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Abstract

While a canonical out-of-order engine can effectively
exploit implicit parallelism in sequential programs, its ef-
fectiveness is often hindered by instruction and data supply
imperfections manifested as branch mispredictions and cache
misses. Accurate and deep look-ahead guided by a slice of
the executed program is a simple yet effective approach to
mitigate the performance impact of branch mispredictions
and cache misses. Unfortunately, program slice-guided look-
ahead is often limited by the speed of the look-ahead code
slice, especially for irregular programs. In this paper, we
attempt to speed up the look-ahead agent using specula-
tive parallelization, which is especially suited for the task.
First, slicing for look-ahead tends to reduce important data
dependences that prohibit successful speculative paralleliza-
tion. Second, the task for look-ahead is not correctness-
critical and thus naturally tolerates dependence violations.
This enables an implementation to forgo violation detection
altogether, simplifying architectural support tremendously. In
a straightforward implementation, incorporating speculative
parallelization to the look-ahead agent further improves sys-
tem performance by up to 1.39x with an average of 1.13x.

Keywords-Decoupled look-ahead; Speculative paralleliza-
tion; Helper-threading; Microarchitecture

I. INTRODUCTION

As CMOS technology edging towards the end of roadmap,
scaling no longer brings significant device performance im-
provements. At the same time, increasing transistor bud-
gets are allocated mostly towards increasing throughput and
integrating functionality. Without these traditional driving
forces, improving single-thread performance for general-
purpose applications is without doubt more challenging. Yet,
better single-thread performance remains a powerful enabler
and is still an important processor design goal.

Out-of-order microarchitecture can effectively exploit in-
herent parallelism in sequential program, but its capability
is often limited by imperfect instruction and data supply:
Branch mispredictions inject useless, wrong-path instructions
into the execution engine; Cache misses can stall the engine
for extended periods of time, reducing effective throughput.
Elaborate branch predictors, deep memory hierarchies, and
sophisticated prefetching engines are routinely adopted in
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high-performance processors. Yet, cache misses and branch
mispredictions are still important performance hurdles. One
general approach to mitigate their impact is to enable deep
look-ahead so as to overlap instruction and data supply
activities with instruction processing and execution.

An important challenge in achieving effective look-ahead
is to be deep and accurate at the same time. Simple, state
machine-controlled mechanisms such as hardware prefetchers
can easily achieve “depth” by prefetching data far into the
future access stream. But these mechanisms fall short in
terms of accuracy when the access pattern defies simple
generalization. On the other hand, a more general form of
look-ahead (which we call decoupled look-ahead) executes
all or part of the program to ensure the control flow and
data access streams accurately reflect those of the program.
However, such a look-ahead agent needs to be fast enough
to provide any substantial performance benefit.

In this paper, we explore speculative parallelization in
such a decoupled look-ahead agent. Intuitively, speculative
parallelization is aptly suited to the task of boosting the speed
of the decoupled look-ahead agent for two reasons. First,
the code slice responsible for look-ahead does not contain
all the data dependences embedded in the original program,
providing more opportunities for speculative parallelization.
Second, the execution of the slice is only for look-ahead pur-
poses and thus the environment is inherently more tolerant to
dependence violations. We find these intuitions to be largely
born out by experiments and speculative parallelization can
achieve significant performance benefits at a much lower cost
than needed in a general purpose environment.

The rest of this paper is organized as follows: Section II
discusses background and related work; Section III details
the architectural design; Sections IV and V present the
experimental setup and discuss experimental analysis of the
design; and Section VI concludes.

II. BACKGROUND AND RELATED WORK

Traditionally uniprocessor microarchitectures have been
using look-ahead for a long time to exploit parallelism
implicit in sequential codes. However, even for high-end
microprocessors, the range of look-ahead is rather limited.
Every in-flight instruction consumes some microarchitectural
resources and practical designs can only buffer on the orders
of 100 instructions. This short “leash” often stalls look-
ahead unnecessarily, due to reasons unrelated to look-ahead
itself. Perhaps the most apparent case is when a long-latency
instruction (e.g., a load that misses all on-chip caches) can not
retire, blocking all subsequent instructions from retiring and
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releasing their resources. Eventually, the back pressure stalls
the look-ahead. This case alone has elicited many different
mitigation techniques. For instance, instructions dependent on
a long-latency instruction can be relegated to some secondary
buffer that are less resource-intensive to allow continued
progress in the main pipeline [1], [2]. In another approach,
the processor state can be check-pointed and the otherwise
stalling cycles can be used to execute in a speculative mode
that warms up the caches [1], [3]–[5]. One can also predict
the value of the load and continue execution speculatively
[6], [7]. Even if the prediction is wrong, the speculative
execution achieves some degree of cache warming.

