovery. Even when circuit errors happen once
every 1000 instructions, recovery due to circuit errors| Wi
insignificant. For integer applications, the rate depenugmwor

anjection frequency: as error frequency increases, thexohaf

an error causing a recovery reduces. Intuitively, this isdase of
increasing likelihood of a single recovery fixing multipletént

errors.

5.3. System Diagnosis

Next, we discuss detailed statistics to help understand the
behavior of the system.

Skeleton. We first look at the skeleton generated by the parser.
Figure 10 shows the size of the skeleton as the percentage of
dynamic instructions in the original binary excluding th©Rs.

As would be expected, the skeleton of the integer applinatio
are bigger due to the more complex control flow, whereas the
skeleton for floating-point applications are much leanen O
average, excluding prefetches and the special branchesfsh

in Table 1), the skeleton contains an average of 68% (INT) and
34% (FP) of the instructions from the original binary.

100% T T
80%
60%
40%
20%

0

pbmk twolortex
(a) Integer applications.
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(b) Floating-point applications.
Figure 10. Percentage of dynamic instructions left in the skeleton.
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Controlled by a separate thread, the lookahead effort on the
optimistic core is no longer tightly bound to (and slowed dow



by) the actual computation the program has to perform. Asis 90% and 89% for integer and floating-point applications
seen in Figure 10, the skeleton is quite a bit shorter than therespectively. More analysis about lookahead effect isifef8].
original binary. For some applications, the skeleton aksoomes Finally, we note that backing LO cache with L1 does not
less memory-bound and thus stalled less often when executin increase the burden of the L1 cache. In fact, with the exoatf

To put the code size reduction into perspective, if we use theonly a few applications, the total traffic to L1 is reducediriks
conventional baseline microarchitecture to serve as thienggtic to the reduction in wrong-path instructions in the corress
core, the effect of the skeletal execution alone can achievecore. The traffic reduction averages 22%(INT) and 13% (FP)
speedup of 0.99 to 2.93 with a geometric mean of 1.27 in imtege and can be as much as 53%. Accesses from LO only account for

codes and 1.04 to 4.51 with a geometric mean of 1.80 in floating an average of 6% (INT) and 7% (FP) of the total L1 accesses.

oint codes.
P Comparison with DCE. If we reduce EDA to a purely per-

Architectural techniques. Within the performance domain, one  formance enhancing mechanism, it resembles a class of tech-

can employ optimization mechanisms without complex baskup niques represented by decoupled access/execute araret¢s],

to handle mis-speculation or other contingencies. Zeraesal Slip-stream [7], [20], dual-core execution (DCE) [9], Flea

substitut?on discu_ssed in Sgctior_\ 4.2 is one ex_ample of low-flicker [21], Tandem [18], and Paceline [19]. Among these, we

complexity techniques possible in EDA. This simple change compare to DCE as architecturally, it is perhaps the mostetjo

resulted in a modest increase in the number of recoveriegifab rg|ated design: both try to avoid long-latency cache miskced

0.54 per 10,000 committed instructions in integer progralpus stalls to improve performance.

allows a net performance benefit of about 13%. _ Before discussing the statistics, we note that a key design
In addition to adding mechanisms for performance gain, We yiterance stems from the different design goals and theltiag

can also take away implementation complexity. For example, . nqiraints. DCE (and to varying extents, Slip-streamaFle

in the optimistic core, we drastically simplified the_ LSQ iog flicker, Tandem, and Paceline) focusespmipherally augment-

at the expense of correctness (recall that the LQ is coniplete o eyisting multi-core microarchitecture. EDA emphasizes

removed and the priority logic in the SQ is also removed). On ' -hangingconventional design practice and making microar-
average, In 10'090 mstru.ctlons, less than 0.18 Ioad; VECel chitecture more decoupled (to reduce implementation cexrapl
incorrect forwarding, addmg I<_ass than 0'.05 recoveriese Th ity and increase resilience to variation-related congesng. We
overall performance cost is virtually negligible (inclutlen 1o mizehe leading corelthread specifically for lookahead. Our
results shown in Figure 4). Figure 11 shows the recovery rate|,q ahead is not slowed down by unrelated normal computatio
due to software and hardware approximations. Note that EVehnd the optimistic architectural design takes full advgetaf

mf lthekeﬁtregne _(Izlases crh%f p(ra]rlbmk Endéwc;lf, the b?nEf"tA\l correctness non-criticality. In contrast, the leadingecthread
0 ooha eah_lstlhouth!g st Tt;)vﬁr ea Od ricove”esgad in these three different designs all execute almost thereenti
note that while the architectural behavior and the over program and use a hardware that is designed with proper

recoveries are faithfully modeled, the potential positigact execution rather than lookahead in mind. Note that achigvin

on cycle time or load latency is not considered in our analysi . speed improvement in the lead core as done in Tandem
and Paceline is orthogonal to our design (which improves) IPC

