
A Performance-Correctness Explicitly-Decoupled Architecture: Technical Report

Alok Garg and Michael C. Huang
Department of Electrical & Computer Engineering

University of Rochester
{garg, huang}@ece.rochester.edu

Abstract

Optimizing the common case has been an adage in decades of
processor design practices. However, as the system complexity
and optimization techniques’ sophistication have increased sub-
stantially, maintaining correctness under all situations, however
unlikely, is contributing to the necessity of extra conservatism
in all layers of the system design. The mounting process,
voltage, and temperature variation concerns further add to
the conservatism in setting operating parameters. Excessive
conservatism in turn hurt performance and efficiency in the
common case. However, much of the system’s complexity comes
from advanced performance features and may not compromise
the whole system’s functionality and correctness even if some
components are imperfect and introduce occasional errors. We
propose to separate performance goals from the correctness goal
using an explicitly-decoupled architecture.

In this paper, we discuss one such incarnation where an inde-
pendent core serves as an optimistic performance enhancement
engine that helps accelerate the correctness-guaranteeing core
by passing high-quality predictions and performing accurate
prefetching. The lack of concern for correctness in the optimistic
core allows us to optimize its execution in a more effective
fashion than possible in optimizing a monolithic core with
correctness requirements. We show that such a decoupled design
allows significant optimization benefits and is much less sensitive
to conservatism applied in the correctness domain.

1. Introduction
Achieving high performance is a primary goal of processor

microarchitecture design. While designs often target the common
case for optimization, they have to be correct under all cases.
Consequently, while there are ample opportunities for perfor-
mance optimization and novel techniques are constantly being
invented, their practical application in real product designs faces
ever higher barriers and costs, and diminishing effectiveness.
Correctness concern, especially in thorny corner cases, can sig-
nificantly increase design complexity and dominate verification
efforts. The reality of microprocessor complexity, its design

This technical report is an extended version of the conference paper that is
included in the 41

st International Symposium of Microarchitecture [1].

effort, and costs [2] reduces the appeal of otherwise sound
ideas, limits our choice, and forces suboptimal compromises.
Furthermore, due to the tightly-coupled nature of monolithic
conventional microarchitecture, conservatism or safety margin
necessary for each component and each layer of the design stack
quickly accumulates and erodes common-case efficacy. With
mounting PVT (process, voltage, and temperature) variation
concerns [3], the degree and extent of conservatism will only
increase. The combination of high cost and low return makes it
increasingly difficult to justify implementing a new idea and
we need to look for alternative methodology that allows us
to truly focus on the common case. One promising option
is to explicitly decouple the circuitry for performance and
correctness goals, allowing the realization of each aspect to
be more efficient and more effective. Decoupling is a classic,
time-tested technique and seminal works on various types of
decoupling in architecture [4]–[8] have attested its effectiveness
and advanced the knowledge base. Building on this foundation,
we propose to explore explicitly-decoupled architecture (EDA).

By “explicit”, we mean two things. First, the decoupling is not
simply providing a catch-all mechanism for a monolithic high-
performance microarchitecture to address rare-case correctness
issues. Rather, from ground up, the design is explicitly separated
into a performance and a correctness domain. By design, the
performance domain only enables and facilitates high perfor-
mance in a probabilistic fashion. Information communicated to
the correctness domain is treated as fundamentally speculative.
Therefore, correctness issues in the performance domain will
only affect its performance-boosting capability and become
a performance issue for the whole system. This allows true
focus on the common case and reduction of design complexity,
which in turn permits the implementation of ideas previously
deemed impractical or even incorrect. An effective performance
domain allows designers to use simpler, throughput-oriented
designs for the correctness domain and focus on other practical
considerations such as system integrity.

Second, the architecture design is not just conceptually but
also physically partitioned into performance and correctness
domains. The physical separation extends to the whole system
stack from software and microarchitecture down to circuit and
device. Physical separation ¬ allows the entire system stack
to be optimistically designed; ­ conveniently and economically

1



provides the same mechanism for ultimate correctness guarantee;
and ® permits custom software-hardware interface in the per-
formance domain, which opens up more cross-layer cooperative
opportunities to implement ideas difficult to accomplish within
a single layer.

Explicitly decoupled architecture represents a very broad
design space. What aspect of performance improvement is best
achieved in such a decoupled fashion, and how to exploit the
lack of concern for correctness to design novel optimization
techniques and indeed synergistic techniques from different
layers are but a small set of questions that need to be addressed.
To narrow down the exploration, in this paper we are focusing on
using the EDA principle to improve traditional ILP (instruction-
level parallelism) lookahead, and study the effect of using
practical, complexity-effective techniques to manage long, and
more importantly, unpredictable latencies associated with branch
and load processing. The discussed design is by no means a
mature final product, but rather a proof of concept that hopefully
helps to reveal some insights.

The rest of the paper is organized as follows: Section 2
explains some high-level design decisions; Section 3 discusses
the basic support needed to enable an explicitly-decoupled
execution; Section 4 discusses several opportunities to achieve
complexity-effective performance optimization; Section 5 details
the experimental setup; Section 6 presents quantitative analyses;
Section 7 discusses related work; and Section 8 summarizes and
discusses some future work.

2. High-Level Design Decisions
While lookahead techniques have the potential to uncover

significant amount of ILP, conventional microarchitectures im-
pose practical limitations on its effectiveness due to their
monolithic implementation. Correctness requirement limits the
design freedom to explore probabilistic mechanisms and makes
conventional lookahead resource-intensive: registers and various
queue entries need to be reserved for every in-flight instruction,
making deep lookahead very expensive to support. Moreover, the
design complexity is also high as introduction of any speculation
necessitates fastidious planning of contingencies.

In contrast to this “integrated” lookahead design, in an EDA, a
decoupled agent is to provide the lookahead effort. Furthermore,
we also want to minimize the mutual dependence between the
lookahead agent on the normal processing agent (the optimistic
and the correctness core, respectively in our design shown in
Figure 1). This decision has implications on how we maintain
autonomy of the cores and manage the deviance between them.
Autonomy. A key point of our design is that the optimistic
core can be specialized to perform lookahead more effectively
by leveraging the lack of correctness constraints. To maintain
autonomy of the lookahead with respect to normal processing,
we use an independent thread of control – the optimistic thread.
Having its own thread of control in the optimistic core also al-
lows us to freely exploit speculative, optimistic software analyses
or transformations.

We could simply use another copy of original program binary
as the optimistic thread. This is straightforward but suboptimal.
A skeletal version of the program that contains only instructions
relevant to future control flow and data accesses is enough.
There is no need to include computation that is only neces-
sary for producing the right program output and non-essential
for lookahead. We can rely on software analysis to generate
such a “skeleton” in a probabilistic fashion. In this paper, our
software analysis is done on the program’s binary. Performing
the tasks on binaries has the significant benefit of hiding all the
implementation details beneath the contractual interface between
the hardware and the programs, and maintaining semantic binary
compatibility: In each incarnation of an EDA, we can customize
the instruction set of the optimistic core without worrying about
future compatibility obligations.

BOQ

1

2
L0 L1

L2

Core
Optimistic Correctness

Core

Register state synchronization

Branch prediction

Prefetching through
normal accesses

skeleton
Executes

semantic
binary

Executes

Figure 1. The optimistic core, the correctness core, and the organization
of the memory hierarchy. The optimistic core ¬ explicitly sends branch
predictions to the correctness core via the branch outcome queue (BOQ)
and ­ naturally performs prefetching with its own memory accesses.

Managing deviance. The removal of correctness constraints in
the performance domain provides the freedom to explore cost-
effective performance-boosting mechanisms and avoid excessive
conservativeness. However, it would inevitably lead to deviation
from the desired result. For example, approximations in the
skeleton generation, a logic simplification in the architecture
design, or device glitches due to insufficient margin can all cause
the architectural state in the performance domain to deviate
from the desired state. If the design heavily depends on vast
amounts of predictions and on the preciseness of the predicted
information from the performance domain, such deviations are
likely to result in costly remedies in the correctness domain and
ultimately limit our freedom in exploring unconventional and
optimistic techniques.

To build in an inherent tolerance for such deviations, we do
not rely on the optimistic core to provide value predictions and
only draw branch direction predictions from it. This is done
using a FIFO structure Branch Outcome Queue (BOQ) as shown
in Figure 1. This also allows us to detect the control flow
divergence between the two threads. When this happens, the
correlation between the execution of the two threads is reduced
and at some point, the state of the optimistic core needs to be
reinitialized to maintain its relevance in lookahead. We call this
a recovery. In this paper, for simplicity, a recovery is triggered
whenever a branch misprediction is detected in the correctness

2



core and a recovery involves copying architectural register state
from the correctness core to the optimistic core. We note that
while we are actively exploring alternatives, we have not found
a design with superior performance.

Even with the recovery mechanism, memory writes in the
performance domain are still fundamentally speculative and need
to be contained within its local cache hierarchy. We use one
private cache (L0, for notional convenience). By simply sharing
the rest of the memory hierarchy between the two cores, we
can tap into the rest of the architectural state in a complexity-
effective manner. L0 never writes back anything to the rest of
the hierarchy.

Finally, there are times when the type of boosting a particular
implementation performs is not yielding sufficient benefit to
offset the overheads such as that from the recoveries. In that
case, the better alternative is to halt the optimistic thread and
perform a recovery later when the execution moves to a code
region where boosting will be effective again. For brevity, we
leave this discussion to the future.
Related work. While we will discuss related work in more detail
later, it is worth highlighting here the key differences. Note that
the differences are often the result of difference in goal.