If there are additional cores or hardware thread contexts,
the look-ahead effort can be carried out in parallel with
the program execution, rather than being triggered when the
processor is stalled. Look-ahead can be targeted to specific
instructions, such as so-called delinquent loads [8], or can
become a continuous process that intends to mitigate all
misses and mispredictions. In the former case, the actions are
guided by backward slices leading to the target instructions
and the backward slices are spawned as individual short
threads, often called helper threads or micro threads [8]–[15].
In the latter case, a dedicated thread runs ahead of the main
thread. This run-ahead thread can be based on the original
program [16]–[20] or based on a reduced version that only
serves to prefetch and to help branch predictions [21].

While the two approaches are similar in principle, there
are a number of practical advantages of using a single,
continuous thread of instructions for look-ahead. First, as
shown in Figure 1, the look-ahead thread is an independent
thread. Its execution and control is largely decoupled from
the main thread. (For notational convenience, we refer to
this type of design as decoupled look-ahead.) In contrast,
embodying the look-ahead activities into a large number of
short helper threads (also known as micro threads) inevitably
requires micro-management from the main thread and entails
extra implementation complexities. For instance, using extra
instructions to spawn helper thread requires modification to
program binary and adds unnecessary overhead when the run-
time system decides not to perform look-ahead, say when the
system is in multithreaded throughput mode.
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thread
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2 Prefetching hints

main

thread

Executes

1 Branch predictions

L1

Register state synchronization

L1

Look−ahead
Core

Main
CoreBranch Queue

Figure 1. Example of a generic decoupled look-ahead archi-
tecture.

Second, prefetching too early can be counter-productive
and should be avoided. This becomes an issue when helper
threads can also spawn other helper threads to lower the
overhead on the main thread [8]. In decoupled look-ahead,

since the look-ahead thread pipes its branch outcome through
a FIFO to serve as hints to the main thread, it naturally serves
as a throttling mechanism, stalling the look-ahead thread
before it runs too far ahead. Additionally, addresses can go
through a delayed-release FIFO buffer for better just-in-time
prefetches.

Finally, as program gets more complex and uses more
ready-made code modules, “problematic” instructions will be
more spread out, calling for more helper threads. The indi-
vidual helper threads quickly add up, making the execution
overhead comparable to a whole-program based decoupled
look-ahead thread. As an illustration, Table I summarizes the
statistics about those instructions which are most accountable
for last-level cache misses and branch mispredictions. For
instance, the top static instructions that generated 90% of
the misses and mispredictions in a generic baseline processor
accounted for 8.7% (3.6%+5.1%) of total dynamic instruction
count. Assuming on average each such instruction instance
is being targeted by a very brief 10-instruction long helper
thread, the total dynamic instruction count for all the helper
threads becomes comparable to the program size. If we target
more problematic instance (e.g., 95%), the cost gets even
higher.

Memory references Branches
90% 95% 90% 95%

DI SI DI SI DI SI DI SI
bzip2 1.86 17 3.15 27 3.9 52 4.49 64
crafty 0.73 23 1.04 38 5.33 235 6.14 309
eon 2.28 50 3.34 159 2.02 19 2.31 23
gap 1.35 15 1.44 23 2.02 77 2.64 130
gcc 8.49 153 8.84 320 8.08 1103 8.41 1700
gzip 0.1 6 0.1 6 8.41 40 8.66 52
mcf 13.1 13 14.7 16 9.99 14 10.2 18
parser 1.31 41 1.59 57 6.81 130 7.3 183
pbmk 1.87 35 2.11 52 2.88 92 3.21 127
twolf 2.69 23 3.28 28 5.75 41 6.48 56
vortex 1.96 42 2 67 1.24 114 1.97 167
vpr 7.47 16 11.6 22 4.8 6 4.88 7
Avg 3.60% 36 4.44% 68 5.10% 160 5.56% 236

Table I. Summary of top instructions accountable for 90%
and 95% of all last-level cache misses and branch mispre-
dictions. Stats collected on entire run of ref input. DI is the
total dynamic instances (measured as a percentage of total
program dynamic instruction count). SI is total number of
static instructions.