4

§ | |- B o o4 83 88 | and can therefore be incorporated.
éz, , In Figure 12, we show the speedups. We note that our
§17 i reproduction of DCE based on the paper is only a best-effort
g I I approximation. Not all details can be obtained, such as the
bzipz  crafty  eon ga?a) f;ﬁteggripap&?c at'ijgﬁks twolf— vortex  vpr - G.mean baseline’s prefetcher design. We used our own instead. In
06 ‘ s order not to inflate the benefit of EDA, we chose the best
Gosp (|31 I s« [ arch 1 configuration for a sophisticated stream prefetcher [22jhwt
o this prefetcher, the baseline performance will be lowergd b
202 an average of 9% and as much as 25%. Finally, as mentioned
g 01 before, improving simulator fidelity allows sometimes dedit
ammp applu apsi art egk facercfma3d galgel lucas mesa mgrid sixtrk swim wup G.mean performance differenceg(g’ 3x in SW"T) Without this Change,

(b) Floating-point applications.

) ; . our version of DCE obtains performance improvements that
Figure 11 The number of recoveries per 10,000 committed correctness . . .
thread instructions. “skt" shows the number due to skeletal execution ma_tCh (9] re_,-latlvely Wel_l- EOI’ Pette_f direct comparison, _We
and “+arch" shows the result after enabling architectural changes in the shift the basis of normalization in Figure 12 to the suboptim
optimistic core. baseline and show our default baseline as the “optimized”

baseline. Our lookahead-specific design understandablydes

Lookahead effects. When the optimistic thread can sustain deep .
more performance boosting.

lookahead, it is not difficult to understand why the corress
core is sped up. In our system, both branch mispredictionsRecap. In this section, we have shown that an explicitly-
and cache misses are significantly mitigated in the trailing decoupled implementation can competently perform loo&dhe
correctness core. On average, the reduction in mispredicti and deliver solid performance improvement. This is don&exit

10



IS Optimized baselineT ] DCENNNSSSN ED) challenges in cost-effective helper-threading. Firsstewyatic

and automatic generation of high-quality helper threadecisd
difficult. The code has to balance efficiency with success. rat
Recall that these codes need to compute irregular addresses
and they are invoked much higher up in the control flow when
b g gip mel pomk twoll vorex vpr Gmean some necessary input may not be available. Duplicatingdde c
(a) Integer applications to generate these data may be inefficient. Second, triggerin
768 helper threads at the opportune moment is also challenBioiy.
early and late triggering reduce a helper thread’s effecidss.
Finally and perhaps most importantly, helper-threadingdsethe
support to quickly and frequently communicate initial \eduat
the register level from the main thread to the helper threads

bzip2 crafty eon gay

1.0
ammp applu apsi art egk facerc fma3d galgel lucas mesa mgrid sixtrk swim wup G.mean

(b) Floating-point applications which dictates that the hardware support for helper thréade
Figure 12. Comparison of EDA and DCE. All results are shown as to be tightly coupled to the core.
speedup relative to the suboptimal simulator baseline. The optimized Our EDA-based approach avoids these challenges. First, our
baseline, which has been used throughout the paper, is also shown. optimistic thread is automatically generated with a verpysie

parsing algorithm. Second, the optimistic thread is a cumtiis
requiring complex circuitry that is challenging to impleme  stand-alone thread. The correctness thread (softwarey doe
Explicit decoupling is a key enabling factor. Note that EDded  spawn, control, or interfere with the optimistic thread.eTh
have an up-front cost in infrastructure. However, with fiet  correctness core (hardware) also has little additionalpierity
exploration, more novel techniques can be integrated ta@eo  to enable or facilitate the optimistic thread. The only sapp

the cost. involved is to pass on the register state at recovery timégiwis
done at an exceedingly low frequency. Moreover, the coness
6. Related Work thread is completely stalled during that transfer and thesd is

