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ABSTRACT

Both commercial and scientific workloads benefit from concur
rency and exhibit data sharing across threads/processée r&-
sulting sharing patterns are often fine-grain, with the nfiedi
cache lines still residing in the writer's primary cache whac-
cessed. Chip multiprocessors present an opportunity tiondge for
fine-grain sharing using direct access to remote processango-
nents through low-latency on-chip interconnects. In thipgr, we
present Adaptive Replication, Migration, and producem8amer
Optimization (ARMCO), a coherence protocol that, to thet lnés
our knowledge, is the first to exploit direct access to the adhes
of remote processors (rather than via coherence mechaiisms
order to support fine-grain sharing.

Our goal is to provide support for tightly coupled sharingrg-
ognizing and adapting to common sharing patterns such asamig
tory, producer-consumer, multiple-reader, and multipgad-write.
The protocol places data close to where it is most neededert
ages direct access when following conventional coherectieres
proves wasteful. Via targeted optimizations for each cfe¢haccess
patterns, our proposed protocol is able to reduce the averag
cess latency and increase the effective cache capacitg atlthevel
with on-chip storage overhead as low as 0.38%. Full-system s
ulations of 16-processor CMPs show an average (geometranjne
speedup of 1.13 (ranging from 1.04 to 2.26) for 12 commersit
entific, and mining workloads, with an average of 1.18 if weitide
2 microbenchmarks. ARMCO also reduces the on-chip banbwidt
requirements and dynamic energy (power) consumption byan a
erage of 33.3% and 31.2% (20.2%) respectively. By evalgaip+
timizations at both the L1 and the L2 level, we demonstrad¢ th
when considering performance, optimization at the L1 les/slore
effective at supporting fine-grain sharing than that at ti2dvel.
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1. INTRODUCTION

CMOS scaling trends allow increasing numbers of transstor
on a chip. In order to take advantage of the trend while stayin
within power budgets, processor designers are incregsiogh-
ing toward multi-core architectures — often chip multipessors
(CMPs) of simultaneous multithreaded (SMT) cores [21, 2§, 2
While these initial multi-core efforts provide a limited mber of
cores and contexts, future processors would allow hundresis
multaneously executing threads [31, 32]. If this compupoger
is to be applied to conventional workloads, previously sedjal
applications will need to be rewritten as fine-grain pataltale.

To support such fine-grain code, it will be increasingly imgpe
tive to devote chip real estate to mechanisms that fa@litkta
communication and synchronization.

Several recent proposals [4, 6, 8, 37] have examined enhance
ments to a non-uniform level-2 (L2) cache architecture Hoth
improved locality and sharing. Victim replication [37] prases a
shared L2 cache (distributed among the tiles of a CMP) asdbe b
design but replicates lines evicted from the level-1 (L thtlocal
L2 bank. Private L2 tags and shared data is another opticth use
in CMP-NuRAPID [8]. Their design replicates data based on ap
plication access patterns, i.e., repeated accesses tartteecache
line by a processor result in a replica in the closest caché&.ba
They also use in-situ communication for read-write shawd dy
pinning down the cache line at one location when this accass p
tern is detected. Adaptive selective replication [4] im@®on the
above protocol by controlling replication based on a cestéfit
analysis of increased misses versus reduced hit latenoypeZo
ative caching [6] starts with private L2 banks as the base@des
and attempts to increase the effective capacity by codpehat
keeping cache lines in other cores’ L2s. However, all of ¢hes
efforts require communication through the L1-L2 hierarghthe
presence of fine-grain communication.

Prior research [7, 13,18, 19, 29, 33] has also demonstrated t
benefits of protocols that can detect and adapt to an agplicat
sharing patterns for specific cache lines. Chip multipreces
present an additional unique opportunity for direct act@ssmote
processor components through low-latency on-chip intareots.

In this paper, we explore direct access to the L1 caches afteem
processors (rather than via coherence mechanisms). Simila



most of the L2-level proposals, we use a non-uniform-shagd
(L2S) as our base design point in order to maximize capaCity. order to reduce interference with the processor-L1 pattbédh
goal is to provide support for tightly coupled sharing byagc L2S and ARMCO. Coherence at the L1 level is maintained using
nizing and adapting to common sharing patterns such as migraan invalidation-based protocol. Directory entries arenmtzned at
tory, producer-consumer, multiple reader, and multipéelrarrite, the corresponding L2 bank. The baseline depicted (andsepre
while at the same time addressing locality and capacityessu tative of our implementation) uses a switched mesh interech

We present Adaptive Replication, Migration, and producer- although other interconnects are also possible. Cachesaoain
Consumer Optimization (ARMCO), a protocol that adaptivegby cate with the memory controller using a hierarchy of switche
timizes data communication for migratory, producer-consy
multiple-readers, multiple-writers, and false-sharethdéa hard- U
ware mechanisms. ARMCO uses a predictor table at the L 1tevel L1Data |[pred Table M
predict the closest L1 containing the requested cachethieegby LiDTag | &oiaie | L1 Tag
reducing expensive L2 data accesses by getting the datlyire LS
from the predicted L1. Last reader and last writer ID tags per [¥[ragraaefLPuel o] ca v
LlI_:) _cache Iine h_elp determine the access pattern _of_the Me L2 Data H T‘
This information is used by the controller in determining #ttion L2 Tag " E
that will minimize overall communication in the critical {haof Shared L2 Slice =
the application. One new state, migratory (MG), is addedéo t b
base MSI/MESI protocol to switch between migrate-on-read a
replicate-on-read. The use of distributed logic and lowage
overhead (0.38% of on-chip storage bits for our designwailo
ARMCO to scale as the number of cores is increased.

In summary, the contributions of ARMCO are:

the globally-shared L2 cache. The L1 caches are dual-pamted
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Figure 1. Schematic of the underlying CMP architecture depicting a
processor with 16 cores.

As can be seen from the layout, the L1 caches of neighbor-
ing processors are sometimes closer and have lower access la
data with low storage overhead (0.38% of on-chip storage tency _than a potent_ially remote slice of the L2 cache to which

bits). a parncqlar cache I.|ne maps. We propose to. take advantagg of

the proximity and direct access to L1 caches in order to peovi
o lower latency, reduced bandwidth requirements, and ratluce low-latency fine-grain communication among processeseddir

on-chip energy (and power) consumption in the memory L1-to-L1 communication uses the same interconnect as thed 1

hierarchy due to improved locality of access. L2 communication, thereby avoiding any additional pepaltbr

overheads associated with separate links and avoidinderdace
¢ adaptive detection of migratory, producer-consumer, imult \yith the processor-to-L1 path.

ple readers, and multiple writers data. ARMCO leverages direct access to the remote L1s to facili-
tate low-latency fine-grain communications among simeltarsly
executing processes. Several access patterns are rezmgnie-
dicted, and optimized for:

e high accuracy in predicting adjacent L1 for missed shared

e adaptive switching between migrate-on-read and replicate
on-read for migratory and non-migratory data.

e in-place writes for multiple writer/false-write-shareedtd. ) i
e Producer-consumer: This type of access pattern usually in-

volves a single producer with one or more consumers. Tradi-
tional directory-based protocols require communicatian v
the directory in order to bring a copy of the cache line into
the local L1 cache. Subsequent invalidation by the producer
also requires a trip through the directory. ARMCO avoids
the expensive 3-hop access through the directory by directl
accessing the remote L1 and avoiding making a copy.

