
SEED: Scalable, Efficient Enforcement of Dependences

Francisco J. Mesa-Martı́nez, Michael C. Huang†, Jose Renau
Dept. of Computer Engineering, University of California Santa Cruz

†Dept. of Electrical and Computer Engineering, University of Rochester

Abstract

Instruction issue logic is a critical component in modern
high-performance out-of-order processors. The ever increas-
ing latencies found in modern processors, mostly associated
with memory accesses and longer pipelines, can be attenu-
ated using large issue queues. Conventional designs rely on
atomic wakeup-select cycles to ensure compact scheduling.
These designs must aggressively utilize broadcasting, com-
paction, and heavily-ported structures that scale poorly in
terms of both power consumption and access time.

To provide high scheduling flexibility and large instruction
capacity without incurring prohibitive latency and energy
overhead, we propose a novel scheme that uses an out-of-
order, broadcast-free instruction wakeup block feeding an
in-order scheduler. Multi-banked, index-based structures
are used throughout this scheme to provide a high degree
of scalability while achieving efficient dependence tracking,
resulting in good overall performance and energy efficiency.
We call this design “Scalable, Efficient Enforcement of De-
pendences (SEED)”. We present a detailed design and anal-
ysis of SEED through an extensive evaluation. Compared to
a conventional issue queue design, which is assumed favor-
ably to scale in size without any impact on cycle time, the
performance degradation of our design is 3% for both INT
and FP suites of SPEC CPU2000. For such a small per-
formance cost, SEED enjoys a 19% reduction in total chip
power consumption for a 32-entry configuration. We also
synthesize SEED and a conventional issue logic with 90nm
standard cell logic. Synthesis results show that SEED can
cycle twice the speed of a conventional issue logic of equiv-
alent size. Cycling at the same frequency, SEED consumes
ten times less dynamic power and five times less static power
while achieving substantial area savings.

Categories and Subject Descriptors
B.7.1 [INTEGRATED CIRCUITS]: Microprocessors and
microcomputers

General Terms
Design

Keywords
Issue logic, energy-efficient design, scalability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06,September 16–20, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

1. INTRODUCTION
As VLSI technologies continue to push toward higher lev-

els of integration, the energy consumption of high-performance
microprocessors and the resulting heat dissipation have be-
come perhaps the limiting factor to performance in high-
end designs. Complex out-of-order designs only increase the
problem by requiring more energy [14]. As a result, designers
start to opt for simpler processors trading off performance
for lower energy consumption and reduced overall design
complexity. The high energy consumption of existing out-
of-order implementations is the result of a long period of
dedicated pursuit of performance at the expense of energy
consumption: speculations are applied very aggressively and
the circuitry for orchestrating out-of-order execution is not
designed with energy efficiency as a priority. However, the
out-of-order model is not inherently more power-hungry. By
executing independent instructions instead of stalling due to
dependences, out-of-order execution can in fact cut the en-
ergy waste due to unnecessary stalls. Therefore, we need to
look for radically different designs for out-of-order microar-
chitectures and search for more sensible speculation strate-
gies. In this paper, we look at instruction scheduling.

Out-of-order microprocessor cores rely on the instruction
issue logic to uncover instruction-level parallelism (ILP) while
maintaining data dependences. This circuit component is
often very complex, carrying out different functionalities
and interacting with almost every microarchitectural com-
ponent. Centering around the issue queue that buffers in-
structions waiting for execution, the issue logic has two ma-
jor scheduling functions: wakeup and selection. These two
functions are closely coupled and form a scheduling loop,
thus making the design harder to scale to larger issue queues
without impacting cycle time. Moreover, every cycle, sev-
eral instructions can enter the queue and some may leave,
not necessarily in the same order. The management of these
entries also makes the design quite complex. On the other
hand, modern processors need to buffer a large number of in-
flight instructions to partially hide the relatively long and
perhaps still increasing memory latency. As a result, the
scalability of the issue logic becomes more important.

In this paper, we propose a design that performs scalable,
efficient enforcement of dependences (SEED). We decouple
the instruction wakeup and selection processes, and employ
a broadcast-free wakeup logic using a scalable, multi-banked
table for dependence tracking. This table re-orders instruc-
tions and then feeds them to a simple in-order execution
logic. Compared to a broadcast network, a table structure
is more natural for dependence tracking, and can be easily
scaled without significant increase in energy consumption.
We show that our decoupled instruction scheduler is more
energy-efficient compared to conventional implementations
and exploits instruction-level parallelism more effectively in
a high-frequency core. Compared to an idealized conven-

tional issue logic design with the same buffering capacity
and same frequency, the SEED implementation cuts chip-
wide power consumption by 19% to 39% depending on the
capacity when running SPEC CPU 2000 applications. This
reduction in power consumption is achieved with a small 3%
performance degradation.

The rest of the paper is organized as follows: we discuss
the motivations behind our design decisions in Section 2;
we describe the microarchitecture in detail in Section 3; we
discuss the experimental setup in Section 4; we show the
evaluation of our design in Section 5; we discuss related
work in Section 6; and we conclude in Section 7.

2. MOTIVATION
The increasing performance gap between modern proces-

sor and memory technologies has led to significant penalties
associated with memory accesses. High-performance designs
need to structurally hide these latencies to successfully ex-
ploit ILP. Buffering more in-flight instructions is an effec-
tive and straightforward way to hide the latencies associ-
ated with many important classes of applications. Unfortu-
nately, this approach requires increasing the size of various
resources, such as the issue queues and the register files.
This can lead to considerable increases in access time, area,
and energy consumption.

The issue queue is particularly challenging to scale in a
conventional design, since instruction issue is subdivided
into two mutually-dependent steps: select and wakeup. The
select logic examines all ready instructions and determines
which ones to execute according to specific priority crite-
ria and constraints in execution resources. The informa-
tion containing which instructions are selected is propagated
back to the issue queue by the wakeup logic, this information
is used to update operand readiness status in preparation
for the whole process to repeat itself again the next cycle.
Increasing the issue queue capacity would slow down both
processes, thus making it even more difficult to complete
them in one cycle. Without support for atomic execution of
the select-wakeup step in one cycle, a conventional scheduler
cannot arrange dependent instructions to be executed back-
to-back in consecutive cycles. This may lead to significant
IPC degradation, especially for applications with heavy use
of integer computations.

Moreover, the wakeup process is often implemented by
broadcasting the tags of ready instructions to be compared
associatively with the operand fields of instructions in the
queue [32]. Each simultaneously broadcasted tag requires a
dedicated port in the issue queue for matching. With the
non-trivial issue widths found in modern processors, this
design requires a large, multi-ported structure with a large
capacitative load. All these factors lead to the large amount
of energy consumption associated with traditional instruc-
tion wakeup.

Optimal instruction issuing structures should be, there-
fore, free of large amounts of associative logic. In the design
of SEED, we use indexed tables to keep instructions wait-
ing for wakeup and to also track dependencies. These tables
can be implemented using banked structures, which can have
much larger capacities than associative queues using com-
parable amounts of energy and latency. Figure 1 shows the
scalability for banked structures which reduce the energy
and delay with respect to their flat counterparts.

Latency tolerance is another desirable feature for an opti-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32 64 128 256

E
n
er

g
y

(p
J)

Non-Bank
Bank

0

1

2

3

4

5

6

8 16 32 64 128 256

Fr
eq

u
en

cy
 (

G
H

z)

Non-bank
Bank

(a) (b)

Figure 1. Maximum frequency (a) and energy per ac-
cess (b) for different SRAM sizes. “Non-bank” corre-
sponds to an SRAM with the same number of ports
for all the sizes (8 read, 4 write). “Bank” corresponds
to an SRAM that increases the number of banks and
decreases the number of ports so that E ∗ D2 is min-
imized. The data is generated for 70nm technology
using CACTI [25] for the banked and non-banked con-
figurations.

mal instruction issue logic. By this, we mean that the ability
to execute dependent instructions back-to-back should be
minimally affected even when the scheduling of instructions
takes multiple cycles. Finally, an out-of-order issue logic
needs to gracefully handle variable-latency instructions such
as loads (due to memory hierarchies) and certain floating-
point and multimedia operations, lest it loses its appeal over
statically scheduled processors.