Decoupling correctness and performance issues is not a new
concept. We want to make a case for a more explicit, up-front
approach to decoupling, which makes performance optimization
and correctness guarantee more independent than prior art. This
is reflected in

1) The division of labor in the two cores: The optimistic
core is only attempting to facilitate high performance by
passing hints and other meta data. In the common case,
it only provides good hints, whereas the leading cores in
[4], [8], [9] will produce complete and correct results.

2) The minimal mutual dependence between them: Neither
does the trailing core require a large amount of accurate
information from the leading core (such as architectural
state to jump start future execution [6]), nor does the
leading core heavily depend on the trailing core to perform
its task [7].

3. Basic Support
The potential of explicitly-decoupled architecture lies in the

opportunities it opens up for efficient and effective optimizations.
The required support to allow the optimistic core to perform
self-sustained lookahead is rather basic and limited.

3.1. Software Support
A key requirement for the envisioned system to work effec-

tively is that the optimistic core has to sustain a performance ad-
vantage over the correctness core so as to allow deep lookahead.
A key opportunity is that the skeleton only needs to perform
proper data accessing, which is only part of the program, and
may be able to skip the remainder. This is not a new concept.
Indeed, the classic access/execute decoupled architecture [7]
exploits the same principle to allow the access stream to stay

ahead. However, the challenge is that our optimistic core is
significantly more independent and has to do enough work to
ensure a highly accurate control flow. As it turns out, using
conventional analysis on the binary, we can not successfully re-
move a sufficient number of instructions: about 10-12% dynamic
instructions (most of which prefetches) can be removed from the
program binary without affecting the program control flow. This
is not sufficient to sustain a speed advantage for the optimistic
thread. While extremely biased branches (identified through
profiling) can be removed or turned into unconditional branches
reducing the need for some branch condition computation, solely
relying on this is also insufficient.

.........

bic t2, 0x3f, t2
lda t1, −17633(gp)
lda t2, 1020(t3)
ldl v0, −25936(gp)

addl v0, 0x1, s1
stl s1, 68(sp)

bne a2, Label
xor s1, a2, a2
ldl a2, 68(sp)

bne a2, Label
xor s1, a2, a2

bic t2, 0x3f, t2
lda t1, −17633(gp)
lda t2, 1020(t3)
NOP

NOP
NOP

Distance
Communication
Long

ldl a2, 68(sp)

Original binary Skeleton

Figure 2. Illustration of avoiding unnecessary computation in the skele-
ton. When a store has a long communication distance with its consumer
load the computation chain leading to the store is omitted in the skeleton.

A simple but important observation is that the optimistic
thread has access to the architectural memory hierarchy in
the correctness domain and therefore can obtain the data from
memory when the producer store is sufficiently upstream in the
instruction sequence that at the time of load – it would have been
executed by the correctness core. We do not need to include
the store and its backward slice in the skeleton(illustrated in
Figure 2). Note that this is also exploited earlier in [6].

3.2. Architectural Support
The architectural support required to enable our explicitly

decoupled architecture is also limited. For the most part, both
cores operate as self-sufficient, stand-alone entities. The only
relatively significant coupling between the two cores is that the
correctness core’s memory hierarchy also serves as the lower
levels of the memory hierarchy for the optimistic core. Note
that, the accesses from the optimistic core to L1 is infrequent
as it only happens when the L0 misses. Hence, extra traffic due
to servicing L0 misses is insignificant. Indeed, as we will show
quantitatively later, the increase in L1 traffic is more than offset
by the decrease of L1 accesses from the correctness core because
of better branch prediction.

Another support needed is the recovery mechanism. A branch
outcome queue (BOQ) is used to pass on the branch direction
information from the optimistic core to the correctness core.
When such a prediction is detected in the correctness core as

3



incorrect, a recovery is triggered. The correctness core drains
the pipeline and passes the architectural register state back to
the optimistic core. Since the L0 cache is corrupted because
of wrong-path execution, some cleansing may be helpful. For
simplicity, we reset the entire L0 cache upon a recovery. Also,
the fetch stage of the correctness core is frozen when the BOQ
is empty. This ensures the “alignment” of the branches: the next
branch outcome to be deposited by the optimistic core in the
BOQ is always intended for the next branch encountered by the
correctness core.

If, to avoid stalling, the correctness core consults a different
branch predictor when the BOQ is empty, then extra circuitry is
required to keep track of how many predictions are made using
the alternative source, to determine whether the two cores are
still on the same control flow, and to decide if the optimistic core
has already taken over so as to switch back to the BOQ as the
prediction source. In short, the circuit support would be quite
complex. And as we will show later, when the entire system is
properly optimized, stalls in the correctness core can be kept
low. Nevertheless, alternatives of this policy are interesting to
study.

4. Opportunities
By separating out correctness concerns, EDA allows designers

to make different trade-offs and devise more effective perfor-
mance optimization strategies. A primary implication of decou-
pling is that not all mis-speculations need to be corrected or even
detected in the performance domain. In a conventional design
that tightly couples correctness and performance, the complexity
of such detection and recovery logic may significantly affect
cost-effectiveness of the implementation, reduce the appeal of
an otherwise sound idea, and can even defeat the purpose of
speculation. In EDA, designs can use new, probabilistic mech-
anisms to explore optimization opportunities in a more cost-
effective way and avoid the complex algorithms and circuitry
that place stringent requirements on implementation. We discuss
a few opportunities that we have explored.

4.1. Skeleton Construction
Recall that the skeleton does not need to contain long-distance

stores and their computation chain. However, the communica-
tion relationship between loads and stores is not always clear,
especially when dealing only with program binaries. Fortunately,
our binary parsing only needs to approach the analysis in a
probabilistic fashion, and we can use profiling to easily obtain
a statistical picture of load-store communication patterns. The
process is as follows and we use a binary parser based on
alto [10] to perform the analysis and transformations.
Profiling. We first perform a profiling step to obtain certain
information parsing the binary alone can not. First of all, we
can obtain the destinations of indirect jump instructions. Again,
we do not need to capture all possible destinations, thanks to the
lack of correctness requirement for the optimistic core. With this
information, we can make the control flow graph more complete.

Secondly, we collect statistics about short-distance load-store
communications. Using a training input, we obtain the list of
stores with short instances. A short instance is a dynamic store
instance whose consumer load is less than dth instructions
downstream. We set dth to 5000 in this paper. We found that
the profile results are not sensitive to dth. For every store with
short instances, we tally the total number of dynamic instances
as well as short instances. For the latter, the statistics are further
subdivided based on the identity of their consumer loads. This is
needed in later analysis because whether a short instance matters
depends on if the consumer load is part of the skeleton.

Finally, the profiling run also identifies load instructions that
are likely to miss in the (L2) cache and branches with strong
biases. The statistical miss frequencies are recorded for later
analysis. Branch bias factored with cost (additional instructions
added) is used to label some branches as biased. In general,
these branches have a bias greater than 99.9%.

Binary analysis. With this profile information, we then proceed
to build a program skeleton. The goal of the skeleton is to closely
track the original program’s control flow and be able to pass
on branch prediction information and issue timely prefetches.
Thus, the first thing we do is to mark branch instructions as
selected in the skeleton. Next, traversing the data-flow graph
backward, we mark all the instructions on the backward slice of
the branch instructions. Branches considered extremely biased
are turned into NOPs or unconditional branches and therefore
they do not have any backward slice. Following this, we need to
deal with memory dependences and include producer stores that
feed into the loads included in the current skeleton. Our goal
is to minimize the total computation due to included stores and
at the same time keep the total number of short instances from
excluded stores small. The aforementioned profile information
about short instance helps us to determine which stores to
keep. We ignore short instances involving a load not included
in the skeleton and sort stores with increasing ratio of short
to total instances. We walk down the list and exclude the top
ranking stores until the total short instances from them surpasses
10,000th of total dynamic instruction count. Since trimming
stores from the skeleton changes which loads belong to the
skeleton and affect the ratio for ranking, we iterate the analysis
a few times for a better result.

Finally, we insert prefetch instructions for those loads likely
to miss in the cache and are not already included in the skeleton.
Whether to include a particular load is also determined by its
cost-benefit ratio. The benefit (of adding a prefetch) is approx-
imated as the miss penalty multiplied by the miss probability.
The cost is approximated by the number of instructions added
to compute the address. If the ratio is lower than a threshold
(empirically set to 3), the prefetch is inserted.

Eliminating useless branches. Note that in terms of what infor-
mation to pass between the two domains in an EDA and how to
obtain that information in the performance domain, the design
space is vast. The basic skeleton we formed is a code that not
only strives to stay on the right path to maintain relevance, but

4



also attempts to execute every branch in the original semantic
binary. This is a design choice, not a necessity to support deep
lookahead. We explore this option because handling frequent
branch misprediction is a necessity that affects all microarchitec-
tural components. If the correctness domain can expect a highly-
accurate stream of branch predictions, its microarchitecture can
be fundamentally simplified. Because of this choice, we found
that the skeleton includes branches completely useless for its
own execution. These include empty if-then-else structures and
sometimes empty loops as shown in Figure 3. In these cases,
including the branch can be very inefficient, especially in the
case of empty loops: when the loop branch is biased and
turned into an unconditional branch, the optimistic thread will be
“trapped” in the loop until the trailing correctness thread catches
up, finishes the same loop, and generates a recovery. Not only
will the optimistic thread forfeit any lead upon reaching the
empty loop, it also wastes energy from then on until recovery
doing absolutely nothing useful.

......