Our results on a 16-core CMP with 64KB L1 split-cache
and 16MB L2 cache (in 16 different banks) show performance
speedup over L2S ranging from 1.04 to 2.26. For the 12 commer-
cial [12, 16], scientific [35], mining [5], and branch-andtnd
benchmarks, average (geometric mean) speedup of ARMCO is
1.13 (1.18 including the 2 micro benchmarks) over L2S. ARMCO
is able to reduce interconnect network packets by 33.3% en av
erage, dynamic energy consumption in the on-chip memory hi-
erarchy by 31.2% (and dynamic power consumption by 20.2%), ® Migratory: Data elements such as reduction variables are of

and shows better scalability than the base L2S. We also acempa
ARMCO to one example adaptive protocol at the L2 level — wicti
replication [37]. Our results demonstrate that when cargig
performance, optimization at the L1 level shows better germ
supporting fine-grain sharing than that at the L2 level.

2. DESIGN OVERVIEW

Caches are very effective at exploiting memory accessitgcal
However, latency and capacity tradeoffs, in addition tivacthar-
ing among processors or cores, limit their effectivenesgure 1
presents a high-level view of the multicore architecturéoase our
design on. Our baseline platform is a CMP with distributede®
interconnected by a general-purpose network. Each nodainsn
a processor core, a private L1 (both | and D) cache, and adflice

ten accessed with a unique pattern. The data is read and then
modified in quick succession. In the common invalidation-
based protocols, this often means that the accessing proces
sor initiates two separate requests (resulting in acog#st
remotely modified copy twice) to obtain first read and then
write permission. ARMCO recognizes the migratory pat-
tern in a manner similar to that in [13, 33], thereby avoiding
the multiple remote accesses.

e Multiple read/write: This type of data is possible in appli-
cations where the logical organization of the data strestur
and the natural parallelization strategy are in conflict, re
sulting in temporaryfalse sharing In a normal coherence
protocol, the cache line bounces between L1 caches, each
time requiring a trip to the L2/directory in order to maimtai



coherence. ARMCO avoids thjng-pongby reading and Request  State Pred.  Cache InPlace Migra- Next
writing the data in place Table] Message Rd/Wr tion| State
’ LD(ST) | Miss| Reqto Dir/L2 - - S(M)
o Multiple reader: For data that is read without modification LD(ST) | Hit |L1-L1LD(ST) N N | S(M)
by multiple processors, ARMCO defaults to the underlying thR : ::: tiﬂ tgg% ; '\\; M'G
coherence behavior of replication but with faster cache-li LD s ) ) A . S
availability from close-by L1s via location prediction. ST s - |ReqtoDIlL2 - N(Y) IM(MG)
In order to identify the sharing patterns and locate copfes o L1LIEI.(|)_rIDS(1S-T) M”IV'G - = dt-D' o - - M/'IV'G
the cache lines in remote processors, ARMCO utilizes ptiedic L1-L1LD ) W tha'r ) ) S
mechanisms at the local L1 along with extensions to the cache| |33 g7 S - |FwdtoDirlL2 - . s
line tag to capture its access behavior. To minimize intrusi L1-L1LD M/MG - Data N(Y) N | S(m)
the added logic is off the L1 cache’s critical cache-hit partid L1-L1LD M/MG - Data N Y I
only affects how a miss is handled. In the following sectiwe, L1-L1ST MMG - Data N - |
describe the details of the on-chip memory hierarchy dessigh Lll‘,':&/ST S'/V"\//I'/\K'A% - | InPlacewr ¥ N '\I"
facilitates low-latency fine-grain communication amongusla- Downgrade M/MG - i i ) S

neously executing threads/processes.

3. PROTOCOL AND ARCHITECTURAL

Table 1. State transition table at the L1 level for ARMCO. ‘-’ indicates
invalid or don't care. InPlace Rd/Wr and Migration can never be Y at
the same time. LD(ST) are load (store) requests at the local L1 cache
and L1-L1 LD(ST) are L1-to-L1 requests from the predicting L1 to the

SUPPORT
3.1 ARMCO Predictor and Tag Structures predicted L1 due to a hit in the predictor table on a cache miss. Data
’ (response) might be full cache line if InPlace is N or required bytes

In order to predict data location and type of access pattern, igimost 8B) if InPlace is Y.
ARMCO uses the following structures and states along wattlitr
tional cache structures to track the accesses from diffreces-
sors to guide the decision of data migration or replication:

Local L1 cache miss; predictor table miss: If no match is

e Access History Tags2 x logy(P)-bits are used to track the
last readerR_gr) and the last writerR ) of the correspond-
ing cache line, withP being the number of processors in

to the associated L2 cache bank.
Local L1 cache miss; predictor table hit: An L1 cache miss

found either in the tag or the predictor table or the requkste
address is mapped to the local L2 cache bank, the requesttis se

the CMP. A single bitl(,p) is used to indicate whether the  (with the address mapped to a non-local L2 cache bank) with a h

last access is a read or a write. Finally, whenever the localin the predictor table results in a request being sent torddigted
processor accesses the cache line consecutively without amemote L1 cache. An incorrect prediction will result in teguest
intervening access from another processor, we 6gp dit.
This bit is preserved in the predictor table (see below) when location prediction are a function of the access pattern.
the line is evicted and is used in order to decide whether to o .

perform in-place access or request a full cache line from a3-3 Recognizing and Handling Access Patterns

neighbor. The last reader/write{ r, PLw), last accesd p) and multiple

Migratory State Inspired by the techniques proposed
by [13, 33], we add one additional state, called Migratory
state (MG), to the base MSI coherence protocol for L1 caches
(for a total of four stable states) to keep track of whether th
cache line is in migratory state. We use the access history

line are used for access pattern identification. We first Somul
cache lines thatare in modified state in some L1 cache. Ta#&ei
access pattern tracking, the directory forwards a rea\gguest

being forwarded to the proper L2 bank. Actions on a correct

access(op) fields along with the additional stable state per cache

from another processor to the current owner. The owner, with

access pattern information, will handle the request in thoestm
appropriate way and notify the directory for proper boolgdieg
Predictor Table Each processor has a predictor table to — when it can. When it cannot service the request, such as
identify a potential remote L1 with a cached copy of the line when the ownership is being or has been transferred to anothe
in case of a miss at the local L1. Each predictor entry has aprocessor or back to the directory, the request is forwatded

tags to adapt in and out of migratory state.

valid bit, cache-line tag bitdpgy(P)-bits for remote L1 id, the directory on behalf of the requester as a regular regudst
and the sam€&,p bit as in the access history tag in the L1 negative acknowledgment is used in communications.
cache.