In order to attain the aforementioned goals in SEED, we
restructure the scheduling and fully decouple the wakeup-
select process. For common instructions, their wakeup in
SEED is driven by their parents’ wakeup. This shortens the
critical loop associated with wakeup-select by completely re-
moving the select. For certain variable-latency instructions,
the wakeup is delayed until they are ready (or close to).

3. DESIGN OF SEED

3.1 Overview
To provide sufficient capacity for instructions pending exe-

cution and yet avoid the negative energy and latency impact
of using large associative broadcast-based queues, SEED
holds unready instructions in indexed dependence-tracking
tables instead. Instruction wakeup is performed as a sim-
ple indexed access which retrieves all dependent instructions
from the dependence table and eliminates the need for any
broadcasting. Also, unlike in conventional designs, where
woken instructions have to go through a select process and
only selected instructions can wake up their dependents, we
remove the select process from the wakeup logic altogether,
and allow instructions to wake up their dependents as long
as they are woken up. All the woken instructions are sent
to a small FIFO buffer where the select is performed. This
removes the select logic from the timing-critical process of
scheduling dependent instructions to execute back-to-back.

Non-associative queues have already been used in previous
proposals dealing with the organization of instruction issue
logic, most notably in certain types of “eager” instruction
issue [4, 7, 19, 22]. These designs share a common guiding
principle: only a subset of instructions “close to ready” need
to be present in a final issue queue. Since the amount of al-
most ready instructions is expected to be significantly lower

than the overall number of waiting instructions in the win-
dow, this final queue is small in size and can be broadcast-
based. The remaining instructions are “pre-scheduled” into
an indexed table or queue at decode time based on their
predicted ready time. Finally, these pre-scheduled instruc-
tions are moved into the final issue queue when the predicted
ready time arrives.

One drawback of eager issue logic is the need for com-
plex latency calculation logic, especially for variable-latency
instructions before the decode stage. Consequently any la-
tency misprediction will negatively impact the performance
of its chain of dependent instructions. The indexed table
used in these eager issue logic is usually very simple and
narrow, disallowing for any dynamic schedule changes. At
the same time, wrong-path instructions can only be drained
as their ready time arrives one by one. In some designs, in-
structions in the indexed queue have to be physically moved
from one segment to another before injected into the final
issue queue. Obviously, this movement of instructions bears
an energy cost. Also, these designs tend to use availabil-
ity time of the registers to propagate the calculation and
constantly update the current times. There is the need to
checkpoint current availability times for branch mispredic-
tion recovery which also increases the overall complexity and
energy consumption.

In contrast, SEED is still a wakeup-driven (or “lazy”) is-
sue logic design which obviates the need for any latency
prediction, update, and checkpoint logic as in an eager is-
sue logic. All instructions in SEED stay in the dependence
tracking table until they are woken up, thus there is no phys-
ical movement while they stay in the table. Furthermore,
as we will discuss in more detail later, the design naturally
purges a portion of wrong-path instructions from the table,
reducing some capacity loss.

Due to implementation variations and terminology differ-
ences we make the following clarifications. In the follow-
ing discussion, we assume a generic pipeline found in most
out-of-order processor implementations. In this pipeline in-
structions pass through an in-order front-end in which they
are fetched, decoded, and renamed. From then on, they are
scheduled to execute in an order that strives to maximize
parallelism while satisfying data dependences. In typical im-
plementations (e.g., [28]), this scheduling logic is centered
around one or more issue queues. Instructions from the
front-end flow into these queues in program order. We fol-
low [28] and refer to this process as dispatch. Once queued,
an instruction waits until its operands are ready, whereupon
it is eligible for execution. It is then selected and sent to an
execution pipeline. We refer to this process as issue. These
terms are used to refer to similar processes in our design.

3.2 The Structures and Operation of SEED
In a SEED design, instruction scheduling is broken down

into two decoupled components: wakeup and issue, which
are connected by a first-in first-out (FIFO) issue buffer (Fig-
ure 2). A key difference with respect to conventional designs
is that wakeup is performed based on which instructions are
woken up, rather than which instructions are selected for
execution. Thus the critical loop only contains wakeup in
our design.

At a high level, issue logic needs to ensure that instruc-
tions only execute after all input data are ready. In other
words, their execution needs to satisfy two conditions: first,

it is after their parents’ execution, and second, it is sepa-
rated from their parents’ execution by a minimum of a cer-
tain number of cycles to allow the parents’ computation to
finish. With these conditions in mind, the process of instruc-
tion scheduling in a SEED design can be thought of as a two-
step process: first, pre-sorting the instructions at wakeup so
that they enter the next stage almost always ready for execu-
tion and they still follow the partial order dictated by their
dependency relationship (order condition). The pre-sorting
makes no guarantee of instructions’ exact timing, only their
relative order. This is why we do not care which instruc-
tions are selected when we do wakeup. Then, separately at
the issue stage, we fine-tune instruction schedule to satisfy
the timing requirement. In the following, we describe the
three major stages an instruction flows through in a SEED
pipeline: dispatch, wakeup, and issue. We note that the
logic described here is implemented in Verilog and is fully
synthesizable.

3.2.1 Dispatch
After rename, an instruction is written into a dependence-

tracking table called the depTable (Figure 2) to clear de-
pendence constraints. In this paper, we focus on register
dependence, though the table could also be used to facili-
tate memory-based dependence tracking. If all source regis-
ters are ready (to be exact, all parent instructions have per-
formed their wakeup and have been sent to the issue buffer),
the instruction does not need to wait in the depTable and
is thus sent to the issue buffer directly.

The depTable is organized as an array of entries. Each
entry corresponds to one value-producing instruction and
contains a few sub-entries, each containing a dependent that
should be woken up by this instruction. When an instruc-
tion is inserted into the depTable, it is appended to the end
of the entry of one parent. This is based on the observation
that only a small portion of instructions (17% in our study)
are dispatched with more than one pending source register.
When multiple unready parents are present, one is randomly
selected for queuing. For these instructions, a speculative
wakeup bit is marked to make sure that the system checks
whether all sources are ready when the instruction is woken
up by one ready source. If the check fails, the instruction is
re-dispatched the following cycle to be queued under a dif-
ferent source in the depTable. To minimize the occurrence
of re-dispatch, we tested using a PC-indexed predictor to
predict the source that will be ready last so as to queue a
dependent in the depTable under that parent. Somewhat
surprisingly, the impact of having such a predictor is negli-
gible, partly because re-dispatch is rare.

During dispatch, a bit vector, which we refer to as the
dispatch scoreboard, determines which instructions can be
sent to the issue buffer directly and which ones need to stay
in the depTable. This scoreboard has as many bits as the
number of physical registers and is maintained as follows.
When a register is allocated, the corresponding bit is re-
set. When an instruction is sent to the issue buffer from the
depTable, the corresponding bit for its destination register is
set to one. Essentially, this scoreboard only tracks whether
the producer instruction has performed a wakeup of its de-
pendents, rather than whether the value in the register is
actually ready. When the bits corresponding to both source
registers of an instruction are set, the registers are either
ready or the producers have been sent to the issue buffer

Outstanding loads

Predictor
L1 Load

IF ID WakeUp RF EXIssue

Scoreboard
Dispatch

n dependents

Rename
Decode

Buffer
Issue

Ready instructions sent to issue queue directly

Issue

dependents
used to wake up
Dequeued tokens

Redispatch

Woken instructions themselves

queued in the token queue
Tokens of woken instructions

Dispatch

Read

sent to issue queue

Fetch Register

Scorebrd

To
ke

n
Q

ue
ue

depTable

Figure 2. Structures and operation of a SEED pipeline.
Solid and dashed lines show instructions and tokens
(depTable entry IDs) respectively. For clarity, the reg-
ister alias table-like allocator for depTable entries are
not shown.