Address Binary

0x12002e5f8:  fbeq    f1, 0x12002e61c
ldt     f24, 8(a1)

0x12002e5f4:  

...

ldt     f25, 24(a0)
ldt     f26, 8(a0)
subt    f25, f24, f25
subt    f26, f24, f24
divt    f25, f19, f22
divt    f24, f19, f21

cmptlt  f19, f1, f1

EL
SE

br      zero, 0x12002e6280x12002e618:  
0x12002e61c:  ldq_u   zero, 0(sp)

cpysn   f11, f11, f22
cpys    f11, f11, f21 TH

EN

cmptlt  f22, f13, f27
cmptle  f12, f21, f28

0x12002e628:  
0x12002e62c:

...

(a)

Biased conditional branch turned into
unconditional branch in the skeleton.

0x12001f9c0: 
0x12001f9bc:  bgt     a1, 0x12001f9a0

subq    v0, t0, a2

0x12001f99c:  
subq    v0, t0, a2
addq    v0, v0, v0

cmovge  a2, a2, v0
addq    v0, v0, v0
subq    v0, t0, a2
cmovge  a2, a2, v0
subq    a1, 0x2, a1 LO

O
P 

BO
DY

Address Binary

...

addq    v0, v0, v0

(b)
Figure 3. Examples of empty if-then-else block (a) and loop (b) in the
skeleton of real applications. Instructions selected in the skeleton are
shown in bold.

In these cases, by not executing the branch, we avoid un-
necessary waste in the optimistic core and may even manage
to avoid a costly recovery. It is straightforward to identify
these branches using the parser. The only issue when skipping
them is that of branch “alignment”: Because there is a one-
to-one correspondence of branches between the optimistic and
correctness thread (so as to use a simple FIFO for the BOQ), if
the optimistic thread skips a branch, the correctness thread will

(mis)interpret the next piece of prediction as that of the skipped
branch, thus losing alignment.

We maintain alignment by replacing the branch to be skipped
with a special branch instruction in the skeleton. Specifically, we
add three types of branches1: BDC, BUT, and BUF as discussed
in Table 1. Even though these dummy branches do not have an
outcome of direction, we can still encode the dominant direction
found in profiling (e.g., BUF.T to indicate likelihood of taken)
as a prediction passed to the correctness core. This is especially
sensible for the loop-branch. Of course, a misprediction for
branches like BUF.T does not result in recovery, but in our
simplified correctness core, it does result in draining of the
pipeline (Section 4.3). When a prediction is unavailable, we
simply stall the correctness core’s fetch and wait until the branch
is resolved.

Symbol Correctness thread interpretation and action
BDC (don’t-care) Branch prediction unavailable for this branch.
BUF (until fall through) Branch prediction unavailable for the loop. Stop

drawing from BOQ until this branch falls through.
BUT (until taken) Branch prediction unavailable for the loop. Stop

drawing from BOQ until this branch is taken.
Table 1. Replacing useless branches in the skeleton.

4.2. Cost-Effective Architectural Support
Due to space constraints, out of the several architectural

mechanisms we studied we only discuss a few, with a particular
emphasis on simplicity of the designs as in practice, complicated
techniques tend to be avoided by real-world designers.
Simplistic value substitution. Stalling induced by off-chip ac-
cesses can seriously impact the optimistic thread. Given the
freedom we enjoy in the optimistic core, there are quite a
few options to avoid waiting for an off-chip memory access.
Perhaps the simplest (and indeed a simplistic) way is to give up
waiting and feed some arbitrary value to the load instruction in
order to naturally flush it out of the pipeline. This may seem
senseless as a wrong value may cause the optimistic thread
to veer off the correct control flow and render it irrelevant
and maybe even harmful. However, there are several natural
tolerance mechanisms that come to the rescue: the data loaded
may not be control-flow related but is part of the prefetching
effort; the load may even be dynamically dead; and the error in
the value may be masked by further computation or comparisons.
We show two examples of masking from real benchmarks.

Figure 4-(a) shows a very typical code sequence where the
loaded value is compared to a constant to determine branch
direction. Figure 4-(b) shows another kind of masking. In this
example, under certain conditions, the loaded value is canceled
out in the computation and no longer matters. In summary, in
many cases, the exact value of a load does not matter and it
is more important to flush the long-latency instruction out of
the system so as to continue useful work downstream rather

1. Unlike extending the (semantic) ISA, adding these instructions intended
only for the performance domain does not present a compatibility issue.

5



than to wait for the memory to respond – unless the optimistic
thread is sufficiently ahead. We only feed a substitute value when
the distance between the two threads is below a threshold. This
distance is measured by the number of branch predictions in the
BOQ.

f10, 7748(at)
f0, f10, f10
f10, Label

lds
cmptlt
fbeq

Label:
...

load x

if (x>f0) ...

(a)

zero, t10, t12

t10, t8, t11
t8, t10, t10
t12, a4, a5
a4, t12, t12
t11, t10, t11
a5, t12, a5
a5, t11, a5

t10, 16(t9)ldl...
bis...
subl
subl
subl
subl
cmovlt
cmovlt
subl

t10 = x

t11 = |x−t8|

a5 = |x−a4|

= a5−t11
= |x−a4| − |x−t8|

a5

(b)
Figure 4. The inherent masking effect in real programs.

In terms of determining the substitute value, we can obviously
use a conventional value predictor or even a special-purpose
predictor [11]. However, we opt for the much simpler approach
of providing a 0, partly because it is the most frequently
occurring value in general. The feeding of a substitute value
can be triggered in a number of ways: when a load has blocked
instruction commit for a while; when an outstanding memory
access has timed out; or when the L2 cache explicitly notifies
the core of a miss.

We note that an apparent alternative is to explicitly flush
out the dependence chain of the load instruction as done in
[12]. The primary benefit of our approach is its simplicity: An
independent logic determines when to use value substitution and
when it is used, the rest of the core is unchanged – there is no
extra logic to explicitly tag results as invalid and propagate the
“poison”. Secondarily, as our examples show, in some cases,
the exact value may not matter much. Explicitly flushing the
apparent dependence chain without executing them prevents the
prefetching benefit.

Clearly, zero value substitution does not always work well.
In particular, when the value is some form of an address,
substituting a zero is often a sure way to get into trouble. A light-
weight solution we adopted is to identify “address” loads using
the parser and encode them differently to prevent the hardware
from doing zero value substitution. In other words, these loads
will stall if they miss in the L2. We choose this because the
hardware support needed is minimum.
Delayed release of prefetches. If the optimistic thread achieves
very deep lookahead, we do not want the prefetches to be
issued too early. Thus we record the addresses into a prefetch
address buffer (PAB) together with a timestamp indicating the
appropriate future moment to release it. This time is set to be
about one memory access latency prior to estimated execution
time of the load in the correctness thread. One subtle issue
we encountered is the timing of address translation. Since
loading with a virtual address can cause a TLB miss, which can
potentially take another off-chip access, we try to put translated
address into the PAB. However, if the translation causes a TLB

miss, instead of blocking and waiting for the TLB to fill, we
keep the virtual address and perform the translation when the
prefetch is released from the PAB.
Managing stale data. As discussed above, the optimistic core
is relying on the correctness core to provide the data when
the distance between a load and its producer store is long. To
allow the data to be obtained from the correctness core, i.e.,
from the L1 cache or beyond, stale data should be removed
from the L0 cache to force an access to the L1. Fortunately,
the cache’s replacement algorithm, which typically uses LRU-
like policies, already purges some stale data out of the cache
naturally. We also explored other proactive options, including
turning the store into invalidations and adding a timer-based
eviction mechanism. None of these approaches brings enough
consistent benefits (1-2% performance gain in our simulations)
to justify the extra complexity. In our final design, we leave it to
the cache replacement to probabilistically evict undesired cache
lines. We couple that with periodically forced recoveries: if no
recovery has occurred for a long time (150,000 cycles in our
experiments), we force the optimistic core to synchronize with
the correctness core, cleaning the registers and the L0.

4.3. Complexity Reduction
One important advantage of using EDA is the possibility

to significantly reduce the circuit and design complexity of
microarchitectural structures. In the optimistic core, we can
afford to focus only on the common case and have designs
that do not always work. In the correctness core, we can use
simpler algorithms and less ambitious implementations as there
is less need to aggressively exploit ILP. It can use a simpler,
throughput-optimized microarchitecture and smaller, less power-
hungry structures. Because the core bears the burden of guar-
anteeing the correctness, a much simpler implementation can
have a series of benefits. For instance, having fewer timing
critical paths means that the whole core is less vulnerable to
PVT variation concerns. Using a simpler and smaller core also
makes fault tolerance easier and more efficient. Here we discuss
a few straightforward opportunities to reduce complexity from
a generic microarchitecture to serve as cores inside an EDA.
We leave the exploration of special-purpose throughput-oriented
design as future work.
Correctness core. Perhaps the most important simplification
opportunity comes from branch handling in the correctness
core, thanks to the much more accurate branch directions pro-
vided by the optimistic core. Conventional architecture requires
immediate reaction upon a detected misprediction and needs
the capability to (a) quickly restore register alias table (RAT)
mapping; and (b) purge only wrong-path instructions and their
state from various microarchitectural structures such as the issue
queue, the LSQ, and the re-order buffer. In contrast, because
mispredictions are truly rare (see Section 6), the correctness core
does not need instant reaction. Instead, upon the detection of
a misprediction, the core can drain the right-path instructions
and reset the pipeline – no partial repair is needed. Hence,

6



checkpointing of RAT upon branch instruction is no longer
necessary. This has a secondary effect of reducing the possibility
of stalling when running out of RAT checkpoints.