3.2 ARMCO Protocol Actions

ARMCO state transition diagram: Table 1 shows the state
transitions at the L1 level for the ARMCO protocol. The subse
guent subsections describe the details for choosing diffeac-
tions on different situations.

Migratory data: When a remote access (say fr&y) arrives at
an L1 (say aPy) for a cache line in modified stat®j, P g andPyyy
are looked up. A writer that finds a matchiRgs (=P,) indicates
the start of migratory behavior. A reader that finds a matghig,
with owner(#,) in cache statdG indicates the continuation of
migratory behavior. We supply the cache line and the trartdgs
(PLr, PLw, andLop) to the requester) and invalidate the line
from the original ownerR;’s cache). This allows us to quickly
supply the data and exclusive permissionNiG state) to the next

Local L1 cache hit: On a local L1 data cache look-up by the
processor, the cache tag and the predictor table are logkéd u
parallel. A read or write hit in the L1 cache (whether by thealo
or a remote processor) results in the last reader or writelr(frer
or Pw) being updated accordingly.

migration takes only one transaction between successinemswv
In some cases, when the requedgreads more than once

requester (saf?3) upon only a read request. In the steady state,



before writing to the data, the cache controller of the aurosvner
(Py) will transfer the cache line t8, upon the second read request
and therefore will not detect the migratory access pattétere,

we use the help of the directory. WhBnsends an upgrade request
for exclusive access, if there is only one other sharer talitate,

the directory piggybacks the ID of that sharer. If this ID ofas
with P at Py, then the cache line starts migratory behavior and
the state is set thIG rather tharM.

Since the migratory state is “sticky”, if the data is no longe
accessed in a migratory pattern, we need to revert the licke tba
normal (shared). If a migratory cache line is requested logreat
processor before the current owner had a chance to writethet
the line loses the migratory property and is downgraded taeesl
line or invalidated depending on whether the remote reqgsest
read or a write. In the migratory stat,y is used to determine
whether the current owner actually modified the cache line. |
our design, the directory does not make the distinction betw
migratory and modified cache lines. When a migratory line is
evicted and written back, the migratory state is lost andthde
re-learned the next time around. Of course, another optmuldyv
be to add a stable state in the directory to avoid the relegrni

MultipleRead-Write: When a cache line is being read by some
processors and written to by others in an intermingled manne
(whether due to true communication or false sharing), reract
cess is unavoidable. Sometimes when the accesses fromediffe
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Figure 2. lllustration of messages and activities of fetching data from
nearby neighbor, in contrast to fetching from the directory.

remote request via an in-place access as discussed edvlemn
the same remote node generates two back-to-back read teques
with no intervening read or write from any other processbe t
entire line will be supplied and the current processor wilivd-
grade the line to shared state. Table 2 summarizes the o glit
for migration and/or replication in the presence of backaak
accesses by the same remote processor.

On the other hand, if the cache line is in shared state in the
current processor, a remote read request would replicatént

processors are finely meshed, bouncing the cache line back anwithoutany hysteresis (i.e., without checkifg). Note thatan L1
forth only wastes time and energy. We try to pin down the data cache that only has a shared copy of a line can not serviceaeem

when called for. In general, if the the last read®iz) and writer

write request to that line and treats the request as a déstina

(PLw) keep switching from one processor to another, we keep themisprediction.

cache line in the current node and service consumers’ reques
via in-place read and accept in-place writes from other peeds.
When one particular remote node generates back-to-baoksex
indicating a stronger locality, then the cache line will bans-

ferred there. For example, upon a read request from a remots

processor®,), if P g or Py is P,, the cache line is replicated at
P,. Two back-to-back writes fror®, will move the ownership to
P, (M state), while a read followed by a write will also switch the
cache line into migratory modéJG state). If none of the above
conditions are met, the request is serviced in-place, atuhent
L1.

With this policy, the first miss is in general serviced vigiace

read or write at a remote node. This would result in two remote

Accesg Note Reaction

RR/ | Read/Write followed by Replicate line to requester;
WR; read from same processor | downgrade local copy to shared
lR“V\/| Read followed by write: mi-| Migrate line in MG state; inval-

idate local copy
Transfer line in exclusive (M)
state ta; invalidate local copy

gratory pattern
Producei updates more fre{
quently

WW

Table 2. Summary of possible options with multiple back-to-back ac-
cesses by the same remote processor to a dirty line where first access
is an in-place access. Rj and W stand for read and write access from
the remote processor i, respectively.

accesses when a processor makes a series of accesses.ngé atte 3.4 Protocol | mplementation |ssues

to anticipate such series of accesses and bring in the cashe |
upon the first access. This is done with the help of@hebit in
the cache and the predictor table. If a processor makesoatnse
accesses to a cache line, g, bit of the line will be set in the
cache and copied to the predictor table upon the evictiomef t
line. The next time we follow the prediction table to fetcle th

same line, ifCop is set, we will avoid an in-place access and issue

a line-fetch request instead.

Multiple reader: With direct access to remote L1 caches, ac-
cess latency may be improved even for read operations. fSpeci
cally, to service a cache miss, we can fetch the cache lime &o

Whenever an L1 cache (&) responds to a remote request
(from P), it is temporarily serving the role of the directory.
Clearly, any change to the ownership and sharer list neetle to
reflected in the directory. This is done by the L1 cache cdietro
of P; sending anatification to update the directory (sometimes
with the write-back data). Note that when an in-place read is
performed, the directory generally does not need to be epdat
unless the processor core issues memory operations in alapec
tive, out-of-order fashion and relies on invalidations taintain a
restrictive consistency model [36].

When a notification to the directory is sentas aresult of an L1

nearby L1 cache instead of from the home L2 cache bank. Thisto-L1 data transfer, the cache line would enter a transaie $n
can cut down the latency of the cache miss as the directory maybothPy andP>’s caches —for different reasons — until the directory

be further away and accessing a slower and physically ldrger
partition can take more cycles than accessing the smadisterf
L1 cache. The process is illustrated in Figure 2-(a).

Note that if the line is in dirty state, we will generally i a

acknowledges the natification to both processors.

When Py supplies a cache line t8,, before the notification
arrives at the directory, it is possible for an independentusive
access request to the same cache line ffano arrive at the



directory and result in invalidations sent from the diregtoTo be piggybacked. Finally, if the predicted node is far awlag,dost
ensure the directory only replies R after it has also invalidated  of misprediction is high, especially when the directorylase-by.