(the order condition is satisfied). Therefore, the instruction
is sent to the issue buffer directly, without going through
the depTable.

The depTable is heavily banked to allow multiple inde-
pendent updates to different entries in one cycle. Writing
into different entries in the depTable is analogous to writing
in multiple reservation stations or writing into issue queues
in a clustered microarchitecture. Although the depTable is
heavily banked, there is still the possibility that two entries
requiring update in the same cycle belong to the same bank.
One possible solution is to use multi-ported table, which ob-
viously increases area, latency, and energy consumption. We
found out that even with a single-ported banked table, con-
flict is tolerably infrequent. In our design, therefore, each
bank supports a single insertion into one depTable entry
(write) or a single wakeup (read) each cycle. This reduces
the number of ports required significantly. When there is a
bank conflict, we delay the dispatch of certain instructions
to a later cycle by storing them in a small FIFO to decouple
dispatch from rename. When the FIFO is full, the front end
stalls. Also, we may be unable to queue an instruction into
a particular entry when it runs out of sub-entries (an ex-
ceedingly rare event). At that moment, we simply stall the
front-end and wait. Eventually, the owner instruction of the
entry will be woken up and sent to the issue buffer. By that
time, the stalled instruction can be directly sent to the issue
buffer, allowing dispatch to continue. Finally, even during
dispatch stall, we may continue to encounter instructions
that need re-dispatch but are unable to enter the depTable
due to the entry being full already. Such instructions have
to be buffered as well. In theory, to guarantee that we can
always buffer such instructions requires a queue as big as
the capacity of the entire depTable. In practice, such in-
structions are very rare and a small 4-entry queue suffices.
When an overflow happens, we can drop the instructions
that we can not buffer and mark them in the re-order buffer
(ROB) to generate a soft exception [32] – when the instruc-
tion reaches the head of the ROB (if it is not on the wrong
path), instruction fetch and decode will restart from that
instruction. Notice that forward progress is easily guaran-
teed: when the dropped instruction is re-fetched, all sources
are ready.

Each instruction that has dependents needs to perform

their wakeup and thus requires a depTable entry. The man-
agement of depTable entries can be tied to that of the physi-
cal registers. However, this approach leads to serious under-
utilization of the space as a depTable entry only serves the
purpose to temporarily buffer instructions to be woken up
and once they are, the entry is useless and can be recycled.
In contrast, the register is recycled much later than when
the producer instruction is woken up. Furthermore, tying
depTable management to physical register allocation also
limits the depTable to register-based dependence tracking
only. The depTable can be used for memory-based or other
artificial dependences. Therefore, we choose to manage the
depTable separately by using a mechanism very similar to
register renaming: (1) when needed, an instruction allocates
a depTable entry and updates an alias table. (2) Depen-
dent instructions find out the right entry of their parents
via this table. (3) Once an instruction performs a wakeup
(see below), its entry is de-allocated. The table and the read
pointer of the free list are also check-pointed for branch mis-
prediction recovery [32]. The table is indexed with logical
register number. In this paper, it is implemented as an ex-
tension of the register alias table (RAT). In the following,
for ease of discussion, we refer to the ID of the allocated
depTable entry as the instruction’s token. It is essentially a
pointer to a depTable entry.

3.2.2 Wakeup
When an instruction is woken up, the instruction itself is

sent to the issue buffer. Meantime, its token, if any, is writ-
ten into a FIFO token queue so as to wake up its dependent
instructions the next cycle. Every cycle, the wakeup logic
selects the first few tokens from the token queue to index
the depTable and read out the dependents. How many to-
kens can be dequeued is subject to various constraints such
as bank availability. In this process, those instructions wo-
ken up that have the speculative wakeup bit set are double-
checked against the dispatch scoreboard and re-dispatched
as necessary. The rest (instructions without the speculative
bit set and those that do, but find all parents ready) are
sent to the issue buffer and have their own tokens sent to
the token queue, repeating the cycle. We note that for in-
structions sent directly to the issue buffer at dispatch time,
their token is also queued in the token queue.

Overall, the wakeup process is a simple self-cycle without
the “select” component found in conventional issue logic.
While this basic operation is straightforward, there are two
issues that deserve attention: load-hit speculation and branch
misprediction handling.

Load-hit speculation: Due to the use of memory hier-
archy, load instructions have variable latencies. In conven-
tional implementations, load-hit speculation is often used [6].
In a SEED implementation, load-hit speculation can also be
supported easily. For a load predicted to hit in the cache, its
token is entered into the token queue when the load instruc-
tion is woken up. For a load predicted to miss, its token
is not sent to the token queue until the data returns from
the cache. This is illustrated by the examples shown in Fig-
ure 3. For instructions with long and variable latencies (e.g.,
floating-point division), the same strategy can be used: we
send the token only when the instruction finishes execution.

When a predicted miss turns out to be a hit, nothing
needs to be done. Whereas when a predicted hit turns out
to be a miss, we stall the execution pipeline until the data

Dep

Dep

No DepPr
ed

ic
te

d
N

o−
H

it
Lo

ad

Dep WakeUp

Pr
ed

ic
te

d
H

it
Lo

ad

WakeUp

WakeUp(a)

(b)

Decode

Decode

depTable

depTable

depTable

Decode depTable Issue Buf

Token Q

Decode

Decode

depTable Issue Buf

Token Q

Issue Buf

Token Q
depTable

depTable Issue Buf

Token Q

depTable Issue Buf

Token Q

Issue Buf EXLD $1 <− ($3)

ADD $8 <− $4 + $7

ADD $4 <− $1 + $7

ADD $10 <− $11 + $12 EX

LD $1 <− ($3)

ADD $4 <− $1 + $7

EX

EX

EX Token Q

EX

EX

Decode

Figure 3. Examples of dependence enforcement. Tim-
ing is shown for illustration only, and is not a rigorous
representation.

returns. We adopt this simple strategy because we found
that in the applications we studied, with a PC-based pre-
dictor, mispredicting a cache miss is rare. Our predictor
uses an 8192-entry table of 3-bit saturating counters. An
L1 data cache hit increments the counter by 1, while a miss
resets the counter to zero. We only predict a hit when the
counter is saturated.

Branch misprediction handling: DepTable entries al-
located to wrong-path instructions are reclaimed via a single
action of restoring the read pointer of the free list [32] and
will be re-allocated, reset, and reused to hold right-path
instructions. This “automatically” purges out many wrong-
path instructions from the depTable, but does not remove
all of them: Some of them will have parents that are prior to
the mispredicted branch and therefore could be queued in an
earlier entry unaffected by the recovery. These wrong-path
instructions will thus remain in the depTable. For hard-
ware simplicity, we do not proactively purge these remain-
ing wrong-path instructions out of the depTable. They will
eventually be woken up, at which time we filter them out.
To do so, we use a basic block valid bit vector. Each decoded
basic block is assigned a basic block ID (BBID). This ID in-
creases monotonically with wrap-around and is recycled in
the same fashion. When a basic block is committed, its ID
is recycled. (BBIDs allocated to wrong-path blocks will be
recycled when the first subsequent right-path block is com-
mitted.) When available IDs run out, decode stalls. When
a branch is mispredicted, all the wrong-path BBIDs will be
flagged invalid in the bit vector. Instructions belonging to
these basic blocks will be dropped when woken up.