Additionally, the characteristics of the program execution in
the correctness core is different from that in a conventional
core. First, cache misses are significantly mitigated. Thus, the
core will be less sensitive to the reduction of in-flight instruc-
tion capacity. Second, with the optimistic core taking care of
lookahead, latency of various operations becomes less critical so
long as the throughput is sufficient. For example, the system’s
overall performance will be less sensitive to modest frequency
changes in the correctness core. This makes it easy to use
conservatism to deal with variations. Third, advanced features
in the microarchitecture can be avoided. For example, load-hit
prediction is widely used in order to schedule dependents of
loads as early as possible [13]. The result of such speculation
is extra complexity dealing with mis-speculation and supporting
scheduling replays [14]. We can do away with such speculation
in the correctness core. Another example is to simplify the issue
logic with some form of in-order constraints, such as in-order
issue within any reservation station/queue. This would eliminate
the circuitry to compact empty entries and simplify the wakeup-
select loop.

In short, a whole array of complexity-performance tradeoffs
can be performed. As we do not have quantitative models of the
complexity benefit in terms of design effort reduction or critical
path length reduction, we show the performance sensitivity of
these complexity reduction measures in Section 6. In particular,
we show that the performance impact of a simplification is in
general much lower than in a conventional monolithic microar-
chitecture.

Optimistic core. Logic blocks in the optimistic core can also be
simplified. Such a simplification can even trade off correctness
for lower complexity and better circuit timing. Take the complex
memory dependence logic for example. We first eliminate the
LQ altogether, ignoring any potential replays due to memory
dependency or coherence/consistency violation. We also simplify
forwarding in the SQ by removing the priority encoding logic,
which is considered a scalability bottleneck of SQ. Rather than
relying on the priority encoder to select the right store among
multiple candidates for forwarding, we ensure that at most one
store (the youngest) will respond to a search. This is achieved by
disabling the entry of an older store with the same address upon
the issue of a new store. The circuit can be implemented with a
“disabled” (D) bit per entry, which prohibits the entry from any
subsequent address comparison. When a store address is resolved
and broadcasted to the SQ. Any older store (not yet disabled)
that matches the address will set the D bit. Any younger store
that matches the address will pull down a global line to cause the
incoming store’s D bit to be set. We still maintain the age-based
mask generation in the circuit [15] to tell the younger from the
older. Finally, we bypass TLB access and use virtual address to
search the SQ, ignoring virtual address aliasing.

5. Experimental Setup
EDA support. We perform our experiments using an extensively
modified version of SimpleScalar [16]. Support was added on top
of the original simulator to simulate optimistic and correctness
cores. We extended the simulator to model values in the cache
in order to faithfully model the optimistic thread’s execution.
We propagate values along with instructions in the pipeline
and instructions are emulated on the fly to correctly model the
behavior of optimistic core context. For example, when a load
in optimistic core consumes a value which is different from
value originally used by the emulation, we force re-emulation
of all its dependent instructions by propagating value down
the dependency chain and register file. This also involves extra
support for the simulation of branches. The baseline simulator is
not purely execution-driven in that the outcome of the instruction
execution is performed at dispatch time and the subsequent
timing simulation does not affect instruction outcome. Thus
whether a branch is mispredicted is known ahead of simulation
and only those known to be mispredicted can be backtracked.
However, in the EDA simulator, the outcome is indeed timing-
dependent. While we make a best-effort guess at the dispatch
time about whether the later branch execution will contradict the
prediction, the actual execution result can be different. In some
applications, the number of branches that show this difference
can be significant. Thus, we create a simulator checkpoint for
every branch just as a processor does.

We also emulate a separate oracle context in lock step with
optimistic core. This thread helps to indicate when the optimistic
thread veers off the right path and is useful for analysis purposes.
We stop emulating the oracle context as soon as optimistic
core diverts from the original path, and is re-synchronized when
correctness core forces a recovery. This allows the simulator to
collect certain statistics otherwise hard to obtain.
Microarchitectural fidelity. The simulator is much enhanced to
improve microarchitectural fidelity. The issue queues, register
files, ROB, and LSQ are separate entities. A discrete event queue
is added to allow faithful modeling of latency and contention
of memory accesses. Features like load-hit speculation (and
scheduling replay), load-store replays, keeping a store miss in the
SQ while retiring it from ROB are all faithfully modeled [13].
We also changed the handling of prefetch instructions (load to
ZERO register – R31). By default, the original simulator not
only unnecessarily allocates an entry in the LQ, but fails to
retire the instruction immediately upon execution as indicated
in the alpha processor manual [13]. This makes them essentially
blocking prefetches and can significantly affect the baseline
processor’s performance as we will see later. In our simulator, a
prefetch neither stalls nor takes resource in the LQ. An advanced
hardware-based global stream prefetcher based on [17], [18] is
also implemented between the L2 cache and the main memory:
On an L2 miss, the stream prefetcher detects an arbitrarily sized
stride by looking at the history of past 16 L2 misses. If the stride
is detected twice in the history buffer, an entry is allocated on the
stream table and prefetch is generated for the next stride address.

7



Stream table can simultaneously track 8 different streams. For a
particular stream, it issues a next prefetch only when it detects
the use of previously prefetched cache line by the processor.
It can issue a maximum of 16 prefetches before a stream is
discarded.

Power modeling. Both dynamic and leakage energy models are
implemented. We extended Wattch [19] for EDA to estimate the
dynamic energy component. Area estimation is needed to calcu-
late the global clock distribution, buffer, and leakage power in
our model. We attempted to rely on actually circuit synthesis to
obtain the area estimation. Specifically, we used Illinois Verilog
Alpha Model (IVM) and modified the hardware description to
mimic the correctness core and L0 cache. Unfortunately, the
process can not give a highly reliable area estimation: due to lack
of access to RAM intellectual property cell libraries, in IVM, the
branch predictor tables and caches are scaled down considerably
to permit hardware synthesis. Instead of having 4K or 8K entries
in various predictor tables (Table 2), the implementation caps
the size of all tables to no more than 512 entries. Under these
conditions, the synthesis result shows that the area overhead
due to adding an extra core and the L0 to be about 64% that
of the baseline core. For the architectural simulations, however,
we conservatively assumed the additional area is equivalent to a
full-blown core plus a full-sized L1 cache – an 100% overhead
in core area. Even under this assumption, the overall chip area
penalty is still limited as the L2 cache and other system logic are
shared. In our floorplan based on the scaled-down Alpha 21364,
the total chip overhead is just about 16%.

Leakage power is temperature-dependent and computed based
on predictive SPICE circuit simulations for 45nm technology
using BSIM3 [20]. We used HotSpot [21] to model dynamic
temperature variation across the proposed floorplan. Floorplans
for both baseline and EDA are derived from the scaled-down
version of Alpha 21364 floorplan for 45nm. We base device
parameters on the 2004 ITRS projection of 45nm CMOS tech-
nology file. We make aggressive assumptions on leakage to
reduce residual energy consumption during idling. Specifically,
we reduced the ITRS projected 65nm source-drain leakage
current density and gate-oxide leakage current density by a factor
of 5x and 10x respectively, factoring in the recent advances in
leakage current reduction [22], [23]. Without this adjustment, the
energy result would be even more favorable for our design as
for most applications, EDA consumes less leakage energy. This
is because while the execution time reduction is quite significant
for many applications, the area increase is rather limited in
comparison. Finally, we use aggressive conditional clocking in
the model ( cc3 in Wattch).

Applications, inputs, and architectural configurations. We use
highly-optimized Alpha binaries of SPEC CPU2000 bench-
marks. For profiling, we use the train input and run the applica-
tions to completion. For evaluation, we simulate 100 million
instructions after skipping over the initialization portion as
indicated in [24] using ref input. Our baseline core configuration,
is a generic high-end microarchitecture loosely modeled after

Baseline core Aggressive core
Fetch/Decode/Commit 8 / 4 / 6 16 / 6 / 12
ROB 128 512
Functional units INT 2+1 mul +1 div, FP

2+1 mul +1 div
INT 3+1 mul +1 div, FP 3+1
mul +1 div

Issue Q / Reg. (int,fp) (32, 32) / (80, 80) (64, 64) / (400, 400)
LSQ(LQ,SQ) 64 (32,32) 2 search ports 128 (64,64) 2 search ports
Branch predictor Bimodal + Gshare Bimodal + Gshare
- Gshare 8K entries, 13 bit history 1M entries, 20 bit history
- Bimodal/Meta/BTB 4K/8K/4K (4-way) entries 1M/1M/64K (4-way) entries
Br. mispred. penalty at least 7 cycles at least 7 cycles
L1 data cache 32KB, 4-way, 64B line, 2

cycles, 2 ports
48KB, 6-way, 64B line, 2
cycles, 3 ports

L1 I cache (not shared) 64KB, 1-way, 128B, 2 cyc 128KB, 2-way, 128B, 2 cyc
L2 cache (uni. shared) 1MB, 8-way, 128B, 15 cyc 1MB, 8-way, 128B, 15cyc
Memory access latency 400 cycles 400 cycles

Correctness core: Baseline core without branch predictor and with circuit
simplifications associated to RAT logic as discussed in
Section 4.3.

Optimistic core: Baseline core with microarchitectural design discussed
in Section 4.2 L0 cache: (16KB, 4-way, 32B line, 2
cycle, 2 ports). Round trip latency to L1 is 6 cycles

Communication: BOQ: 512 entries; PAB: 256 entries; register copy
latency (during recovery): 32 cycles

Process specifications: Feature Size: 45nm; Frequency: 3 GHz; Vdd: 1 V
Table 2. System configuration.