P,'s copy, P; will not respond to the invalidation request until the Therefore, itis wise to limit such predictions to close-yghbors.
directory has processed and acknowledged the notificBtisent In this paper, we only consider nodes within 2 hops and do not
(Figure 2-(b)). Onthe other hand, 8, the cachelineisalsosetto predict for a request whose home node is the local L2 slice.
atransient state befoRa receives the directory’s acknowledgment.
While in this transient stat®, will delay supplying the cache line
to another L1 cache. Thisis done in order to achieve ordavitiy
simplicity.

Storage overhead: As discussed in Section 3.1, each processor
needs a predictor table as well as extra bits in the L1 cacdkes.li
This hardware storage cost is very low. In a 16-processor CMP
(our baseline), each L1 cache line needs 10 extra bits. Each
3.5 Predicting Destinations predictor table entry takes 25 bits, which can be furtheuced
Clearly, the benefit of direct data access from a remote LI1 wil by st_orlng only partial cache tags. The num_ber of ent_rleshm t

predictor table need not be large. We experimented with geran

be greatly limited if we need indirection from the directdor X - S
each access. Thus, predicting the location of an L1 cachadav of predictor table Sizes and associativity and found thab241
try 8-way associative table provides reasonable pedioca

the needed cache line becomes a necessary component. We US%. ; ) )
while meeting access latency constraints. In our basejisem,

a set-associative predictor table per node to make a best-ef . A h ;
. . this configuration brings the total storage overhead of ARMC
attempt to track the whereabouts of cache lines. For instanc .
P ot to 70 KB, or about 0.38% of the total on-chip cache storage.

when an L1 controller transfers the ownership of a line talago The storage overhead is compared with other previous ttlate
L1 cache, we remember the destination node as the new locatio proposals [4,8,13, 19, 33,37] in Section 5.9.

for that line. Conversely, when an L1 controller receivesehe
line in M or MG state, the entry for that line is invalidated in
the prediction table. Given a directory-based protocol,haee 4. RELATED WORK
limited knowledge about data migration happening elsealirer Most previous multi-core cache designs have assumed either
the system. Nevertheless, when the L2 directory contrebeds shared L1 data cache (e.g., SMTs) or L1 caches that areg(avad
out any request or acknowledgment to an L1 cache, it can alway local) to each individual cluster/core (e.g., CMPs) witheence
piggyback the location of the current exclusive owner orclbsest maintained across the L1s atthe L2 level. Cache archieshave
neighbor having a shared copy. This includes: been proposed that use non-uniform access latency to rékeice
. . access time of the L2 cache [9, 20] for single-threaded waidd.
e When the directory sends a data reply to an L1 controller in - recently, there has been a focus on chip multiproces&or
shared mode; cache designs [4, 6,8, 37].
e When the directory sends out invalidation messages; Zhang and Asanovic [37] assume an L2 cache that is distdbute
among the tiles of a CMP and propose victim replication (VR) a
e When the directory downgrades an L1’s cache line; and  the L2 levelin order to reduce the L1 miss penalty. The eh@r&s
shared among all processors, with replication of the vistirom
the primary cache in each local L2 slice. In effect, cohegeisc
maintained at both L1 and L2 levels. They do not study theceffe
on different sharing patterns. In addition, they presety time
The predictor table is also updated by utilizing the message ©ffects on memory latency and not the effects on overalloperf
sent between L1 controllers, including: mance. By consuming multiple L2 cache blocks for a singla dat
line, VR creates more pressure on the on-chip memory higyarc
e Direct L1-to-L1 requests; the predicted proces3By field CMP-NuRAPID [8] identifies the need to address both L1 miss
in the predictor table entry is set to the requester if: (&) th latency and read-write sharing. Repeated accesses to ife sa
requester is served by giving up ownership, (2) the requestcache line by a processor result in a replica in the closedteca
was for exclusive access, or (3) if the requester was servedbank. Reads and writes by multiple processors to the sanhe cac
by a shared copy and the requester is closer than the currenline result in “in-situ” communication (an optimizationgeiring
PRy if there is one. a write-through L1). Once the “in-situ” access pattern isoge
nized, the location of the cache line is fixed, resulting in-ideal
latencies for a processor that might be the dominant acc@sso
case of poor placement. Moreover, CMP-NuRAPID also doubles
the L2 tag space required, hindering scalability. Adapsetec-
tive replication [4] improves on the above protocol by cohiing
replication based on a cost/benefit analysis of increasedasi
versus reduced hit latency. Cooperative caching [6] basroan-

Of course, the predictor can not always be correct and whenCEP!S from software cooperative caching [2, 15, 34] to éffely

e When the directory sends an acknowledgment of a write-
back, or the acknowledgment of the eviction notification of
a shared line (in systems that do that).

e Predictor table entry invalidation requests; when a caidlee |
is invalidated or evicted, a predictor table entry invdiicia
request is sent t& r and/orP,y if those are not the local
processor. Seeing this invalidation request, the L1 cdatro
invalidates the corresponding predictor table entri?Fy
matches the requester.

an L1 cache controller sends a request to a node which norongeincrease the capacity of essentially private caches thraog-

has the data, the receiver forwards the request to the diyect trolled cooperation but it suffers a scalability bottleketue to

If the protocol supports silent drop of a shared line, thes th the need for a centralized coherence engine. Eisley et4jidd-
forwarded request also implies the absence of the cacheiiieh scribe an in-network coherence protocol that leveragesveonke-

the directory can utilize. Note that we do not need to preatti embedded directory to get data directly from.a sharer/oviiner
notify the requester of the misprediction, as when the tirgc found on the way to the home, thereby reducing access latency
replies, updated information about which neighbor has & ool Set-up/tear-down of the tree, however, can make overalhéyt



highly variable due to potential deadlock recovery. interconnect is used to connect the 16 L1 controllers, th&26
The above designs work at the L2 level. While capacity and controllers for the 16 L2 banks, and one memory controlleche
access latency issues addressed at the L2 level are an @amport interconnect switch is connected to the four adjacent sw#dn
problem and better addressed at the L2 level, they are arthog the mesh in addition to the local L1 controller, local L2 aolier,
nal and complementary to the design of the L1 cache: the tightand the memory controller. L1 and the corresponding L2 bagak a
coupling of the L1 with the processor allows for optimizatao directly connected (schematic diagram shown in Figure 1 ugé
improve fine-grain sharing and synchronization that ingaetive Cacti 6.0[30] to derive the access times and energy/powanpe
read-write sharing. This paper extends our earlier desighex- ters for the predictor table, different levels of cachesl iatercon-
ploits direct access to the L1 cache [17] via a protocol tlweisd  nects. We employ virtual cut-through switching for tramsfeg
not rely on broadcast or on additional interconnects orstorthe cache messages through the interconnect. We use GEMS’s [25]
L1 cache. network model for interconnect and switch contention miogel
There has also been considerable research in adaptive- coheusing the parameters in Table 3. We encode all stable and tran
ence protocols that choose actions (such as invalidatiosuse  sient states and all required messages for a detailed rietmartel
update) based on the sharing patterns observed (e.g.j\edapt simulation of ARMCO and L2S using SLICC [25].
gratory sharing [13, 33] or producer-consumer patterns [@Qur

migratory extensions borrow ideas from the work of Cox and 16-way CMP, Private L1, Shared L2