3.2.3 Issue
After being reordered by the wakeup process, instructions

in the issue buffer are in an order that is amenable to simple,
in-order issue. We simply employ another bit vector, which
we call issue scoreboard, to enforce proper pipeline interlock-
ing. This scoreboard indicates whether a physical register is
ready or the value can be read off the by-pass network by the
time the sourcing instruction travels through intermediate
pipeline stages and reaches the functional unit. Each cy-
cle, the issue logic selects as many ready instructions as the
functional units can accommodate from the head of the issue
buffer and sends them down the pipeline for register access
and execution. The issue scoreboard is adjusted to reflect
the issue of these instructions: for single-cycle instructions,

the corresponding scoreboard bit of their destination regis-
ter is set to ready the same cycle; for instructions with an
n-cycles latency, the bit is reset when the instruction issues
and will be set in cycle n− 1 after issue.

To correctly handle branch mispredictions, the correspond-
ing bit in the issue scoreboard is reset when a register is al-
located, just like with the dispatch scoreboard. Wrong-path
instructions in the issue buffer are discarded upon issue to
save energy down-stream.

4. EVALUATION SETUP
In order to characterize the behavior of our proposed SEED

design we compare it against a conventional system denoted
as Base which uses a compacting issue queue (IQ). Both con-
figurations use a reorder buffer (ROB) and separate register
files (RF).

Shared Parameters

Processor core: 70nm technology @ 4GHz

ROB/LQ/SQ/INT RF/FP RF: 640/96/64/384/256

Fetch/issue/commit width: 8/6/6

LdSt/branch units/other ALU/FP units: 3/2/5/4

Latencies (cycles): RF 3, LSQ 3, min. mispred. penalty 14

Branch: 1 taken br per cycle, 32-entry RAS, 4K BTB 4-way,

YAGS: spec. update, 32K-entry T/NT cache, 6-bit tags

Memory subsystems: 32 MSHRs, 16-stream stride prefetcher

IL1: 32KB, 2-way, 64B line, 2 cycles, 1 port

DL1: 32KB, 4-way, 64B line, 3 cycles, 2 ports

L2: 2MB, 4-way, 64B line, 12 cycles, 1 port

TLB (fully associative): Data 32-entry, Inst. 64-entry

TLB Latency: 2 sequential accesses + 16 cycles

Main memory: 78ns round-trip w/ 16GB/s b/w

SEED(S) Base(W)

depTable: size S, 4 instr./entry, Issue Logic: size W
S
16 banks, 2 ports 1 cycle. 4 ports, 1 cycle

in-order issue buffer: 8-entry

DL1 hit predictor: 8K-entry (3-bit)

Table 1. Simulation parameters.

We perform our evaluation using execution-driven simu-
lations with a detailed model of a state-of-the-art proces-
sor and its memory subsystem [23]. All the pipeline details
are modeled faithfully. For example, SEED increases the
pipeline by one wakeup stage. Additionally, latency, occu-
pancy, and contentions of all structures in the processor,
caches, bus, and memory are modeled in great details. Ta-
ble 1 summarizes the parameters used.

4.1 Energy Model
We model and aggregate the dynamic energy consumed in

all chip structures, including processor core and the cache
hierarchies. We incorporated Wattch [2] into our simulation
infrastructure. Clock-gated structures are set to consume
5% of their active dynamic energy. We created models for
the depTable using CACTI [25]. Although we have synthe-
sized Base and SEED with 90nm standard cell logic, we use
the CACTI energy values to maintain the simulation infras-
tructure consistent. This also simplifies the comparison with
other research works because most of them use CACTI or
some derivatives for their energy models.

4.2 Applications Evaluated
We use SPEC CPU 2000 applications for evaluation. A

few applications are excluded: eon causes some special prob-
lems in the simulator and does not execute correctly; bench-

marks written in F90 are excluded as our infrastructure does
not yet support them. All other applications are compiled
with gcc 3.4 with the -O3 optimization flag to generate MIPS
binaries. We insert “simulation markers” in the application
binaries. After fast-forwarding over the initialization (sev-
eral billion instructions), we simulate for a given number of
markers such that more than 750 million instructions are
committed.

4.3 Verilog Code Evaluated
The evaluation also compares the synthesis results from a

traditional compacting window like the one used in Alpha
21264 and the proposed SEED design. To do so, we imple-
ment the SEED design on synthesizable Verilog-2001. The
IVM [30] project provides Verilog code for a complete Alpha
21264. We optimize the IVM compacting window design to
make it fully synthesizable with our synthesis tools. At the
same time, we also optimize the design to decrease area and
increase the frequency achieved.

4.4 Synthesis Tools
Synthesis is the process of converting an HDL functional

description into a gate-level net-list in the case of a standard-
cell ASIC, or into a logic-block mapping in the case of an
FPGA. For ASIC synthesis, we use Synopsys Design Com-
piler 2005.12 [26] with a 90nm standard cell library (ASIC)
target; for FPGA synthesis, we use Synplify Pro 8.4 from
Synplicity [27] and targeted the best Altera Stratix II device
(EP2S180). We synthesize the SEED and IVM designs with
the same optimizations and frequency targets. In the ASIC
target, we assume a 15% clock skew with a load of 8 medium
strength AND-gates for each output.

5. EVALUATION
The evaluation consists of two major components: cycle-

accurate results assuming same frequency (Sections 5.1, 5.2,
and 5.3) and synthesis results (Section 5.4). We first com-
pare a SEED design with a conventional issue logic (Sec-
tion 5.1), we then proceed with a more detailed analysis
and sensitivity study (Section 5.2), and we finish the cycle-
level evaluation by comparing SEED against a compacting
issue queue with ideal banking and gating (Section 5.3).

5.1 Main Results
We start by comparing the performance of SEED against

that of the conventional design Base. For all the config-
urations, we keep the same pipeline parameters as shown
in Table 1 while varying the capacities of both issue logic
designs. This clearly favors Base because the structure is
assumed to scale to larger sizes while maintaining atomic
wakeup-select without impacting cycle time.

Figure 4 shows the speedups of different hardware config-
urations over a baseline configuration Base(32) when run-
ning SPEC applications. Therefore, the first bar (Base(32))
in every application is always 1. We can see that both Base
and SEED benefit from larger capacities in the issue queues
(or depTable). For SPEC INT, Base(64) and Base(128) are
1.16 and 1.21 times faster than Base(32), respectively. Fig-
ure 4 also shows that increasing the size of the issue buffer
from 128 to 256 entries yields a meager 2% additional per-
formance improvement. Therefore, we focus our discussion
on configurations with 32, 64, and 128 entries in the follow-
ing. We can observe that on average, for the same issue

logic buffer size, SEED is slightly slower than the idealized
Base: around 3% slower on average for SPEC INT as well
as SPEC FP.

Figure 5 shows the comparison of power consumption.
The power results include all the dynamic power consumed
on-chip. For clarity, we only break down the results into
three components: issue logic, register renaming logic (RAT),
and the rest (Other). We show the energy in RAT because
the management of the depTable involves an extension of
the register alias table logic. From the figure, it is clear that
Base does not scale well. The issue logic represents around
30% of the power consumption in Base(32). At 20-28W, the
absolute power of the issue logic in Base(128) is more than
3 times that in Base(32) and accounts for close to half of
the power in Base(128).

After replacing the conventional issue logic (Base) with a
SEED issue logic, power consumption reduces drastically,
especially for larger configurations. The issue logic and
the RAT combined accounts for only 3-4W in the low-end
SEED(32) and about 4-7W in SEED(128). The relative con-
tribution to the total chip power is about 17% and changes
minimally from one configuration to another. This reduc-
tion in issue logic power translates to about 19% total chip
power reduction at the small configurations (SEED(32) vs.
Base(32)) and more than 39% in the large configurations
(SEED(128) vs. Base(128)). The cost for this power reduc-
tion is 3% performance degradation.