POWER4’s core [25]. To provide a reference for the lookahead
effect of EDA, we also use a very aggressively configured core.
Details of the configurations are shown in Table 2.

6. Experimental Analysis
6.1. Benefit Analysis

A primary benefit of EDA is that it allows complexity-effective
designs – by using simple mechanisms but targeting high-impact
performance bottlenecks. EDA allows design effort to be focused
more on exploring new opportunities rather than on ensuring an
optimization technique actually works in silicon all the time.
Unfortunately, we are not yet capable of quantifying design
effort nor can our current design – far from mature – be used to
convincingly justify the upfront cost of explicit separation and
the resulting partial redundancy.

In the following we hope to offer some evidence that this
paradigm is worth further exploration. A particular point we
want to emphasize is the no single aspect (e.g., absolute perfor-
mance) taken in isolation can be construed as a figure of merit.
Put together, these results show that even with only intuitive
and straightforward techniques, the discussed design still (a)
achieves good performance boosting, (b) does not consume
excessive energy, and (c) provides robust performance and better
tolerance than conventional design to circuit-level issues and to
the resulting conservatism.
Performance gain of optimism. Figure 5 shows the speedup
of the proposed EDA over a baseline core and the speedup
of expanding the baseline core into an impractically aggressive
monolithic core. Since our EDA is performing traditional ILP
lookahead, it is not surprising to see the two options follow the
same trend: in general, floating-point codes tend to benefit more
noticeably. On average, EDA’s speedup is more pronounced. The
geometric means are 1.49 (INT) and 1.96 (FP) compared to the
aggressive core’s 1.29 (INT) and 1.49 (FP).

8



bzip2 crafty eon gap gcc gzip mcf pbmk twolf vortex vpr G.mean
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Aggr. EDA
3.25 1.90 2.59

(a) Integer applications.

ammp applu apsi art eqk facerc fma3d galgel lucas mesa mgrid sixtrk swim wup G.mean
1.0

1.5

2.0

2.5

3.0
Aggr. EDA4.61 4.91

(b) Floating-point applications.
bzi cra eon gap gcc gzip mcf pbm two vor vpr amm

BL 1.2 1.89 2.37 0.59 2.25 1.77 0.14 0.67 0.56 0.91 1.15 0.68
Aggr. 1.43 2.65 3.34 0.97 2.35 2.25 0.16 0.76 0.72 1.44 1.5 1.15 ...
EDA 1.63 2.01 2.65 1.93 4.27 2.17 0.37 0.87 0.62 1.19 1.6 1.65

app aps art eqk fac fma gal luc mes mgr six swi wup
0.58 0.63 0.25 1.06 1.62 2.35 1.75 0.4 2.64 1.28 2.82 1.25 3.16
0.9 1.17 0.61 1.22 2.3 3.07 2.55 0.59 3.59 1.86 4.12 1.81 3.78

2.68 1.76 1.23 2.42 2.74 2.62 3.75 0.58 3.01 2.4 3.02 3.07 3.51
(c) Per-application IPC results.

Figure 5. Speedup of proposed EDA and an aggressively configured
monolithic core (Aggr.) over baseline (BL) for SPEC INT (a) and FP (b)
and the geometric means, and the detailed IPC results (c).

While we are focusing on ILP exploitation, the effect can
be equally important in explicitly parallel programs. We have
applied the same methodology to parallel programs – ignoring
any opportunity to target shared-memory issues in the design
of EDA – and have also observed significant performance
gains. Figure 6 summarizes the performance gain of SPLASH
applications running on a CMP with EDA cores compared to that
with conventional cores. The configuration of each CMP core
is same as defined in Table 2. To mimic realistic cache miss
rates for SPLASH applications, we use reduced cache sizes (as
recommended in [26]): 8 KB for L1 caches and and 256 KB
for the L2 cache. With this configuration their global L2 miss
rate closely matches with the miss rate of SPEC CPU2000 INT
applications in the baseline cache configurations. If the cache
sizes increase further, the data tend to fit within the caches and
the miss rates become unrealistically small. As a reference, a
configuration with twice as many cores (16-way) is also shown.
For 16-way CMP we also double the size of L2 cache to avoid
any increase in global L2 miss rate due to change in working
set size with additional threads. An important point to note is
that exploiting ILP is not guaranteed to be less effective than
exploiting TLP (thread-level parallelism) for parallel codes. As
can be seen, even for these highly-tuned scientific applications,
scaling to more cores does not give perfectly linear speedup and
in some cases producing (far) lower return than improving ILP.
Exploring multiprocessor-aware optimistic techniques in EDA
will likely unleash even more performance potential.

The results suggest that decoupled lookahead can uncover
some parallelism not already exploited in a state-of-the-art mi-
croarchitecture, at least for some applications. In some cases, the
return is significant. Note that the specific numbers are secondary
as the design point is chosen to illustrate the potential rather than

barn cholky fft fmm lu ocean radix raytrc watsp G.mean
0.75

1.00
1.25
1.50
1.75
2.00

16−Way EDA

Figure 6. Speedup of SPLASH applications running on an 8-way CMP.
Each conventional core in CMP system is replaced by an EDA core. For
contrast, the speedup of a 16-way CMP (also doubling the size of L2) is
also shown. In some cases, enhancing ILP even outperforms doubling
the number of cores.

to showcase an optimized design. Indeed, as we show later, the
correctness core can be much less aggressive with virtually no
performance impact. The key point is that this is achieved with
simple techniques designed to minimize circuit-implementation
challenges. Given the correctness decoupling, the entry barrier
for implementing other optimizations in the performance domain
should be considerably lower than in a conventional system.
More investigation would discover other “low-hanging fruits”
to achieve high performance with low complexity. In turn, the
performance “currency” can be used to pay for other important
design goals.
Energy implications. An apparent disadvantage of an EDA is
that it is power-inefficient: roughly two cores are used and the
program needs to execute twice and this may lead one to believe
that energy consumption would double. In reality, the energy
overhead can be far less due to a number of factors. First, the
skeleton is after all not the entire program and in certain appli-
cations can be quite small (Section 6.2). Second, many energy
components do not double. For instance, only the optimistic
core wastes energy executing wrong-path instructions following
mispredicted branches. Third, when a prefetch is successful, it
is a good energy tradeoff to execute a few more instructions
to avoid a long-latency stall which burns power while doing
nothing. As can be seen in Figure 7, which shows normalized
energy consumption with breakdown in both EDA and baseline
systems, a significant performance improvement results in lower
energy consumption in EDA. Indeed, EDA results in an average
of 11% energy reduction for FP applications. Even for integer
codes, the energy overhead of EDA is only 10%.

While there is clearly room for improvement, we note that the
study is conservative in that the EDA configuration is hardly op-
timized for energy-efficiency. For instance, no attempt is made to
shut down the optimistic core when it is not effective and no en-
ergy benefits of the architectural simplifications (Section 4.3) are
taken into account. Moreover, aggressive assumptions are made
to reduce residual energy consumption during idling(Section 5).
Performance cost of conservatism in EDA. Unlike the optimistic
core where timing glitches or logic errors do not pose a threat
to system integrity, the correctness core faces the challenge
that it has to be logically correct and functioning reliably
despite adverse runtime conditions such as unpredictable PVT
variations. Passive conservatism is perhaps still a most practical
and effective approach to dealing with the challenge: avoid
complexity in the logic design, mitigate timing critical paths, and

9



L2 CacheLeakage Optimistic CoreClock Main/Correctness Core

bzip2 crafty eon gap gcc gzip mcf plbmk twolf vortex vpr G.mean
0  

0.25

0.50

0.75

1.00

1.25

1.50

(a) Integer applications.

ammp applu apsi art eqk facerc fma3d galgel lucas mesa mgrid sixtrk swim wup G.mean
0  

0.25

0.50

0.75

1.00

1.25

1.50

(b) Floating-point applications.
Figure 7. Normalized energy consumption of EDA (right bar) and
baseline systems (left bar). Each bar is further broken down into 5
different sub-categories.

build in operating margins. The opportunity in an EDA is that
these acts of conservatism do not carry as high a (performance)
price tag as in a conventional system. Below, we show that
indeed, when we increase the conservativeness in the design
and configuration of the optimistic core, the performance impact
is insignificant and much less pronounced than doing so in a
conventional monolithic design.

First, we hypothesized earlier that the correctness core will be
less sensitive to in-flight instruction capacity as it does not need
to rely on aggressive ILP exploitation. We study this by grad-
ually scaling down the microarchitectural resources. Figure 8
shows the average performance impact. We scale other resources
(issue queue, LSQ, and renaming registers) proportionally with
the size of ROB. We contrast this sensitivity with that of a
conventional system. The figure clearly shows a much slower
rising curve for EDA indicating less performance degradation
due to reduction of microarchitecture “depth”.

648096112128

−8%

−6%

−4%

−2%

0 

Pe
rfo

rm
an

ce
 Im

pa
ct

ROB Size

Baseline
EDA

(a) Integer applications.
648096112128

−20%

−16%

−12%

−8%

−4%

0  

Pe
rfo

rm
an

ce
 Im

pa
ct

ROB Size

Baseline
EDA

(b) Floating-point applications.
Figure 8. Performance impact on Baseline and EDA system with
reduction in in-flight instruction capacity.