Fowler [13]. Processor cores 16 3.0GHz in-order, single issue, non-memory IPG=1
Techniques have also been proposed to predict the coherenge-l (1 and D) cache| 64KB 2-way each, 64-byte blocks, 2-cycle

state of a cache block in order to hide the latency of the eotuer Predictor table| 1K entry 8-way associative

L2 cache| 16MB, 16-way unified, 16 banks, 64-byte blocks, $e-

mechanism in shared-memory multiprocessor systems 9 ;
ry P y [1221 quential tag/data access, 14-cycle

24,29]. Mukherjee and Hill [29] used an extension of Yeh and

Patt's two-| | PAD b h dictor t dictth i Memory | 4GB, 300-cycle latency
at'stwo-leve p branch predictor (.)pre ictihe so _ype_ Interconnect| 4x4 mesh, 4-cycle link latency, 128-bit link widf

of the next coherence message by using address-basedipredic (sensitivity analysis for 2, 4,and 6 cycles link late

Martin et. al. have proposed destination set predictiorgramt cies), virtual cut-through routing

of multicast snooping, which tries to optimize bandwidiktéhcy

with respect to broadcast snooping and directory protobgls

being in the middle of these two extreme cases. . . .
. . . . For our evaluation, we use a wide range of benchmarks, which
Lai and Falsafi [22] used a pattern-based predictor to predic . X D e
include commercial, scientific, mining, branch and bounad a

the next coherence messages. Kaxiras and Goodman [18] pro-

posed instruction-based prediction to reduce the higherhaad Q?Fif:r(;bciggs]mzrt?:r.nsm v(;;dﬁ;\fg gE\Te?gSg?;if!ggﬂgﬁ;ﬁsswi
of address-based prediction. Kaxiras and Young [19] eeplor P ' P

the design space of prediction mechanisms in SMP machimes fo producer-consumer and migratory access patterns. As comme

L . cial workloads, we use the Apache webserver with the surde [3
predicting coherence messages. All these approaches diiaheto :
the long latencies of fetching data from a remote cache/mgmo request generator and SPECjbb2005. Alameldeen et al. [1]

Such predictive mechanisms could be combined with our adap_q§scr|bed these commercial workloads for simulation. Asrsc
- . I . tific benchmarks, we have a large set of applications andekern
tive protocol for improved performance. While instructibased

- . from the SPLASH2/SPLASH suites [35], which includes Barnes
prediction was propose_:d to reduce the higher storage caedrhe Cholesky, FFT, LU, MP3D, Ocean, Radix, and Water. Our bench-
of address-based predictors, our address-based predimady

shows low overhead with aood performance mark suite also includes a graph mining application [5] and a
g P ' branch-and-bound based implementation of the non-poljadom

(NP) traveling salesman problem (TSP). All these applicetiare

==y
T

Table 3. Processor, cache/memory, and interconnection parameters

5. PERFORMANCE EVALUATION thread-based except Apache, which is process-based. Aabie
. the problem sizes, access patterns, and L1 miss rates faatl X5
5.1 Evaluation Framework ProCessors.

To evaluate ARMCO, we use a Simics-based [23] full-system . .
execution-driven simulator, which models the SPARC aethit ©-2 Estimating Expected Perfor mance Speedup
ture. We use Ruby from the GEMS toolset [25], modified to en- ~ ARMCO improves performance via several optimizations that
code ARMCO's requirements, for cache memory simulation. We reduce the number of network packets and hops, and thereby th
simulate a 16-way chip multiprocessor (CMP) with privatéitsp  overall latency. Direct L1 accesses occur for: (1) repitafrom
L1 instruction and data caches and a 16-way banked sharesl L2 ashared state, (2) replication from modified state, (3) nigngfrom
the base system for our evaluation. The baseline cohergat® p  modified (M) state, (4) migration from migratory (MG) stated
col is a non-uniform-shared L2 (L2S) MESI-style directdrgsed (5) in-place-read/write. For each of these scenarios, RMEBO
protocol. cost (latency) is

Each processor has one L2 bank very close to it. A 4x4 mesh

€= 2x0dg p(Liink +Lsw) +4*Lijink +2xLsw+L11
Iprevious proposals [4, 6,8, 37] have used both shared avateiaches . .
for comparison purposes. In [8], the performance improvergtions for wheredg » is the distance between the request®)) @nd the
non-uniform-shared, private, and ideal caches (capaditgrétage of shared  predicted processor/ownef), and Ljink, Lsw, andLy; are the
cache and latency advantage of private cache) are expldtedespectto  |atencies for the link, switch, and the L1 cache, respelgtive
a conventional uniform-shared cache. Their results shewvrtbn-uniform- The total benefit can be calculated by the formula
shared and private caches are close to each other with téspecformance
and better than a uniform-shared cache. We therefore usa-aniform-
sharedcache as the baseline for our comparison B= Z Ni %0 — Nmp* Pmp

I



Benchmark Simulated problem size Major data access pattern ra:_el(TzlsSS)
Apache 80000 requests fastforward, 2000 warmup, and 3000 for aditsction | read-shared,read-write-shared 11.2%
SPECjbb2005 350K Tx fastforward, 3000 warmup, and 3000 for data coltecti read-shared and producer-consumer 7.3%
Barnes 8K particles; run-to-completion single producer-consumer and read-shafed 1.9%
Cholesky Ishp.0; run-to-completion migratory, read-shared, read-write-shared  1.5%
FFT 64K points; run-to-completion read-shared 3.7%
LU 512x512 matrix,16x16 block; run-to-completion producer-consumer, false-sharing 2.0%
MP3D 40K molecules; 15 parallel steps; warmup 3 steps migratory, read-shared, read-write-shared 16.6%
Ocean 258x258 ocean single producer-consumer 6.9%
Radix 550K 20-bit integers, radix 1024 read-shared, producer-consumer 3.2%
Water 512 molecules; run-to-completion read-shared, migratory 1.3%
GraphMine 340 chemical compounds, 24 different atoms, 66 atom types,4a| migratory and false-sharing 4.3%
types of bonds; 200M instructions; warmup 300 nodes exfiora
TSP 18 city map; run-to-completion false-sharing 13.8%
Migratory 512 exclusive access cache lines migratory 5.2%
Producer-consumet 2K shared cache lines and 8K private cache lines singel producer-multiple consumer 7.1%

Table 4. Problem size, data access patterns, and base miss rates at 16 processors for the benchmarks evaluated.