In terms of scalability, from Base(32) to Base(128), per-
formance improves about 17% (FP) to 21% (INT) at a power
increase of 75% (INT) to 85% (FP). For SEED, the same
improvements comes at much lower increase in chip power:
34% (FP) to 37% (INT).

5.2 Analysis and Sensitivity Study

5.2.1 Port requirement
Every cycle, instructions are being dispatched into and

read out of the depTable. In the base configuration, the
depTable has only one port per bank. When the depTable
bank is busy, it can potentially stall the fetch engine or de-
lay the wakeup of dependent instructions. Therefore, every
bank conflict potentially incurs some performance penalty.
Adding multiple ports to the structure will reduce the fre-
quency of conflicts and the resulting stalls. We performed
simulation with single-, dual-, and quad-ported configura-
tions. Increasing the number of ports from one to two results
in less than 1% performance improvement on average and no
more than 3% for any application. When further increasing
the number of ports to four, we observe no performance im-
pact. Clearly, a single-ported structure is sufficient. Having
a single port is more energy-efficient and requires less area.
It is a very important factor in the high energy efficiency
seen above. According to CACTI [25], going from single- to
dual-port, both area and energy per access double.

5.2.2 Number of sub-entries
Each entry of the depTable contains several sub-entries

to hold dependent instructions. Figure 6 shows the impact
of the number of sub-entries per depTable entry on perfor-
mance. We evaluated configurations with 1, 2, 4, and 8
sub-entries. For brevity, we do not show the results of in-
dividual applications. Instead, we only show the average of
the SPEC INT and the SPEC FP suites.

Not surprisingly, a configuration that allows the tracking

 0.0

 0.4

 0.8

 1.2

 1.6

S
pe

ed
up

 o
ve

r
B

as
e(

32
)

SPEC INT SPEC FPBase
SEED

bzip2
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

crafty
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

gap
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

gcc
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

gzip
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

mcf
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

parser
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

perlbmk
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

twolf
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

vortex
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

vpr
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

Mean
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

ammp
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

applu
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

apsi
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

art
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

equake
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

mesa
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

mgrid
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

swim
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

wupwise
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

Mean
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

Figure 4. Normalized speedups for SEED and Base architectures.

 0

 40

 80

 120

P
ow

er
 (

w
)

SPEC INT SPEC FPIssue Logic
RAT
Other

bzip2
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

crafty
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

gap
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

gcc
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

gzip
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

mcf
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

parser
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

perlbmk
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

twolf
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

vortex
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

vpr
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

Mean
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

ammp
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

applu
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

apsi
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

art
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

equake
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

mesa
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

mgrid
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

swim
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

wupwise
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

Mean
baseseed

32 64 12
8

25
6 32 64 12
8

25
6

Figure 5. Power consumption for SEED and Base architectures.

 0.0

 0.5

 1.0

 1.5

S
pe

ed
up

 o
ve

r
B

as
e(

32
)

SPEC INT SPEC FP

1 deps 2 deps 4 deps 8 deps 1 deps 2 deps 4 deps 8 deps

0.
66

1.
07 1.
17

1.
20

0.
71

1.
05 1.
15

1.
17

Figure 6. Performance impact of the number of sub-
entries. The tested configuration is SEED(128).

of only a single dependence per instruction performs very
poorly (about a third slower than Base(32)). However, the
performance level quickly rises as the number of sub-entries
increases. With 8 sub-entries, the performance is indistin-
guishable from that of a configuration with infinite capacity
in every entry. In our design, we choose 4 sub-entries.

5.2.3 Load-hit predictor
As explained in Section 3, we implement an L1 hit pre-

dictor to support load-hit speculation since we use a simple
in-order issue buffer. Without an L1 hit predictor or an out-
of-order issue buffer, we either have to conservatively wake
up a load’s dependents after the data is returned or opti-
mistically wake them up early and run the risk of blocking
the issue buffer when a load misses.

Table 2 shows the accuracy of the L1 hit predictor. We
note that when a load is incorrectly predicted to be a miss,
we waste the opportunity to execute some dependent in-
structions earlier, whereas when a load is incorrectly pre-
dicted to be a hit, we will stall the entire issue stage for a
long time. This is what we want to minimize. We can see
that this latter case is indeed infrequent using our predictor.
No more than 1% of loads are incorrectly predicted to be a
hit.

To further understand the actual performance impact of
using a load-hit predictor, we compared our design with an
idealized design using an oracle predictor. The performance
difference between the two configurations is merely 0.6% for
the integer applications and 0.3% for the floating-point ap-

Bench
miss % Predicted

Bench
miss % Predicted

rate Corr. Miss Hit rate Corr. Miss Hit
ammp 20.2 99.0 0.9 0.1 bzip2 2.7 93.3 6.1 0.6
applu 0.2 99.8 0.2 0.0 crafty 1.1 92.7 6.7 0.6
apsi 7.1 98.6 1.2 0.1 gcc 1.4 94.4 5.2 0.4
art 42.9 86.5 13.4 0.1 gap 1.6 94.4 5.2 0.4
equake 4.4 91.5 7.8 0.7 gzip 2.5 82.6 16.0 1.3
mesa 0.5 98.5 1.4 0.1 mcf 24.2 86.0 13.6 0.4
mgrid 2.0 85.4 13.1 1.6 parser 3.4 88.7 10.5 0.8
swim 9.7 38.9 57.8 3.3 perl. 0.4 99.1 0.8 0.1
wup. 0.8 89.9 9.2 0.8 twolf 7.7 91.2 8.5 0.3

vortex 1.5 90.4 8.8 0.8
vpr 6.0 89.2 10.4 0.4

FP 9.7 87.6 11.7 0.8 INT 4.8 91.1 8.3 0.6

Table 2. Load-hit predictor accuracy. For each applica-
tion we show the L1 data cache miss rate, the percent-
age of loads whose hit-miss status is correctly predicted
(Corr.), incorrectly predicted to be a miss (Miss), and
incorrectly predicted to be a hit (Hit).

plications. However, if we remove the load-hit predictor al-
together and only wake up dependents when the load data
is returned, we get a 7% and 3% slowdown for integer and
floating-point applications, respectively. Therefore, we con-
clude that using a load-hit predictor and simply stalling the
pipeline is a good design alternative that obtains most of
the advantages of load-hit speculation without the necessity
of supporting load-hit mis-speculation recovery.

5.2.4 Queuing policy
Table 3 shows some additional statistics about the con-

figuration SEED(128). Recall that when we dispatch an in-
struction, we queue it under a random source if there is more
than one pending source. Later, this instruction may be re-
dispatched. We show the frequency of re-dispatch. When
a re-dispatched instruction can not be queued because the
destination entry runs out of sub-entries, the instruction has
to be buffered. A buffer overflow may incur a pipeline flush
(Section 3). We show the frequency of such flushes. We
see that in general, the percentage of instructions that need
re-dispatch is low and that flushes are very rare except for a