The common purpose of look-ahead is to mitigate mispre-
diction and cache miss penalties by essentially overlapping
these penalties (or “bubbles”) with normal execution. In
contrast, speculative parallelization (or thread-level specu-
lation) intends to overlap normal execution (with embed-
ded bubbles) of different code segments [14], [22]–[27].
If the early execution of a future code segment violates
certain dependences, the correctness of the execution is
threatened. When a dependence violation happens, usually
the speculative execution is squashed. A consequence of the
correctness issue is that the architecture needs to carefully
track memory accesses in order to detect (potential) depen-
dence violations. In the case of look-ahead execution, by
executing the backward slices early, some dependences will
also be violated, but the consequence is less severe (e.g., less
effective latency hiding). This makes tracking of dependence
violations potentially unnecessary (and indeed undesirable as
we show later). Because of the non-critical nature of look-
ahead thread, exploiting speculative parallelization in the
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look-ahead context is less demanding. In some applications,
notably integer codes represented by SPEC INT benchmarks,
the performance of a decoupled look-ahead system is often
limited by the speed of the look-ahead thread, making its
speculative parallelization potentially profitable.

Note that we proposed to exploit speculative parallelization
only in the look-ahead thread. This is fundamentally different
from performing look-ahead/run-ahead in a conventional
speculative parallelization system [28]. The latter system
requires full-blown speculation support that has to guarantee
correctness. Comparing the cost-effectiveness of the two
different approaches would be an interesting future work.

III. ARCHITECTURAL DESIGN

A. Baseline Decoupled Look-ahead Architecture

Before we discuss the design of software and hardware
support to enable speculative parallelization in the look-
ahead system, we first describe a baseline decoupled look-
ahead system. In this system, a statically generated look-
ahead thread executes on a separate core and provides branch
prediction and prefetching assistance to the main thread.

1) Basic hardware support: Like many decoupled look-
ahead systems [18], [21], [29], our baseline hardware requires
modest support on top of a generic multi-core system.
Specifically, a FIFO queue is used to pipe the outcome of
committed branch instructions to the main thread to be used
as the branch predictions. We also pass branch target address
for those branches where the target was mispredicted in
the look-ahead thread. The FIFO queue contains two bits
per branch, one indicates the direction outcome, the other
indicates whether a target is associated with this branch. If
so, the main thread dequeues an entry from another shallower
queue that contains the target address.

The memory hierarchy includes support to confine the state
of the look-ahead thread to the L1 cache. Specifically, a dirty
line evicted in the look-ahead thread is simply discarded. A
cache miss will only return the up-to-date non-speculative
version from the main thread. Simple architectural support
to allow faster execution of the look-ahead thread is used to
reduce stalling due to L2 misses. In some designs, this is the
major, if not the only, mechanism to propel the look-ahead
thread to run ahead of the main thread [17], [18]. We use the
same simple heuristics from [21]: if the look-ahead does not
have a sufficient lead over the main thread, we feed 0 to the
load that misses in the L2 cache. This is easier to implement
than to tag and propagate poison. Finally, prefetching all the
way to the L1 is understandably better than prefetching only
to L2. We find that a FIFO queue to delay-release the final
leg of prefetch (from L2 to L1) is a worthwhile investment
as it can significant reduce pollution.

2) Look-ahead thread generation: For the software, we
use an approach similar to the one proposed by Garg and
Huang [21] where a binary analyzer creates a skeleton
out of the original program binary just for look-ahead.
Specifically, biased branches (with over 99.9% bias towards
one direction) are converted into unconditional branches.
All branches and their backward slices are included on the
skeleton. Memory dependences are profiled to exclude long-
distance dependences: if a load depends on a store that
consistently (more than 99.9%) has long def-to-use distance

(> 5000 instructions) in the profiling run, backward slicing
will terminate at the load: these stores are too far away
from the consumer load that even if they are included in
the look-ahead thread, the result would likely be evicted
from the L1 cache before the load executes. Finally, memory
instructions that often miss the last-level cache that are not
already included in the skeleton are converted to prefetch
instructions and added to the skeleton. All other instructions
on the original program binary become NOPs.

3) Code address space and runtime recoveries: The re-
sulting skeleton code body has the same basic block struc-
ture and branch offsets. Therefore, the two code segments
(original code and the skeleton) can be laid out in two
separate code address spaces or in the same code address
space (which will leave a fixed offset between any instruction
in the skeleton and its original copy in the original code). In
either case, a simple support in the instruction TLB can allow
two threads to have the exact same virtual addresses and yet
fetch instructions from different places in the main memory.
As such, when the main thread is being context switched-
in, the same initialization can be applied to its look-ahead
thread. Similarly, when the branch outcomes from the look-
ahead threads deviate from that of the main thread, it can
be “rebooted” with a checkpoint register state from the main
thread. We call such an event a recovery.