ARMCO Speedup over L2S

wheren; is number of L1-to-L1 transfers of typeh; is the benefit
of one L1-to-L1 transfer of typg andnmp andPyp are the number
and penalty of mispredictions, respectivellg; is calculated by
subtractingc from the cost of one transaction in L2S for type
For exampleb for type 1 is

Avg. SpeedUp ( with micro) Avg. SpeedUp ( w/o micro)

by = 2 (dg s — dg ) (Liink + Lsw) + L2 —Li1 g B g E S g
o

Scientific — SPLASH/SPLASH2

<
Commercial

wheredg 4 is the distance between the requestg) @nd the
home L2 bank ) andL_» is the access latency of an L2 bank.
Otherb; are calculated in a similar manner and will be larger due
to indirection via the home for the L2S protocol. For example
type 2 will add2+dyy p(Ljink + Lsw) + 4 Liink + 2% Lsw+ L1 tO

Figure 3. Performance speedup of ARMCO with respect to L2S (16
threads).

Relative Memory Hierarchy and Computation Latencies between L2S and ARMCO
10 T T T T

the benefib, in addition tob;. The total cost can be calculated by ol . I ‘
C= S nxc I I
The benefit calculation is conservative in that it does nketa £ i UMl
contentionin the network into account. The expected imgmnaent sl I HH i Eﬁé”fz-_mm
(speedup) in the memory component of the application is thus z i Emg fﬁ:;rfll
Speedupemory= SEB. Applying Amdanl’s law, we get a rough ~ £° ERNS Comp.
estimate of the expected speedup in total execution timéhor %1 1
application. ézof il i
5.3 Performance Comparison i
"28]¢ s £ 28 § 5 3|5 b5 B
Performance: Figure 3 shows the performance of ARMCO g2 7|3 G £ g & £|§ "5 ¢
Commercial Scientific - SPLASH/SPLASH2 Mine & NP| Micro

normalized to L2S. We use execution time in terms of progesso
cyclgs required to do the same amount of work as our perfarenan Figure 4. Timing breakdown among computation, different levels of
metric for all the benchmarks. ARMCO outperforms L2S for all
the benchmarks, with speedup ranging from 1.04 to 2.26 bavin

average (geomgtnc mean) Sp§edUp of1.13 (1'18. with mlumbe synchronization and non-synchronization time. 'Synch’ is all synchro-
mark_s)' For_ clarity, the n_ormal'zed performancg is plottétth the nization time spent in both computation and the memory hierarchy.
Y axis starting at 0.8. Figure 4 shows the timing break-don o ‘NS’ refers to non-synchronization. 'other L1’ refers to time spent in
the execution time (once again normalized to L2S). Timingsew
collected by instrumenting the workloads (except for Agaahd
JBB2005, where we do not separate the synchronization comporead/write, remote hits resulting in replication from stdhand
nent). Note that as expected, the “non-synchronizationpciaa modified state, remote hits resulting in migration from nfiedi
tion” portion of time is the same for both ARMCO and L2S (excep and migratory state, and L2 accesses (including L2 misSd®).
for GraphMine, where the use of work-queue style parabgiim distribution is normalized to the total number of accessaslen
makes both warm-up point and exact computation performad no under L2S. The remote hits are from adjacent (with distarice a
deterministic). most 2 hops) processors’ L1 caches rather than L2.

In the breakdown, we see the reflection of the charactesistic
of the benchmarks described in Table 4. ARMCO also reduces

the memory hierarchy, and synchronization, normalized to L2S (16
threads). For commercial workloads, we do not distinguish between

direct L1-to-L1 transfers.

Cache access distribution: Figure 5 shows the distribution of
processor data cache accesses among local L1 hits, rerméemn
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Figure 5. Normalized cache access distribution (16 threads). InPlac-
eRd and InPlaceWr occur at the predicted L1 cache without cache
line allocation at the requester L1. Rep-S and Rep-M refer to re-
mote L1 hits resulting in replication via L1-to-L1 transfers where the
cache line is in shared and modified state respectively. Migr-M and
Migr-MG refer to remote L1 hits resulting in migration via L1-to-L1
transfers where the remote cache line is in modified and migratory
state respectively.

the number of cache accesses. This is a result of severatdact
including reduced contention and wait time (resulting idueed
synchronization time) in locks and barriers, as well as cedu
amount of operating system code (interrupts, schedulemda
processes, etc.) execution and data access as the benaumark
pletes in a shorter amount of time. Figure 6 shows the realucti
in L2 accesses for ARMCO due to direct access to remote L1s.

Relative non-local-L1 Cache Access between L2S and ARMCO
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Figure 6. Normalized non-local-L1 cache access distributions (16
threads). Legends are described in the caption of Figure 5.

Using collected statistics on the number and type of dirdet L
to-L1 transfers as well as distance among requester, peeldid,

as well as the migratory optimizations, contribute to thghtper-
formance gain. For the Producer-consumer microbenchmagk,
see a 12.4% performance improvement for ARMCO over L2S due
to correctly predicting the ID of the producer, resultinglower
latency accesses by the consumers.

From [4], 44% of Apache’s accesses are to read-shared cache
lines and another 44% are to read-write-shared cache IBies-
ilarly, 42% of SpecJBB2005’s accesses are to read-shadtk ca
lines. Our JBB2005 version uses a concurrent thread-sale ba
end. Hence a substantial portion of the accesses are in read-
write-shared mode. We see the reflection of this charatiteris
in Figure 6 where more than 25% of the L1 misses are satis-
fied through L1-to-L1 accesses, of which the larger fraci®n
from modified/migratory state for Apache, and 45% of the L1
misses are satisfied through L1-to-L1 transfers from sharate
for SpecJBB2005, resulting in 9.5% improvement for Apaatne a
12% improvement for JBB.

In all cases, the data used for synchronization exhibits-a mi
gratory pattern, which is correctly recognized and handigd
ARMCO. GraphMine also has a significant number of accesses
exhibiting a migratory pattern, which is correctly recaggd and
optimized, resulting in 35.3% improvement. The synchratian-
like behavior of GraphMine results in a substantial mignatmat-
tern. Inthe case of TSP, there is little data sharing. Howehere
are a few falsely shared but heavily accessed cache linesoamel
data accessed in a migratory fashion. Via in-place reati\ior
the former and the migratory optimization for the latter, MRO
is able to achieve a 12.4% performance improvement. MP3D has
a lot of migratory, read-write-shared, as well as read-eshac-
cesses due to high synchronization. ARMCO optimizes most of
those accesses, which results in the highest improvemaat 8%
among the SPLASH applications.

Ocean has a substantial number of data accesses demaogstrati
the producer-consumer pattern among processors who hge ad
cent data in the matrix, resulting in a performance improzenof
20.3% (arising from a 35% reduction in L2 accesses due tatdire
L1-to-L1 transfers). Barnes also has similar produceisoamer
as well as read-shared access patterns, showing a perfmgman
improvement of 9.4%.