Bench IPC
% Inst. with cycles

flush0deps 1dep 2deps re-disp

ammp 0.257 27.8 58.5 13.7 9.0 >50k

applu 1.583 36.0 38.6 25.5 14.6 211

apsi 1.263 35.6 47.3 17.1 7.4 2681

art 0.962 41.2 44.5 14.3 6.4 >50k

equake 0.705 31.5 39.8 28.7 15.1 >50k

mesa 1.846 38.6 45.2 16.2 8.2 716

mgrid 1.429 56.0 18.3 25.7 15.7 >50k

swim 1.457 45.1 26.8 28.1 13.4 >50k

wupwise 1.952 32.3 45.9 21.8 10.2 >50k

SPEC FP 1.272 38.2 40.5 21.2 11.1

bzip2 0.945 21.8 58.8 19.4 9.0 34866

crafty 1.333 28.8 52.1 19.1 12.2 >50k

gap 0.716 28.1 55.0 16.9 5.5 5920

gcc 0.954 28.9 55.4 15.7 10.8 2876

gzip 0.632 25.0 60.2 14.8 8.7 >50k

mcf 0.176 23.2 66.4 10.4 6.4 >50k

parser 0.602 24.8 58.7 16.5 7.0 >50k

perlbmk 1.194 30.1 57.4 12.5 7.1 7171

twolf 0.707 25.3 57.9 16.7 8.0 >50k

vortex 1.623 32.4 55.3 12.3 6.1 276

vpr 0.949 27.6 56.0 16.4 9.4 >50k

SPEC INT 0.893 26.9 57.6 15.5 8.2

Table 3. Execution statistics of SEED(128). From left
to right, the columns show the application, IPC, the
percentage of dynamic instructions dispatched with 0,
1, 2 pending source registers, percentage of instruc-
tions re-dispatched, and the number of cycles between
flushes due to special situation in re-dispatch handling.

few applications. For instance, for application applu, flush-
ing is unusually frequent. This explains its poor performance
shown in Figure 4.

We evaluated different queuing policies for instructions
with more than one pending source during dispatch: our
default policy that queues at a randomly selected source,
queuing at both sources, and using a PC-based (16K-entry)
predictor to predict which source to queue. We note that
queuing at both sources obviates the re-dispatch logic: If a
woken instruction has the speculative wakeup bit set and is
not ready, we can simply drop it since it must be queued in
the remaining parent instruction’s depTable entry. In our
simulations, we saw no significant performance difference
(less than 1%) between different policies. Nevertheless, we
found that queuing at both sources does incur a slightly
higher energy overhead (about 4%).

5.2.5 In-order vs. out-of-order issue
After an instruction is woken up, it is sent to the in-order

issue buffer. We experimented with an out-of-order issue
buffer and found that the performance difference is an in-
significant 1%. This suggests that the depTable is doing an
adequate job reordering instructions in a way that lends to
simple, in-order issue logic.

5.3 Ideal Banking and Gating
As previously shown (Section 5.1), the base configura-

tion does not scale well in terms of energy. However, it
is conceivable that some sort of adaptation can adjust the
active size of the queue to achieve better energy-efficiency.
There have been previous attempts to simplify the overall
hardware requirements related with instruction scheduling,
either by speculatively removing the select phase from the
wakeup-select cycle [3], or by further reducing the number of

 0

 40

 80

P
ow

er
 (

w
)

SPEC INT SPEC FPIssue Logic
RAT
Other

base bkgt seed base bkgt seed

 4
2

 3
4

 2
5

 6
2

 4
9

 3
9

Figure 7. Power consumption with ideal baseline bank-
ing and gating (bkgt).

operands being considered in the dependency resolution for
the wakeup [17]. To better understand the potential of our
approach with respect to possible optimized conventional de-
signs, we performed an study with an idealized configuration
based on conventional issue queue where the banking of the
queue can be dynamically adjusted and unused entries can
be optimally gated (which we label bkgt for banked-gated
queue). Essentially, every cycle, based on the simulated oc-
cupancy of the queue (say, n instructions), we assume the
energy consumption of the best banked design of a n-entry
issue queue. This, obviously, represents a unrealistically op-
timistic design. We see from the figure, that with such an
idealized configuration, the power consumption indeed is sig-
nificantly lower compared with Base(128): about 20% chip
power reduction is achieved. Yet, the SEED implementation
is still about 20% more efficient. The primary reason for the
difference is the that SEED uses single-ported indexed table
rid of broadcast circuitry which is far more energy-efficient.

5.4 Synthesis Results
This section reports the synthesis results for SEED and

Base. Previous sections on the evaluation do not use synthe-
sis results because the energy models are based on CACTI
and Wattch and we have assumed up to now that all the
circuits cycle at the same frequency.

We synthesize SEED and Base designs for 90nm ASIC
and for Altera Stratix-II EP2S180 90nm. (Section 4 has
more details on the tools used.) The SEED Verilog imple-
mentation includes the depTable, the token queue, the issue
buffer, and the extension to the rename table as shown in
Figure 2. The Base implementation is based on IVM as ex-
plained in Section 4. Figure 8 shows the synthesis results for
frequency (a,b), dynamic (d) and static (e) power consump-
tion, and area (c). The results show four different SEED
designs (16, 32, 64, 128, and 256) and three Base designs
(16, 32, and 64). We do not include bigger Base designs be-
cause Synopsys requirements are too high. While Base(32)
requires 4GB of memory and 3 days of CPU time, Base(64)
requires 9GBs of memory and over 7 days of CPU time.
Bigger designs are not practical without partitioning which
would affect synthesis results, so we only synthesize up to
64 entries for Base.

5.4.1 Frequency
Figure 8-(a) shows the frequency obtained for ASIC and

Figure 8-(b) shows the frequency for FPGA. The first thing
to observe is that all SEED designs are over two times faster
than Base. A SEED(64) achieves 485MHz while Base(64)
only achieves 173MHz. SEED also achieves higher frequency
for FPGAs. Even for the worst FPGA case, SEED(64) is
2.2 times faster than Base(64). The SEED(128) FPGA fre-
quency improves with respect to SEED(64) due to better
placement performed by the tool. Although it may seem

0

100

200

300

400

500

600

16 32 64 128 256

Fr
eq

ue
nc

y
(M

Hz
)

BASE
SEED

0.0

20.0

40.0

60.0

80.0

100.0

120.0

16 32 64 128 256

Fr
eq

ue
nc

y
(M

Hz
) BASE

SEED

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

16 32 64 128 256

Ar
ea

 (m
m

^2
)

BASE
SEED

0
50

100
150
200
250
300
350
400
450

16 32 64 128 256

Dy
na

m
ic

Po
we

r (
m

W
)

BASE
SEED

0
2
4
6
8

10
12
14
16
18

16 32 64 128 256

St
at

ic
Po

we
r (

m
W

)

BASE
SEED

(a) (b) (c) (d) (e)

Figure 8. Maximum frequency for ASIC (a) and FPGA (b), ASIC area (c), and dynamic (d) and static (e) ASIC power
consumption synthesis results for SEED and Base architectures. ASIC uses a 90nm standard cell technology, and FPGA
targets the Altera Stratix-II 90nm. Synopsys reports static and dynamic power consumption at the achieved frequency,
we normalize it to 200MHz so that it can be compared across synthesis results.

that SEED has worse scalability on FPGAs, the reason is
that Synplicity uses memory banks for depTables. As more
depTable entries are needed, they need to be placed farther
and farther apart and the wiring overhead increases substan-
tially. SEED(128) is an interesting point on Figure 8-(b).
It achieves higher frequency than SEED(64). The reason is
that Synplicity Pro finds a better placement, and therefore
shorter wires, with 128 entries. Manual placement removes
this opportunity, but we leave the tool to choose the best
placement automatically.

A possible concern on the validity of the results is the
low frequency achieved for the Base design. After all, the
original Alpha 21264 achieves 550MHz with a 350nm tech-
nology [8]. If we apply linear scaling, such a design should
achieve 2100MHz instead of 225MHz achieved with our syn-
thesis results. There are four factors for such a difference:
(1) the original alpha uses full-custom dynamic logic while
we use standard cell ASIC; (2) wires do not scale linearly;
(3) we use a 15% clock skew while the original alpha de-
sign achieved a 5% clock skew; (4) our designs use flip-flops
while the original Alpha 21264 uses dual clock domino logic.
When clock skew difference is factored in, the original Alpha
21264 issue logic is about 8 times faster than our synthe-
sized Base design. This is in line with the expectation: It
is widely known that full-custom design results in a circuit
that is much faster than its standard-cell ASIC counterpart.
Indeed, Keutzer [5] reports that ASICs are between 6 to 8
times slower than full-custom design for the same technology
target. As a result, we expect that a full-custom SEED im-
plementation would maintain the frequency advantage over
Base.