By separating correctness guarantee and common-case-perfon© contention of any resource with normal processing. kinal
mance optimization, our explicitly-decoupled architeet(EDA) ~ the distance between the pair of threads is trivially cappgd
has a number of key benefits: (a) improving the system’s divera the Simple branch outcome queue, easily avoiding run-away
robustness by moving complexity of optimization out of the '00kahead. Moreover, delayed deployment of prefetching is
critical correctness core and (b) improving the efficiendy o Straightforward in reducing premature prefetching. ,
optimizations by allowing all layers in the design stack loé t To maintain high performance for the lead thread, we in-
optimistic core to be removed from concerns of uncommon €Vitably need to develop support tolerate long latencies.
cases. With respect to the former, the pioneering work oflvy A large body of work focuses on enhancing the processor's
is the most closely related [3]. A key difference is that om#E ~ capability to buffer more in-flight instructions so as to &lo
argues for a far more decoupled implementation. The opticnis ~ Stalling [33]-{38], or to perform a special “runahead” exgon
core communicates with the correctness core in an explicitduring a conventional stall [12], [39]-{41]. In contrasturo
fashion with low bandwidth, which allows the optimistic eqp ~ 00kahead is more proactive and continuous. ,
be in its own implementation domain with potentially difet Finally, our work focuses onexplicitly separating out
CAD strategies €.g. less conservatism in timing analysis) performance-enhancing mechanisms which allows costtifée

and voltage and frequency settings (less conservatism i Py Implementations throughout the design stack (in a differen
variation tolerance). Such benefits are much more difficnlt t d0Main). This paper is limited to ILP-enhancing assistiveht
obtain in tightly coupled systems such as DIVA or Razor [23]. Nidues. Extending the study to cover parallelization-uee
Our EDA allows optimizations to be done in an optimistic and Mechanisms such as [5] and [42] is our future work.
probabilistic fashion which we showed to be very effecti@é.
course, the goal of alleviating performance hurdles fronmoiey
access and branch misprediction is the same with a very wide s In this paper, we have introduced performance-correctness
of approaches. But our way of achieving the gain has impbrtan explicitly-decoupled architecturavith two separate domains,
differences with prior art. each focuses only on one goal, performance optimization or
In Section 5.3, we contrasted our approach with a classcorrectness guarantee. By explicitly separating the twalsgjo
of designs using two passes to process a thread, includindoth can be achieved more efficiently with less complexity.
Slip-stream [7], [20], dual-core execution [9], Flea-fiéci{21], Given the correctness guarantee, the performance domain
Tandem [18], and Paceline [19]. Another class of relatedkwor can truly focus on the common case and allow the entire
is helper-threading (also called speculative precomjmrtat  design stack to carry out optimizations in a very optimisticd
(e.g, [24]-[32]). In helper-threading, a compiler- (or manyall  efficient manner, avoiding excessive conservatism. Wittcimu
) generated snippet of code is triggered at certain moments t complexity of optimization moved into the performance dama
access data in advance of the main thread. There are sever#ihe correctness domain can have a simpler architecture and

7. Conclusions and Future Work
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circuit implementation and is thus easier to be made morestob  [17]
against various emerging concerns such as PVT variations.

We have demonstrated a concrete design using two indepeng
dent cores: the optimistic and the correctness core. We athow
that both the microarchitecture of the optimistic core ated i
software can be designed optimistically and allow much &mp
methods for optimizations. Such a design enables efficikap
lookahead and produces a significant performance boosting e [20]
fect (with geometric means of 1.49 and 1.96 speedup on intege |21
and floating-point applications). It also allows the comess
core to be less aggressive in its implementation with legmits
on performance than such simplifications would have on a
conventional microarchitecture.

While our first-step effort demonstrated some potentials of (23]
explicitly-decoupled architecture, there are a lot moreb®® [24]
explored. For instance, making the optimistic thread goobely
optimization of branch and cache misses; exploring more ef- (251
ficient, throughput-optimized design for the correctnesser
conducting a more thorough design space study; and creating2®!
an intelligent and dynamic feedback system to allow a more
targeted boosting effort. In future work, we plan to explsoene
of these areas.

[19]
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