Both MP3D and Ocean have high L1 miss rates, which pro-
vide greater opportunity for optimization. Cholesky, FET),
Radix, Water are some of the applications with low L1 misesat
resulting in lower performance improvement (4%-7%) wrtesth
applications.

5.4 Interconnection Network Bandwidth Require-

ments

The network link width is 16B. For L2S, we have 8B and 72B
packet sizes and for ARMCO, we have 8B, 16B (at most 8B of
data transferred along with L1-to-L1 requests), and 72BEgiac
sizes. We use a configuration in which the network link is stiar
at an 8B granularity, i.e., two 8B messages (or one 8B message
and part of a 16B or 72B message) can be transmitted simul-
taneously, assuming both messages are ready for trangmissi
Figure 7 shows the number of network packet-hops for ARMCO

and L2 bank, we used the models described in Section 5.2 tonormalized with respect to L2S for the configuration in Table

qualitatively verify our results. For example, for the natpry
microbenchmark, the estimated speedup is 2.63 (by usingL1-
L1 transfer numbers from simulation), which correlates|wéth
our experimental speedup results. The large reductionialsp-
nization overhead as a result of reducing contention antitinze,

The network’s packet-hop numbers are accumulated by aduaing
number of hops traversed by each packet. We see a largeimduct
in packet-hops across all benchmarks when using ARMC0933.3
on average. Data (usually 8X of control info) transfer amoache
controllers is the major contributor to the packet-hop ¢o&@ince



ARMCO Dynamic Energy and Power Consumption normalized over L2S
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ARMCO attempts to move data using L1-to-L1 transfers from
adjacent cores whenever possible, the total packet-hopt éeu
significantly reduced.
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Figure 7. Normalized number of interconnection network packet-hops 16-way 8-way
with respect to L2S (16 threads). 2K-entry 1.13(1.19)| 1.13(1.18)
1K-entry 1.12(1.18)| 1.13(1.18)
. . 512-entry 1.10(1.16) 1.12(1.17)
5.5 Dynamic Energy and Power Requirements 256-entry 1.11 (1.17) 1.11 (1.16)
For power modeling, we use Cacti 6.0 [30] to model power, Ideal Predictor ARMCO 1.15 (1.23)
delay, area, and cycle time for the individual cache banksedls Ideal Pr. and Prefetch ARMCQ 1.25 (1.40)

as the interconnect switches. All process-specific valges by ) ) o ) )
Cacti 6.0 are derived from the ITRS roadmap. We use a 45 nm1his suggests that a small table is sufficient to identify tmufs
process technology and focus on dynamic energy. Tablesdtist ~ the sharing patterns. If the table is large with high assiviia
energy values per access derived from Cacti 6.0. These mambe it may hold old prediction information resulting in an inage in
along with collected access statistics, are used to deyimardic ~ Mispredictions and the penalty for misprediction mightesepde
energy numbers for ARMCO. the benefit from extra prediction. The table also has the-aver
Figure 8 shows ARMCO’s dynamic energy and dynamic power 89€ performance numbers for.ARMCO with ideal predictor aqd
consumption normalized to L2S. ARMCO's reduction in dynami  Prefetch which are described in next paragraph. Due to the in
energy and power is 31.2% on average (ranging between 6% anderent characteristics of directory-based protocolsetisdimited
72%) and 20.2% on average (ranging between -4% and 71%)O0Pportunity for k_eeplr)g the predlctor_ ta_lble updated wnbw_(ate
respectively, with respect to L2S. While the extra stateRMCO sharing information since we use existing messages to paydy
(predictor table and extra tag bits in the L1) adds to dynamégy, this |m_‘ormat|on._ 'I_'abl_e 6 shows the percentage of L1 misses
this is sufficiently compensated for by a reduction in the ham  for which a prediction is made, and the percentage of thase th
of packet-hops and by the substitution of L2 bank accessts wi aré correctly predicted for each benchmark. Predictionaoy
L1 accesses. ranges from 67.3% to 92.8% and is 74% on average. The per-
While we did not model leakage (static) power for the fullsys Ccentage of L1 cache misses for which a prediction is madessang
tem or dynamic power for the cpu logic, based on prior studies from 21.4% to 74.5%, which is 50.5% on average. Most of these
such as [11, 28], we estimate the dynamic energy in the gm-chi misses that are not predicted would be to non-shared ddtddha
memory hierarchy to be roughly 30% of overall chip energy-con Not require prediction.
sumption. This percentage is likely to go up if recent leakag
reduction techniques (such as high-k dielectric from Ifite]) are

Apache jbb | Barnes Chol. FFT LU MP3D
Coverage 21.4 535 62.4 415 37.2 47.8 64.8

factored in. Accuracy | 928 814| 709 786 682 704 67.3
L1$ Predictor L2$ Router/Interconnect Ocean Radix Watell Graph TSP| Mig. Prod. | Avg
Tag Data|] Access | Tag Data| BufRd BufWr Xbar Arbite] 41.0 37.1 55,6 38.0 62.9| 745 69.2| 50.5
[2688 1656418593 | 58299 76620760 1187 24177 402 | 735 686 682] 768 69.2| 7115 789|740
Table 5. Dynamic energy consumption values per access for indi- Table 6. Percentage of L1 misses predicted (among L1 misses) and
vidual structures in ARMCO using 45nm technology (values are in prediction accuracy

femto-joules (fJ))

Comparison with ideal prediction: We evaluate ARMCO with
an ideal predictor where correct prediction is made at reigirae.
This can, however, be a miss when the request reaches thietpded
L1 due to the activities during the request traversal time. algo
evaluate ARMCO with an approximate prefetching effect:hi t
requested data line is in stable state in the system, a atoely
fetch is performed (when in transient state, the requesijaeued
at the predicted L1’s incoming request queue with zero tafen
Figure 9 shows the normalized performance of these systétims w
respect to L2S. We see a substantial performance improvemen
possible for many benchmarks by increasing the prediction-a
racy. If we can, somehow, prefetch the required data from the
predicted L1 then we will have even higher performance imgro

Predictor table accuracy and sensitivity: Since the perfor-
mance of ARMCO is heavily dependent on correct prediction, w
estimate the sensitivity of our results to the size and chearistics
of the predictor table. We analyze the sensitivity of thailtsso
predictor table size (2K, 1K, 512, and 256 entries) and aasoc
tivity (16 and 8). The following list shows a few configurat
of the predictor table and overall performance speedum(géic
mean) over L2S for all the applications excluding (inclugithe
microbenchmarks:



ment. The reduced performance for GraphMine and TSP using

ideal prediction with respect to regular ARMCO is the effett
the non-deterministic behavior of these two applicatioaghee
amount of work done varies based on changes in execution path

ARMCO Performance Speedup W|th Ideal Predictor and Prefetchmg over LZS
56
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Figure 9. Normalized Performance of ARMCO with ideal prediction,
ARMCO with ideal prediction and prefetch, and ARMCO with regular
predictor over L2S (16 threads). Prefetching effect is incorporated
by zero-latency fetching at request time from predicted L1 if the re-
quested data line is at stable state in the system
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5.6 Scalability of the System

We evaluate ARMCO and L2S on an 8-core, 16-core, and 32-
core CMP system. Table 7 shows the average (geometric mean

speedup of ARMCO over L2S. ARMCO's performance over L2S
increases with the increase of number of cores as the imgrrove
locality of access results in a bigger performance gain. ARM
has better parallel efficiency for both-8.6 and 16-32, which
suggests that predicting and accessing data directly toouirent
location is important to the scalability of future multiresystems.