4) Motivation for look-ahead thread parallelization: With
two threads running at the same time, the performance
is dictated by whichever runs slower. If the look-ahead
thread is doing a good enough job, the speed of the duo
will be determined by how much execution parallelism can
be extracted by the core. The performance potential can
be approximated by idealizing cache hierarchy and branch
prediction. Note that idealization tends to produce a loose
upper-bound. On the other hand, when the look-ahead thread
is the bottleneck, the main thread can only be accelerated up
to the speed of the look-ahead thread running alone, which
is another performance upper-bound. While the details of the
experimental setup will be discussed later, Figure 2 shows
the performance of a baseline decoupled look-ahead system
described above measured against the two upper-bounds just
discussed. As a reference point, the performance of running
the original binary on a single core in the decoupled look-
ahead system is also shown.

The applications can be roughly grouped into three cate-
gories. First, for 9 applications (bzip, gap, gcc, apsi, facerec,
mesa, sixtrack, swim, and wupwise), the baseline look-ahead
is quite effective, allowing the main thread to sustain IPC
close to that in the ideal environment (within 10%). Further
improving the speed probably requires at least making the
core wider.

For a second group of 2 applications (applu, and mgrid),
the absolute performance is quite high (with IPCs around 3)
for the baseline decoupled look-ahead system but there is still
some performance headroom against the ideal environment.
However, the speed of the look-ahead thread does not appear
to be the problem as it is running fast enough on its own.
There are a range of imperfections in the entire system
that are the source of the performance gap. For example,
the quality of information may not be high enough to have
complete coverage of the misses. The look-ahead thread’s L1
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(b) Floating-point applications.

Figure 2. Comparison of performance of a baseline core, a
decoupled look-ahead execution, and the two upper-bounds:
a baseline with idealized branch prediction and memory
hierarchy, and look-ahead thread running alone. Since the
look-ahead thread has many NOPs that are removed at the
pre-decode stage, their effective IPC can be higher than the
pipeline width. Also note that because the baseline decoupled
look-ahead execution can skip through some L2 misses at
runtime, the speed of running look-ahead thread alone (but
without skipping any L2 misses) is not a strict upper bound,
but an approximation.

cache may hold stale data causing the thread to veer off the
actual control flow causing recoveries.

For the remaining 14 applications, the application’s speed
is mainly limited by the speed of the look-ahead thread,
indicating potential performance gain when the look-ahead
thread is accelerated.

B. New Opportunities for Speculative Parallelization

There are two unique opportunities in the look-ahead
environment to apply speculative parallelization. First, the
construction of the skeleton removes some instructions from
the original binary and thereby removes some dependences.
Our manual inspection of a few benchmarks finds a repeat-
ing pattern of complex, loop-carried dependences naturally
removed as the skeleton is being constructed, giving rise to
more loop-level parallelism. Another pattern is the increase
in dependence distance as a result of removing instructions in
short-distance dependence chains. As shown in the example
in Figure 3, in the original code, almost every basic block
depends on its immediate predecessor basic block. When
constructing the skeleton, the removal of some instructions
from the basic blocks 5 and 6 breaks the chain of de-
pendences, leaving only a long-distance dependence which
provides exploitable parallelism.

A second opportunity is the lowered requirement for spec-
ulative parallelization. When two sequential code sections
A and B are executed in parallel speculatively, register and
memory dependences that flow from A to B are preserved
by a combination of explicit synchronization and squashing
of instructions detected to have violated the dependence.
Because register dependences are explicit in the instruction
stream, explicit synchronization can be used to enforce them.

1

13

18

1

2

1

0x120011490       ldt $f0, 0(a0)

1.

1

0x1200119a0       ldt $f12, 32(sp)

0x1200119ac       lda t8, 168(sp)

0x1200114bc       stt $f0, 0(a2)

0x12000da84       lda a5, 744(sp)

3. 0x12000daec       lda a5, 4(a5)

2. 0x12000dac0       ldl t7, 0(a5)

4. 0x120011984       ldq a0, 80(sp)

5.

6.