After analyzing the synthesis results, we found two major
reasons why SEED is faster than Base: (1) SEED does not
use heavily ported structures like Base; (2) SEED breaks the
wakeup-select in two cycles, wakeups happen back to back so
the IPC impact is nearly negligible as shown in Section 5.1.

5.4.2 Power consumption
The dynamic and static power consumption are shown in

Figure 8-(d) and Figure 8-(e) respectively. In both plots, the
power is shown in mW for a 90nm ASIC synthesis. Synopsys
reports the dynamic power consumption at the target fre-
quency. Since each synthesis achieves a different frequency
target, we normalize all the dynamic power consumption to
200MHz.

As expected, reducing the number of ports has a sub-
stantial reduction on power consumption and significantly
improves design scalability. SEED outperforms Base even
for the smallest configuration where the RAT overhead is
more significant. SEED(32) is over ten times more power

efficient than Base(32). The difference gets even more sub-
stantial as we increase the size. Going from SEED(16) to
SEED(64), the power consumption increases 4 times as the
size quadruples. The increase is linear because the overhead
for the RAT stays constant. In contrast, the same size in-
crease in Base results in an 8.7 times increase in dynamic
power consumption. These results are achieved without con-
sidering clock gating. In other words, all the banks are active
all the time. Clock gating is a big opportunity for SEED,
but not so much for the Base design (IVM) because it is not
banked.

Figure 8-(e) shows that SEED also has lower static power
consumption as well. Synopsys reports 5.4 times less static
power consumption for the smallest configuration (16-entries).
SEED has a sub-linear leakage increase, going from SEED(16)
to SEED(64) the static power consumption increases 3.3
times. The reason is that the RAT overhead stays nearly
constant as we add more entries. In comparison, quadru-
pling the number of entries in Base increases static power
consumption by 11 times.

5.4.3 Area requirement
The depTable used in our SEED implementation has 1

read and 1 write port (1-rd/1-wr) SRAM structure. Using a
1-rd/1-wr port structure not only provides significant power
savings but also reduces silicon area. Figure 8-(c) shows
the area reported by Synopsys for 90nm technology. As re-
ported for power and frequency, SEED outperforms Base in
all the configurations. While Base(32) requires 0.96mm2,
SEED(32) requires 0.23mm2. Looking at the Synopsys re-
sults, we can observe that the area increase is not linear as
we increase the number of entries. For example, going from
Base(16) to Base(32) only has a 1.23X area increase, while
going from Base(32) to Base(64) has a 3.25X area increase.

As a reference, we apply linear scaling to the original Al-
pha 21264 area report [8]. While Base(16) has 0.78mm2 and
Base(32) has 0.96mm2, the original Alpha 21264 with 20 en-
tries should require around 0.66mm2. Therefore, we believe
that the reported area estimations are consistent with pre-
vious results.

6. RELATED WORK
As discussed before, our SEED design has three main

features to address the scalability problem of conventional
instruction scheduling: indexing-based wakeup, decoupled
wakeup and select, and a design that supports graceful mis-
prediction recovery or replay. While many prior proposals
also address the same problem, they tend to offer only a
subset of the features.

Indexing-based wakeup is proposed in a very early design
by Weiss and Smith to reduce complexity by removing the
tag broadcast in the Tomasulo’s algorithm [31]. A similar
idea is exploited in [4] where a register ID-indexed “first-use
table” records the identity of only the first consumer instruc-
tion, which can be woken up through indexing when the
producer is selected. In this design, wakeup is triggered by
select. In contrast, our depTable stores all instructions and
our wakeup is triggered by wakeup, reducing the difficulty to
support back-to-back execution of dependent instructions.

Indexed tables are used in a class of eager schedulers where
the execution schedule is determined after decode and re-
name. In [4], Canal and Gonzalez explored the idea of
a distance-based scheduling, where instructions are sched-
uled into a table based on the latencies and the schedule
of their parents. This concept is also explored by Michaud
and Seznec in [19] where instructions are pre-woken up into
a buffer and only moved to a much smaller issue queue when
they reach the head of the pre-wakeup buffer. Rassch et al.
proposed an implementation in which both pre-wakeup and
dynamic scheduling are used [22]. Instructions are promoted
from a series of issue window segments before entered into
the final segment, which allows issue. The Cyclone scheduler
also relies on pre-wakeup [7]. However, even the main issue
window is broadcast-free and issues instructions based on
the predicted ready time. Thus, a sanity check is required,
and the instruction is re-deposited into the pre-wakeup table
if the sources are not ready.

As discussed before, although an eager scheduler avoids
the challenge of implementing atomic wakeup-select loop, it
is not without cost. In addition to requiring non-trivial la-
tency prediction and calculation circuit and schedule track-
ing logic, an eager scheduler handles branch misprediction
and other selective squash inefficiently. As instructions that
need to be discarded are widely commingled with other in-
structions, they have to be individually screened and dis-
carded, often at the end of propagation stages inside the
scheduler. This unnecessarily wastes capacity of the queues
and, more importantly, energy. Furthermore, similar to
statically-scheduled VLIW machines, although to a lesser
degree, it is challenging to handle variable-latency instruc-
tions (including loads) efficiently in an eager scheduler. In
SEED, due to lazy wakeup, and the fact that depTable en-
tries for wrong-path instructions are reclaimed en masse,
these disadvantages are largely avoided.

Lebeck et al. proposed a two-level instruction (issue) win-
dow design [18]. When a long-latency instruction (e.g., a
load that misses in the L2 cache) is detected, all dependents
are removed from the level-1 window to a waiting buffer
to make room for independent instructions. They are rein-
serted when the long-latency event finishes. Our depTable
naturally holds a large amount of instructions, including de-
pendents of long-latency instructions. There is no need to
actively remove and reinsert dependents.

Brown et al. proposed an optimization that speculatively
removes select from the wakeup-select loop [3]. This design
is motivated by the observation that usually no more than
one instruction becomes ready every cycle. Special logic
is designed to detect and resolve conflicts. In contrast, we
decouple wakeup and select (issue) in a straightforward and
non-speculative fashion. Without the need to handle mis-
speculation recovery and to minimize its occurrence, our
implementation is thus simpler.

While the above-mentioned work tries to make the issue
queues more scalable, there are a number of other studies
that focus primarily on reducing the energy consumption
of a broadcast-based issue logic [9, 12, 15, 17, 21, 33]. An-
other related work focuses on steering the instructions early
in the pipeline to different smaller queues or windows to
reduce complexity [20]. Goshima et al. proposed a circuit-
level technique that allows fast wakeup in a small portion
of the buffering structure and slower wakeup in the remain-
der [13]. Finally, a large body of work explored the scala-
bility of other related microarchitectural resources such as
register files (e.g., [1, 29]) and the load-store queue (e.g.,
[10, 11,16,24]).

7. CONCLUSIONS
With relatively long memory latencies seen in high-frequency

designs, processors are buffering more in-flight instructions
to maintain high performance. Power constraints are quickly
becoming the dominant barrier to higher levels of perfor-
mance in microarchitectures. Therefore, conventional de-
signs in which energy efficiency is not a first-class design
consideration will no longer be viable. In this paper, we have
presented a novel dependence tracking and instruction issue
mechanism called SEED that is effective, energy-efficient,
scalable, and has low complexity.