Workloads Average Speedup
8-core 16-core 32-core

W/O Micro 1.10 1.13 1.15

W/ Micro 1.17 1.18 1.22

Table 7. Average (geometric mean) speedup of ARMCO over L2S for
8-core, 16-core, and 32-core CMP systems.

5.7 Sensitivity Analysis

We have analyzed the sensitivity of both ARMCO and L2S to
the interconnection hop latencies and L2 latencies. loterect
hop latencies are in the range of 3-5 cycles [30] and routers a
usually 2-3 stage pipelined. We use a 2-cycle crossbardaten

and vary the hop latency among 2, 4, and 6 cycles. We varyharness the multi-core revolution.

the L2 latency from 14 (Table 3) to 20 cycles. Table 8 shows
the summary results. ARMCO improves its performance speedu
over L2S with the increase of L2 latencies and interconnegt h
latencies as suggested by the formulae derived in Sectn 5.

5.8 Comparing Performancewith Victim Replica-
tion
While ARMCO optimizes memory-hierarchy performance for
fine-grain sharing at the L1 level, the related proposal$, g,20,
37]dosoatthe L2 level. Figure 10 shows the relative peréoroe
of Victim Replication (VR) [37] (one of the above proposaisid
ARMCO with respect to L2S for the same configuration as in

Hop Latency(cycle)| L2 Latency(cycle)
Workloads 2 4 6 14 20
Commercial | 1.10 1.11 1.13] 1.11 1.13
Scientific 1.08 1.11 1.10f 1.11 1.11
Mining &NP | 1.10 1.22 1.18| 1.22 1.22
Microbench 1.54 159 1.61] 1.59 1.65
Average 1.14 118 1.18| 1.18 1.20

Table 8. Influence of L2 cache and interconnection latencies. Data
are ARMCO performance speedup over L2S categorized according
to types of benchmarks.

Victim Replication and ARMCO Performance Speedup over LZS

-Vlchm Reﬁlicatioﬁ -
EWARMCO

Al ] I I\ I II | ||

m
B

=
i

SpeedUp
N
T

I
L L L

=}

TSH

)
w

Radixe
Prod

E
(O]
Mine & NP

Water

<
o
o
(e}

Apachg
Bame

Commerual Scientific — SPLASH/SPLASHZ Micro

Figure 10. Normalized Performance with respect to L2S (16 threads)
for VR and ARMCO.

Our results for VR corroborate qualitatively with those ] for

he workloads common to both studies — Apache, JBB, Barnes,
nd Ocean. Comparing relative magnitudes of improvemesit ov

VR in [4,6,8,20], ARMCO compares favorably, indicating tha

optimizations at the L1 level help reduce overall latenayamergy

consumption.

5.9 Comparing Storage Overhead with Related
Proposals

Section 3.1 describes the extra fields added to ARMCO, which
contributes to some extra storage. For the target systelhe(B3,
we have 10 bits per L1 data cache line, which implies an oaethe
of 1.25 KB per L1 cache. The predictor table uses a 19-bit tag,
4-bit PRy, 1-bit Cop, and a 1-bit Valid field per entry and 1024
entries per L1, which requires 3.13 KB per L1 cache. The total
storage overhead for the target system is thus 70 KB, which is
0.38% of the on-chip cache-hierarchy. Table 9 compares this
overhead qualitatively with other proposals at the L2 level

6. CONCLUSIONS

The memory hierarchy design in a CMP must provide low-
latency data communication for fine-grain sharing in orderuly
In this paper, we presen
design that leverages direct L1-to-L1 access in order tdi-fac
tate low-latency fine-grain communication. Our protocoésis
Adaptive Replication, Migration, and producer-ConsumeatiO
mization(ARMCO) via hardware mechanisms that recognizk an
optimize for migratory, producer-consumer, multipledea and
multiple-writer sharing patterns. Our proposed protosohble
to reduce the average L1 miss penalty, resulting in perfooaa
speedup ranging from 1.04 to 2.26 (1.18 on average), anggner
savings from 6% to 72% (31.2% on average). Both energy (and
power, 20.2% on average) savings and performance speeglap ar
direct result of the reduction in the number of packet-h@3%3%
on average) due to the ability to access nearby cache bamis, a

Figure 3. We chose VR since it uses a similar baseline designsecondarily due to accessing L1 rather than L2 caches.

(directory-based protocol and type of interconnect) td trsed
in our system. ARMCO outperforms VR for all the workloads.

The area cost as a fraction of the total on-chip cache stésage
small — 0.38% in our design. Remote L1 cache location predic-



| Proposals | Overhead Measuring Info | Overhead |
ARMCO 3.13 KB (1K-entry) predictor table per L1-Data cache andit@er L1D cache blockl 70 KB (0.38%)
ASR [4] 1 bit per L1 cache block, 2-bit per L2 cache block,8-bit pemeror 128K-entry | 211 KB (1.14%)

NLHBs, and 16-bit per entry for 8K-entry VTBs

Victim Replication [37]

1-bit per L2 cache block

32KB (0.17%)

CMP-NuRapid [8]

doubling each cogetag capacity

1024 KB (5.54%)

Cooperative Caching [6]

cache tag duplication, singlet/reuse bits in cache, arlihgpbuffers at CCE

866 KB (4.69%)

Migratory Detection [13]

5-bit per L2 cache block

160 KB (0.87%)

Migratory Optimization [33]

5-bit per L2 cache block

160 KB (0.87%)

Producer-Consumer Opti. [7]

40 KB for delegate cache and RAC per 1IMB L2

640 KB (3.46%)

Instr-based Prediction [18]

13-byte per entry in 128-entry predictor table per node

26 KB (0.14%)

Cosmos - Addr-based Prediction [29]variable size for MHT and PHT

Variable (up to 21.9%)

Table 9. Storage overhead for different optimization proposals related to ARMCO for a 16 MB L2 CMPs system.

tion is a key enabler of the pattern-specific optimizationile
our results have been collected on a base protocol thaeistdiy-

based, ARMCO is possibly more effective on a broadcastebase

protocol whether on a point-to-point or shared network¢esithe
local predictor table is likely to be more accurate. Futuceknn-
cludes analysis using different base protocols and thd alavent
of a protocol that combines the benefits of ARMCO for finegrai
sharing and controlled victim replication to address therlay of
mostly private data.
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