Second, the microarchitectural design of the correctness core
can be simplified by avoiding complex performance features.
We discussed eliminating load-hit speculation and the necessary
scheduling replay support in Section 4.3. Figure 9-(a) shows the
performance impact in EDA and in a conventional core. Clearly,
load-hit speculation is a useful technique in a conventional core.
With decoupled lookahead, its utility in the correctness core
is largely negligible – in fact, on average, we even achieve a

slight performance improvement for floating-point applications.
This is mainly because with effective lookahead, in floating-
point applications, there are abundant ready instructions in the
correctness core. Therefore, there is more potential cost and
little benefit in doing load-hit speculation. Figure 9-(b) shows
the impact of simplifying the integer issue queue to be in-order.
Similarly, this is creating a smaller performance penalty than
would be in a conventional core. Again, this is because the
throughput for integer instructions is generally sufficient and the
resulting serialization is less costly than in a conventional core.

Baseline EDA

INT FP 

−6%

−4%

−2%

0 

 2%

Pe
rf.

 Im
pa

ct

(a)
INT FP 

−20%

−15%

−10%

−5%

Pe
rf.

 Im
pa

ct

(b)
INT FP 

−8%

−6%

−4%

−2%

0 

Pe
rf.

 Im
pa

ct

(c)
Figure 9. Performance impact of architectural simplification – removing
load-hit speculation mechanism (a) and in-order int issue queue (b)
and modest clock frequency reduction (c) – in Baseline (BL) and EDA
systems.

Third, building in extra timing margin is a simple way to
increase a chip’s reliability under runtime variations. However,
in a conventional system, such margin directly impacts perfor-
mance. In an EDA, building in timing margin for the correctness
core has less direct impact thanks to decoupling. To demonstrate
this, we reduce the frequency of the correctness core by 10%.
We show the performance degradation and contrast that to the
conventional system under the same frequency reduction. From
Figure 9-(c), we see that the EDA system has a much smaller
sensitivity to such modest frequency reduction. Performance
degradation is less than 2% on average, 4-5 times smaller than
that of a conventional system.

In summary, as expected, the overall EDA’s performance is
insensitive to the simplification or extra conservatism introduced
to the correctness core – so long as its throughput is sufficient.
This means that performance gained using complexity-effective
optimistic techniques can be spent to reduce design effort and
improve system integrity.
Sensitivity of performance domain circuit errors. In our EDA,
the correctness core is not merely providing a correctness safety
net and we do not compare the entire output from the two
cores and resynchronize whenever there is a difference as some
other designs with similar lead/trailing cores such as DIVA [4],
Tandem [27], and Paceline [28]. In our current implementation,
we only resynchronize when the leading thread veers off the
right control flow. (In a future incarnation, even this could
be relaxed.) This difference allows the optimistic core to be
even less affected by circuit errors (such as due to insufficient
margins) than the lead cores in these related designs. This can be
shown in a very limited experiment by systematically injecting
errors into the committed results and observe their impact on
our EDA.

Our injection is different in two respects from common
practice. First, we inject multi-bit errors. Unlike particle-induced

10



errors which are found to cause mostly single-bit errors – largely
due to limited energy a particle transfers to the silicon, a timing
margin failure can cause multi-bit errors. Second, we only inject
errors into committed results since we are only interested in
finding out the masking effect of our EDA execution model.
We use systematic sampling and flip all bits of the result
of a committed instruction. Our simulator, which tracks value
in all microarchitectural components, allows us to faithfully
track the propagation of errors. Figure 10 shows the average
number of recoveries incurred per injection at different injection
frequencies.

102 103 1040

0.1

0.2

0.3

0.4

Re
co

ve
rie

s 
pe

r I
nj

ec
te

d 
Er

ro
r

Injection Frequency

INT
FP

Figure 10. Recoveries per injected error as a function of error injection
frequency (number of committed instructions per injected error).

We see that the number varies with the application and in
some cases, the lookahead activities can intrinsically tolerate
a large degree of circuit operation imperfection. For example,
for floating-point applications, out of 20 injected errors, only
1 results in a recovery. Even when circuit errors happen once
every 1000 instructions, recovery due to circuit errors will be
insignificant. For integer applications, the rate depends on error
injection frequency: as error frequency increases, the chance of
an error causing a recovery reduces. Intuitively, this is because of
increasing likelihood of a single recovery fixing multiple latent
errors.

6.2. System Diagnosis
Next, we discuss detailed statistics to help understand the

behavior of the system.
Skeleton. We first look at the skeleton generated by the parser.
Figure 11 shows the size of the skeleton as the percentage of
dynamic instructions in the original binary excluding the NOPs.
As would be expected, the skeleton of the integer applications
are bigger due to the more complex control flow, whereas the
skeleton for floating-point applications are much leaner. On
average, excluding prefetches and the special branches (shown
in Table 1), the skeleton contains an average of 68% (INT) and
34% (FP) of the instructions from the original binary.

Controlled by a separate thread, the lookahead effort on the
optimistic core is no longer tightly bound to (and slowed down
by) the actual computation the program has to perform. As
seen in Figure 11, the skeleton is quite a bit shorter than the
original binary. For some applications, the skeleton also becomes
less memory-bound and thus stalled less often when executing.
To put the code size reduction into perspective, if we use the
conventional baseline microarchitecture to serve as the optimistic

bzip2 crafty eon gap gcc gzip mcf pbmk twolf vortex vpr Avg.
0  

20%

40%

60%

80%

100%

Prefetch payload
Basic skeleton

(a) Integer applications.

ammp applu apsi art eqk facerc fma3d galgel lucas mesa mgrid sixtrk swim wup Avg.
0 

20%

40%

60%

80%

100%
Prefetch payload
Basic skeleton

(b) Floating-point applications.
Figure 11. Percentage of dynamic instructions left in the skeleton.

core, the effect of the skeletal execution alone can achieve
speedup of 0.99 to 2.93 with a geometric mean of 1.27 in integer
codes and 1.04 to 4.51 with a geometric mean of 1.80 in floating-
point codes.

Architectural techniques. Within the performance domain, one
can employ optimization mechanisms without complex backups
to handle mis-speculation or other contingencies. Zero value
substitution discussed in Section 4.2 is one example of low-
complexity techniques possible in EDA. This simple change
resulted in a modest increase in the number of recoveries (about
0.54 per 10,000 committed instructions in integer programs) but
allows a net performance benefit of about 13%2.

In addition to adding mechanisms for performance gain, we
can also take away implementation complexity. For example,
in the optimistic core, we drastically simplified the LSQ logic
at the expense of correctness (recall that the LQ is completely
removed and the priority logic in the SQ is also removed). On
average, in 10,000 instructions, less than 0.18 loads receive
incorrect forwarding, adding less than 0.05 recoveries. The
overall performance cost is virtually negligible (included in
results shown in Figure 5). Figure 12 shows the recovery rate
due to software and hardware approximations. Note that even
in the extreme cases of mcf, perlbmk, and twolf, the benefit
of lookahead still outweighs the overhead of recoveries. Also
note that while the architectural behavior and the overhead of
recoveries are faithfully modeled, the potential positive impact
on cycle time or load latency is not considered in our analysis.

Lookahead effects. When the optimistic thread can sustain deep
lookahead, it is not difficult to understand why the correctness
core is sped up. In our system, both branch mispredictions
and cache misses are significantly mitigated in the trailing
correctness core. On average, the reduction in misprediction
is 90% and 89% for integer and floating-point applications

2. A recovery causes the correctness core to completely drain the pipeline
before copying the registers. This is faithfully modeled and statistics show
that the actual penalty is about 150 cycles on average. With these recovery
frequencies, the latency of register copying is not a significant factor. Doubling
the latency to 64 cycles will add about 1% overhead to integer applications
and even less for floating-point applications.

11



bzi cra eon gap gcc gzip mcf pbm two vor vpr Avg amm app aps art eqk fac fma gal luc mes mgr six swi wup Avg
MR 0.3 0.02 0.0 0.08 0.06 0.0 6.1 0.8 1.2 0.4 0.35 0.85 2.0 1.7 0.28 22.9 0.54 0.16 0.03 0.02 2.87 0.01 0.05 0.01 0.03 0.00 2.2
RD 99.1 98.1 85.9 95.2 98 75 90.9 99.5 83 85.7 99.1 91.9 99.2 100 98 100 98.2 99.7 88.5 98.2 99.2 99.4 87.5 98 88.5 80.5 95.3

Table 3. Global L2 blocking miss rate (MR %) for baseline system (with an aggressive hardware prefetcher) and percentage reduction (RD %) by
using EDA (without a hardware prefetcher) for correctness core.

bzip2 crafty eon gap gcc gzip mcf pbmk twolf vortex vpr G.mean
0

1

2

3

4

Re
cv

. p
er

 1
0K

 In
st

s. skt +arch 6.4 8.3 8.8

(a) Integer applications.

ammp applu apsi art eqk facerc fma3d galgel lucas mesa mgrid sixtrk swim wup G.mean
0  
0.1
0.2
0.3
0.4
0.5
0.6

Re
cv

. p
er

 1
0K

 In
st

s.

skt +arch3.01

(b) Floating-point applications.
Figure 12. The number of recoveries per 10,000 committed correctness
thread instructions. “skt" shows the number due to skeletal execution
and “+arch" shows the result after enabling architectural changes in the
optimistic core.

respectively. The reduction in L2 misses, as shown in Table 3
is 92% (INT) and 95% (FP).

Note that in this paper, we did not explore prefetch to L1.
Having a relatively short latency, L1 misses tend to be easier to
tolerate by an out-of-order engine. Also, since L1 cache has a
much smaller size, prefetching into L1 has to be more precise in
timing. In our current system, the impact on L1 misses for the
correctness thread is entirely due to on-demand accesses from
the optimistic thread via the L0 cache. The L1 misses reduce
by 93% (INT) and 94% (FP) on average. There is evidence that
the correctness core – which is just a simplified conventional
core – is sometimes throughput saturated. A key issue in EDA
design is how to support wider pipeline and higher throughput
in a complexity-effective way. This is part of our future work.