SEED uses broadcast-free, indexing-only tables to keep
track of dependences and rearranges instructions in an op-
timal order to feed into a simple, in-order issue buffer. This
design has a number of advantages. Compared to a conven-
tional issue logic, our wakeup logic is driven by what has
been woken up. This takes the complex select logic out of
the critical loop, making it much more scalable. Further-
more, the wakeup process is non-speculative. Without the
need to recover from mis-speculation, the design complex-
ity is very low. Compared to designs that eagerly schedules
incoming instructions, our buffering structure and organi-
zation of instructions obviates complex pre-scheduling logic
and lend themselves well to handling variable-latency in-
structions and recovering efficiently from common branch
mispredictions.

Simulation-based evaluations show that the SEED design
is effective in exploiting ILP. Compared to a processor using
conventional issue logic with the same instruction capacity, a
SEED-based processor suffers only a small 3% performance
degradation but occupies a much smaller area and enjoys a
19-39% power savings depending on the exact capacity.

In addition, the proposed SEED issue logic is synthesized
and compared against a traditional compacting issue queue.
The synthesis results show that SEED can cycle at twice the
frequency of the conventional design. More importantly, the
dynamic power consumption of a conventional issue logic
is over ten times higher than that of a SEED logic with
equivalent capacity and five times higher in static power
consumption.

8. ACKNOWLEDGMENTS
We would like to thank Carlos Andrés Cabrera for his

help on the Verilog implementation of SEED and the anony-
mous reviewers for their feedback. This work was supported
in part by the National Science Foundation under grants
0546819 and 0509270, Special Research Grant from the Uni-
versity of California, Santa Cruz, and gifts from SUN.

References
[1] R. Balasubramonian, S. Dwarkadas, and D. Albonesi.

Reducing the Complexity of the Register File in Dy-
namic Superscalar Processors. In International Sympo-
sium on Microarchitecture, pages 237–248, Dec. 2001.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
Framework for Architectural-Level Power Analysis and
Optimizations. In Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, pages
83–94, June 2000.

[3] M. Brown, J. Stark, and Y. Patt. Select-Free Instruc-
tion Scheduling Logic. In International Symposium on
Microarchitecture, pages 204–213, Dec. 2001.

[4] R. Canal and A. Gonzalez. A Low-Complexity Issue
Logic. In International Conference on Supercomputing,
pages 327–335, May 2000.

[5] D. G. Chinnery and K. Keutzer. Closing the gap be-
tween asic and custom: An asic perspective. In Design
Automation Conference, pages 637–642, June 2000.

[6] Compaq Computer Corporation. Alpha 21264/EV6 Mi-
croprocessor Hardware Reference Manual, Sept. 2000.
Order number: DS-0027B-TE.

[7] D. Ernst, A. Hamel, and T. Austin. Cyclone: a
Broadcast-Free Dynamic Instruction Scheduler with Se-
lective Replay. In International Symposium on Com-
puter Architecture, pages 253–263, June 2003.

[8] J. A. Farrell and T. C. Fischer. Issue logic for a 600-
MHz Out-of-Order Execution Microprocessor. IEEE
Journal of Solid-State Circuits, 33(5):707–712, May
1998.

[9] D. Folegnani and A. González. Energy-Effective Issue
Logic. In International Symposium on Computer Archi-
tecture, pages 230–239, June–July 2001.

[10] A. Garg, F. Castro, M. Huang, L. Pinuel, D. Chaver,
and M. Prieto. Substituting Associative Load Queue
with Simple Hash Table in Out-of-Order Microproces-
sors. In International Symposium on Low-Power Elec-
tronics and Design, Oct. 2006.

[11] A. Garg, M. Rashid, and M. Huang. Slackened Mem-
ory Dependence Enforcement: Combining Opportunis-
tic Forwarding with Decoupled Verification. In Inter-
national Symposium on Computer Architecture, pages
142–153, June 2006.

[12] K. Ghose. Reducing Energy Requirements for Instruc-
tion Issue and Dispatch in Superscalar Microprocessors.
In International Symposium on Low-Power Electronics
and Design, pages 231–233, July 2000.

[13] M. Goshima, K. Nishino, T. Kitamura, Y. Nakashima,
S. Tomita, and S. Mori. A High-Speed Dynamic In-
struction Scheduling Scheme for Superscalar Proces-
sors. In International Symposium on Microarchitecture,
pages 225–236, Dec. 2001.

[14] M. Gowan, L. Biro, and D. Jackson. Power Considera-
tions in the Design of the Alpha 21264 Microprocessor.
In Design Automation Conference, pages 726–731, June
1998.

[15] M. Huang, J. Renau, and J. Torrellas. Energy-Efficient
Hybrid Wakeup Logic. In International Symposium
on Low-Power Electronics and Design, pages 196–201,
Aug. 2002.

[16] R. Huang, A. Garg, and M. Huang. Software-Hardware
Cooperative Memory Disambiguation. In International

Symposium on High-Performance Computer Architec-
ture, pages 248–257, Feb. 2006.

[17] I. Kim and M. Lipasti. Half-Price Architecture. In
International Symposium on Computer Architecture,
pages 28–38, June 2003.

[18] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and
E. Rotenberg. A Large, Fast Instruction Window for
Tolerating Cache Misses. In International Symposium
on Computer Architecture, pages 59–70, May 2002.

[19] P. Michaud and A. Seznec. Data-Flow Prescheduling
for Large Instruction Windows in Out-of-Order Proces-
sors. In International Symposium on High-Performance
Computer Architecture, pages 27–38, Jan. 2001.

[20] S. Palacharla, N. Jouppi, and J. Smith. Complexity-
Effective Superscalar Processors. In International Sym-
posium on Computer Architecture, pages 206–218, June
1997.

[21] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing
Power Requirements of Instruction Scheduling Through
Dynamic Allocation of Multiple Datapath Resources. In
International Symposium on Microarchitecture, pages
90–101, Dec. 2001.

[22] S. Raasch, N. Binkert, and S. Reinhardt. A Scalable
Instruction Queue Design Using Dependence Chains.
In International Symposium on Computer Architecture,
pages 318–329, May 2002.

[23] J. Renau et al. SESC simulator, January 2005.
http://sesc.sourceforge.net.

[24] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore,
and S. Keckler. Scalable Hardware Memory Disam-
biguation for High ILP Processors. In International
Symposium on Microarchitecture, pages 399–410, Dec.
2003.

[25] P. Shivakumar and N. Jouppi. CACTI 3.0: An inte-
grated cache timing, power and area model. Technical
Report 2001/2, Compaq Computer Corporation, Au-
gust 2001.

[26] Synopsys Inc. Design Compiler Product Information,
2005. http://www.synopsys.com.

[27] Synplicity Inc. SynplifyPro Product Information, 2005.
http://www.synplicity.com.

[28] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture. IBM Journal of
Research and Development, 46(1):5–25, Jan. 2002.

[29] J. Tseng and K. Asanovic. Banked Multiported Regis-
ter Files for High-Frequency Superscalar Microproces-
sors. In International Symposium on Computer Archi-
tecture, pages 62–71, June 2003.

[30] N. Wang, J. Quek, T. Rafacz, and S. Patel. Char-
acterizing the Effects of Transient Faults on a High-
Performance Processor Pipeline. In International Con-
ference on Dependable Systems and Networks. IEEE
Computer Society, Jun 2004.

[31] S. Weiss and J. Smith. Instruction Issue Logic
in Pipelined Supercomputers. IEEE Transactions on
Computers, 33(11):1013–1022, Nov. 1984.

[32] K. Yeager. The MIPS R10000 Superscalar Microproces-
sor. IEEE Micro, 16(2):28–40, Apr. 1996.

[33] V. Zyuban and P. Kogge. Optimization of High-
Performance Superscalar Architectures for Energy Ef-
ficiency. In International Symposium on Low-Power
Electronics and Design, pages 84–89, July 2000.