Finally, we note that backing L0 cache with L1 does not
increase the burden of the L1 cache. In fact, with the exception of
only a few applications, the total traffic to L1 is reduced, thanks
to the reduction in wrong-path instructions in the correctness
core. The traffic reduction averages 22%(INT) and 13% (FP)
and can be as much as 53%. Accesses from L0 only account for
an average of 6% (INT) and 7% (FP) of the total L1 accesses.
Comparison with DCE. If we reduce EDA to a purely per-
formance enhancing mechanism, it resembles a class of tech-
niques represented by decoupled access/execute architecture [7],
Slip-stream [8], [29], dual-core execution (DCE) [9], Flea-
flicker [30], Tandem [27], and Paceline [28]. Among these, we
compare to DCE as architecturally, it is perhaps the most closely
related design: both try to avoid long-latency cache miss-induced
stalls to improve performance.

Before discussing the statistics, we note that a key design
difference stems from the different design goals and the resulting
constraints. DCE (and to varying extents, Slip-stream, Flea-
flicker, Tandem, and Paceline) focuses on peripherally augment-

ing an existing multi-core microarchitecture. EDA emphasizes
on changing conventional design practice and making microar-
chitecture more decoupled (to reduce implementation complex-
ity and increase resilience to variation-related conservatism). We
customize the leading core/thread specifically for lookahead. Our
lookahead is not slowed down by unrelated normal computation,
and the optimistic architectural design takes full advantage of
correctness non-criticality. In contrast, the leading core/thread
in these three different designs all execute almost the entire
program and use a hardware that is designed with proper
execution rather than lookahead in mind. Note that achieving
clock speed improvement in the lead core as done in Tandem
and Paceline is orthogonal to our design (which improves IPC)
and can therefore be incorporated.

In Figure 13, we show the speedups. We note that our
reproduction of DCE based on the paper is only a best-effort
approximation. Not all details can be obtained, such as the
baseline’s prefetcher design. We used our own instead. In
order not to inflate the benefit of EDA, we chose the best
configuration for a sophisticated stream prefetcher [18]. Without
this prefetcher, the baseline performance will be lowered by an
average of 9% and as much as 25%. Finally, as discussed earlier,
fixing the modeling of prefetch instructions allows sometimes
dramatic performance differences (e.g., 3x in swim). Without this
change, our version of DCE obtains performance improvements
that match [9] relatively well. For better direct comparison, we
shift the basis of normalization in Figure 13 to the suboptimal
baseline and show our default baseline as the “optimized”
baseline. Our lookahead-specific design understandably provides
more performance boosting.

Optimized baseline DCE EDA

bzip2 crafty eon gap gcc gzip mcf pbmk twolf vortex vpr G.mean
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

3.24 1.97 2.66

(a) Integer applications

ammp applu apsi art eqk facerc fma3d galgel lucas mesa mgrid sixtrk swim wup G.mean
1.0

1.5

2.0

2.5

3.0

3.5
5.03 5.87 7.68

(b) Floating-point applications
Figure 13. Comparison of EDA and DCE. All results are shown as
speedup relative to the suboptimal simulator baseline. The optimized
baseline, which has been used throughout the paper, is also shown.

Recap. In this section, we have shown that an explicitly-
decoupled implementation can competently perform lookahead
and deliver solid performance improvement. This is done without

12



requiring complex circuitry that is challenging to implement.
Explicit decoupling is a key enabling factor. Note that EDA does
have an up-front cost in infrastructure. However, with further
exploration, more novel techniques can be integrated to amortize
the cost.

7. Related Work
By separating correctness guarantee and common-case perfor-

mance optimization, our explicitly-decoupled architecture (EDA)
has a number of key benefits: (a) improving the system’s overall
robustness by moving complexity of optimization out of the
critical correctness core and (b) improving the efficiency of
optimizations by allowing all layers in the design stack of the
optimistic core to be removed from concerns of uncommon
cases. With respect to the former, the pioneering work of DIVA
is the most closely related [4]. A key difference is that our EDA
argues for a far more decoupled implementation. The optimistic
core communicates with the correctness core in an explicit
fashion with low bandwidth, which allows the optimistic core to
be in its own implementation domain with potentially different
CAD strategies (e.g., less conservatism in timing analysis)
and voltage and frequency settings (less conservatism in PVT
variation tolerance). Such benefits are much more difficult to
obtain in tightly coupled systems such as DIVA or Razor [31].

Our EDA allows optimizations to be done in an optimistic and
probabilistic fashion which we showed to be very effective. Of
course, the goal of alleviating performance hurdles from memory
access and branch misprediction is the same with a very wide set
of approaches. But our way of achieving the gain has important
differences with prior art.

In Section 6.2, we contrasted our approach with a class
of designs using two passes to process a thread, including
Slip-stream [8], [29], dual-core execution [9], Flea-flicker [30],
Tandem [27], and Paceline [28]. Another class of related work
is helper-threading (also called speculative precomputation)
(e.g., [32]–[40]). In helper-threading, a compiler- (or manually-
) generated snippet of code is triggered at certain moments to
access data in advance of the main thread. There are several
challenges in cost-effective helper-threading. First, systematic
and automatic generation of high-quality helper thread code is
difficult. The code has to balance efficiency with success rate.
Recall that these codes need to compute irregular addresses
and they are invoked much higher up in the control flow when
some necessary input may not be available. Duplicating the code
to generate these data may be inefficient. Second, triggering
helper threads at the opportune moment is also challenging. Both
early and late triggering reduce a helper thread’s effectiveness.
Finally and perhaps most importantly, helper-threading needs the
support to quickly and frequently communicate initial values at
the register level from the main thread to the helper threads,
which dictates that the hardware support for helper threads have
to be tightly coupled to the core.

Our EDA-based approach avoids these challenges. First, our
optimistic thread is automatically generated with a very simple
parsing algorithm. Second, the optimistic thread is a continuous

stand-alone thread. The correctness thread (software) does not
spawn, control, or interfere with the optimistic thread. The
correctness core (hardware) also has little additional complexity
to enable or facilitate the optimistic thread. The only support
involved is to pass on the register state at recovery time, which is
done at an exceedingly low frequency. Moreover, the correctness
thread is completely stalled during that transfer and thus there is
no contention of any resource with normal processing. Finally,
the distance between the pair of threads is trivially capped by
the simple branch outcome queue, easily avoiding run-away
lookahead. Moreover, delayed deployment of prefetching is
straightforward in reducing premature prefetching.

To maintain high performance for the lead thread, we in-
evitably need to develop support to tolerate long latencies.
A large body of work focuses on enhancing the processor’s
capability to buffer more in-flight instructions so as to avoid
stalling [41]–[46], or to perform a special “runahead” execution
during a conventional stall [12], [47]–[49]. In contrast, our
lookahead is more proactive and continuous.

Finally, our work focuses on explicitly separating out
performance-enhancing mechanisms which allows cost-effective
implementations throughout the design stack (in a different
domain). This paper is limited to ILP-enhancing assistive tech-
niques. Extending the study to cover parallelization-oriented
mechanisms such as [6] and [50] is our future work.

8. Conclusions and Future Work
In this paper, we have introduced performance-correctness

explicitly-decoupled architecture with two separate domains,
each focuses only on one goal, performance optimization or
correctness guarantee. By explicitly separating the two goals,
both can be achieved more efficiently with less complexity.

Given the correctness guarantee, the performance domain
can truly focus on the common case and allow the entire
design stack to carry out optimizations in a very optimistic and
efficient manner, avoiding excessive conservatism. With much
complexity of optimization moved into the performance domain,
the correctness domain can have a simpler architecture and
circuit implementation and is thus easier to be made more robust
against various emerging concerns such as PVT variations.

We have demonstrated a concrete design using two indepen-
dent cores: the optimistic and the correctness core. We showed
that both the microarchitecture of the optimistic core and its
software can be designed optimistically and allow much simpler
methods for optimizations. Such a design enables efficient, deep
lookahead and produces a significant performance boosting ef-
fect (with geometric means of 1.49 and 1.96 speedup on integer
and floating-point applications). It also allows the correctness
core to be less aggressive in its implementation with less impacts
on performance than such simplifications would have on a
conventional microarchitecture.

While our first-step effort demonstrated some potentials of
explicitly-decoupled architecture, there are a lot more to be
explored. For instance, making the optimistic thread go beyond

13



optimization of branch and cache misses; exploring more ef-
ficient, throughput-optimized design for the correctness core;
conducting a more thorough design space study; and creating
an intelligent and dynamic feedback system to allow a more
targeted boosting effort. In future work, we plan to explore some
of these areas.

References
[1] A. Garg and M. Huang, “A Performance-Correctness Explicitly Decoupled

Architecture,” in Proc. Int’l Symp. on Microarch., Nov. 2008.
[2] C. Bazeghi, F. Mesa-Martinez, and J. Renau, “µComplexity: Estimating Pro-

cessor Design Effort,” in Proc. Int’l Symp. on Microarch., Dec. 2005, pp. 209–
218.

[3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter Variations and Impact on Circuits and Microarchitecture,” in Proc.
Design Automation Conf., Jun. 2003, pp. 338–342.

[4] T. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture
Design,” in Proc. Int’l Symp. on Microarch., Nov. 1999, pp. 196–207.

[5] M. Martin, M. Hill, and D. Wood, “Token Coherence: Decoupling Performance
and Correctness,” in Proc. Int’l Symp. on Comp. Arch., Jun. 2003, pp. 182–193.

[6] C. Zilles and G. Sohi, “Master/Slave Speculative Parallelization,” in Proc. Int’l
Symp. on Microarch., Nov. 2002, pp. 85–96.

[7] J. Smith, “Decoupled Access/Execute Computer Architectures,” ACM Trans-
actions on Computer Systems, vol. 2, no. 4, pp. 289–308, Nov. 1984.

[8] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream Processors:
Improving both Performance and Fault Tolerance,” in Proc. Int’l Conf. on Arch.
Support for Prog. Lang. and Operating Systems, Nov. 2000, pp. 257–268.

[9] H. Zhou, “Dual-Core Execution: Building a Highly Scalable Single-Thread
Instruction Window,” in Proc. Int’l Conf. on Parallel Arch. and Compilation
Techniques, Sep. 2005, pp. 231–242.

[10] R. Muth, S. Debray, S. Watterson, and K. D. Bosschere, “alto: A Link-
Time Optimizer for the Compaq Alpha,” Software: Practices and Experience,
vol. 31, no. 1, pp. 67–101, Jan. 2001.

[11] O. Mutlu, K. Hyesoon, and Y. Patt, “Address-Value Delta (AVD) Prediction:
Increasing the Effectiveness of Runahead Execution by Exploiting Regular
Memory Allocation Patterns,” in Proc. Int’l Symp. on Microarch., Dec. 2005,
pp. 233–244.

[12] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead Execution: An
Alternative to Very Large Instruction Windows for Out-of-order Processors,”
in Proc. Int’l Symp. on High-Perf. Comp. Arch., Feb. 2003, pp. 129–140.

[13] Alpha 21264/EV6 Microprocessor Hardware Reference Manual, Compaq
Computer Corporation, Sep. 2000, order number: DS-0027B-TE.

[14] I. Kim and M. Lipasti, “Understanding Scheduling Replay Schemes,” in Proc.
Int’l Symp. on High-Perf. Comp. Arch., Feb. 2004, pp. 198–209.

[15] S. Meier, “Store Queue Multimatch Detection,” U.S. Patent 6,523,109, Feb.,
2003.

[16] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,” Computer
Sciences Department, University of Wisconsin-Madison, Technical Report
1342, Jun. 1997.

[17] S. Palacharla and R. Kessler, “Evaluating Stream Buffers as a Secondary Cache
Replacement,” in Proc. Int’l Symp. on Comp. Arch., Apr. 1994, pp. 24–33.

[18] I. Ganusov and M. Burtscher, “On the Importance of Optimizing the Con-
figuration of Stream Prefetchers,” in Proceedings of the 2005 Workshop on
Memory System Performance, Jun. 2005, pp. 54–61.

[19] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in Proc. Int’l Symp.
on Comp. Arch., Jun. 2000, pp. 83–94.

[20] BSIM3v3.2.2 MOSFET Model - User’s Manual, BSIM Design Group, http://
www-device.eecs.berkeley.edu/∼bsim3/ftv322/Mod doc/V322manu.tar.%Z,
Apr. 1999.

[21] K. Skadron, M. Stan, W. Huang, S. Velusamy, and K. Sankaranarayanan,
“Temperature-Aware Microarchitecture,” in Proc. Int’l Symp. on Comp. Arch.,
Jun. 2003, pp. 2–13.

[22] M. Bohr, R. Chau, T. Ghani, and K. Mistry, “The High-k Solution,” IEEE
Spectrum, vol. 44, no. 10, pp. 29–35, Oct. 2007.

[23] V. George, S. Jahagirdar, C. Tong, K. Smits, S. Damaraju, S. Siers, V. Nayde-
nov, T. Khondker, S. Sarkar, and P. Singh, “Penryn: 45-nm Next Generation
Intel Core 2 Processor,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov.
2007, pp. 14–17.

[24] S. Sair and M. Charney, “Memory Behavior of the SPEC2000 Benchmark
Suite,” IBM T. J. Watson Research Center, Technical Report, Oct. 2000.

[25] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy, “POWER4 System
Microarchitecture,” IBM Journal of Research and Development, vol. 46, no. 1,
pp. 5–25, Jan. 2002.

[26] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
Programs: Characterization and Methodological Considerations,” in Proc. Int’l
Symp. on Comp. Arch., Jun. 1995, pp. 24–36.

[27] F. Mesa-Martinez and J. Renau, “Effective Optimistic-Checker Tandem Core
Design Through Architectural Pruning,” in Proc. Int’l Symp. on Microarch.,
Dec. 2007, pp. 236–248.

[28] B. Greskamp and J. Torrellas, “Paceline: Improving Single-Thread Perfor-
mance in Nanoscale CMPs through Core Overclocking,” in Proc. Int’l Conf.
on Parallel Arch. and Compilation Techniques, Sep. 2007, pp. 213–224.

[29] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A Study of Slipstream
Processors,” in Proc. Int’l Symp. on Microarch., Dec. 2000, pp. 269–280.

[30] R. Barnes, E. Nystrom, J. Sias, S. Patel, N. Navarro, and W. Hwu, “Beating
In-Order Stalls with ”Flea-Flicker” Two-Pass Pipelining,” in Proc. Int’l Symp.
on Microarch., Dec. 2003, pp. 387–398.

[31] T. Austin, D. Blaauw, T. Mudge, and K. Flautner, “Making Typical Silicon
Matter with Razor,” IEEE Computer, vol. 37, no. 3, pp. 57–65, Mar. 2004.

[32] M. Dubois and Y. Song, “Assisted execution,” Department of Electrical Engi-
neering, University of Southern California, Technical Report, 1998.

[33] M. Annavaram, J. Patel, and E. Davidson, “Data Prefetching by Dependence
Graph Precomputation,” in Proc. Int’l Symp. on Comp. Arch., Jun. 2001, pp.
52–61.

[34] C. Luk, “Tolerating Memory Latency Through Software-Controlled Pre-
execution in Simultaneous Multithreading Processors,” in Proc. Int’l Symp. on
Comp. Arch., Jun. 2001, pp. 40–51.

[35] C. Zilles and G. Sohi, “Execution-Based Prediction Using Speculative Slices,”
in Proc. Int’l Symp. on Comp. Arch., Jun. 2001, pp. 2–13.

[36] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt, “Simultaneous
Subordinate Microthreading (SSMT),” in Proc. Int’l Symp. on Comp. Arch.,
May 1999, pp. 186–195.

[37] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen,
“Speculative Precomputation: Long-range Prefetching of Delinquent Loads,”
in Proc. Int’l Symp. on Comp. Arch., Jun. 2001, pp. 14–25.

[38] A. Roth and G. Sohi, “Speculative Data-Driven Multithreading,” in Proc. Int’l
Symp. on High-Perf. Comp. Arch., Jan. 2001, pp. 37–48.

[39] A. Moshovos, D. Pnevmatikatos, and A. Baniasadi, “Slice-processors: an
Implementation of Operation-Based Prediction,” in Proc. Int’l Conf. on Su-
percomputing, Jun. 2001, pp. 321–334.

[40] A. Farcy, O. Temam, R. Espasa, and T. Juan, “Dataflow Analysis of Branch
Mispredictions and Its Application to Early Resolution of Branch Outcomes,”
in Proc. Int’l Symp. on Microarch., Nov.–Dec. 1998, pp. 59–68.

[41] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas,
“Memory Hierarchy Reconfiguration for Energy and Performance in General-
Purpose Processor Architectures,” in Proc. Int’l Symp. on Microarch., Dec.
2000, pp. 245–257.

[42] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg, “A Large,
Fast Instruction Window for Tolerating Cache Misses,” in Proc. Int’l Symp. on
Comp. Arch., May 2002, pp. 59–70.

[43] E. Torres, P. Ibanez, V. Vinals, and J. Llaberia, “Store Buffer Design in First-
Level Multibanked Data Caches,” in Proc. Int’l Symp. on Comp. Arch., Jun.
2005, pp. 469–480.

[44] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai, “Scalable Load
and Store Processing in Latency Tolerant Processors,” in Proc. Int’l Symp. on
Comp. Arch., Jun. 2005, pp. 446–457.

[45] H. Akkary, R. Rajwar, and S. Srinivasan, “Checkpoint Processing and Recov-
ery: Towards Scalable Large Instruction Window Processors,” in Proc. Int’l
Symp. on Microarch., Dec. 2003, pp. 423–434.

[46] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, and S. Keckler, “Scalable
Hardware Memory Disambiguation for High ILP Processors,” in Proc. Int’l
Symp. on Microarch., Dec. 2003, pp. 399–410.

[47] J. Dundas and T. Mudge, “Improving Data Cache Performance by Pre-
Executing Instructions Under a Cache Miss,” in Proc. Int’l Conf. on Super-
computing, Jul. 1997, pp. 68–75.

[48] L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas, “CAVA: Hiding L2
Misses with Checkpoint-Assisted Value Prediction,” IEEE TCCA Computer
Architecture Letters, vol. 3, Dec. 2004.

[49] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez, “Checkpointed Early
Load Retirement,” in Proc. Int’l Symp. on High-Perf. Comp. Arch., Feb. 2005,
pp. 16–27.

[50] S. Balakrishnan and G. Sohi, “Program Demultiplexing: Data-flow based
Speculative Parallelization of Methods in Sequential Programs,” in Proc. Int’l
Symp. on Comp. Arch., Jun. 2006, pp. 302–313.

14