7. 0x1200119f8       bis 0, t8, t11

8. 0x120011b04       lda a0, 8(a0)

1

2

1

Figure 3. Example of the change of dependence charac-
teristics due to skeleton construction. In this example from
application equake, each box represents a basic block. For
clarity, only a subset of instructions are shown. Instructions
not on the skeleton are shown in gray color. The arcs show
the dependences and their distance measured in numbers of
basic blocks.

Nevertheless, the extra synchronization adds to the overhead
of execution and demands special hardware support. For
memory dependences, without complete static knowledge of
the exact addresses, compiler can not identify all possible
dependences and run-time tracking becomes necessary.

In contrast, when we try to exploit speculative paral-
lelization in the inherently non-critical look-ahead thread,
correctness is no longer a must, but rather a quality of service
issue: unenforced dependences only presumably reduce the
effectiveness of look-ahead and affect performance, and may
not be worth fixing. Indeed, fixing a dependence violation
using rollback slows down the look-ahead and thus may
cause more detriment than the dependence violation. Thus, it
becomes a matter of choice how much hardware and runtime
support we need to detect violations and repair them. In
the extreme, we can forgo all conventional hardware support
for speculative parallelization and only rely on probabilistic
analysis of the dependence to minimize violations.

Finally, in hindsight, we realized that speculative paral-
lelization of the look-ahead thread also has a (small) side
effect of reducing the cost of recoveries. A recovery hap-
pens when the branch outcome from the look-ahead thread
deviates from that of the main thread. For simplicity, we
reboot the look-ahead thread rather than try to repair the state.
Because the look-ahead threads can be running far ahead
of the main thread, such a recovery can wipe out the lead
the look-ahead thread accumulated over a period of time.
Spawning a secondary thread provides a natural mechanism
to preserve part of the look-ahead that has already been done
as we can reboot one thread while keep the other running.
We will discuss this and present quantitative results in more
detail later.
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C. Software Support

1) Dependence analysis: To detect coarse-grain paral-
lelism suitable for thread-level exploitation, we use a profile
guided analysis tool. The look-ahead thread binary is first
profiled to identify dependences and their distance. To sim-
plify the subsequent analysis, we collapse the basic block into
a single node, and represent the entire execution trace as a
linear sequence of these nodes. Dependences are therefore
between basic blocks and the distance can be measured by
the distance of nodes in this linear sequence as shown in
Figure 4-(a).

Given these nodes and arcs representing dependences
between them, we can make a cut before each node and find
the minimum dependence distance among all the arcs that
pass through the cut. This minimum dependence distance,
or Dmin, represents an approximation of parallelization
opportunity as can be explained by the simple example in
Figure 4. Suppose, for the time being, that the execution of a
basic block takes one unit of time and there is no overlapping
of basic block execution. Node d in Figure 4, which has a
Dmin of 3, can therefore be scheduled to execute 2 units
of time (Dmin − 1) earlier than its current position in the
trace – in parallel with node b. All subsequent nodes can be
scheduled 2 units of time earlier as well, without reverting
the direction of any arcs.

Of course, the distance in basic blocks is only a very crude
estimate of the actual time lapse between the execution of
the producer and consumer instructions.1 In reality, the size
and execution speed of different basic blocks is different
and their executions overlap. Furthermore, depending on
the architectural detail, executing the producer instructions
earlier than the consumer does not necessarily guarantee the
result will be forwarded properly. Therefore, for nodes with
small Dmin there is little chance to exploit parallelism. We
set a threshold on Dmin (in Figure 4) to find all candidate
locations for a spawned thread to start its execution. Dmin

threshold in our study is 15 basic blocks which is approx.
120 instructions.

c

d

e

f

b

Dmin=1

Dmin=3

Dmin=1

Dmin=1

c

b

a

1

1

1

1

3

4

d

e

f

1

1 1

1

a

(a) (b)

Dmin=1

Figure 4. Example of basic-block level parallelization.

1A somewhat more appropriate notion of dependence distance that
we use is the actual number of instructions in between the source and
destination basic blocks.

2) Selecting spawn and target points: With the candidates
selected from profile-based analysis, we need to find static
code locations to spawn off parallel threads (e.g., node a in
Figure 4-b), and locations where the new threads can start
their execution (e.g., node d in Figure 4-b). We call the former
spawn points, the latter target points. We first select target
points. We choose those static basic blocks whose dynamic
instances consistently show a Dmin larger than the threshold
value.

Next, we search for the corresponding spawn points. The
choices are numerous. In the example shown in Figure 4, if
we ignore the threshold of Dmin, the spawn point of node d
can be either a or b. Given the collection of many different in-
stances of a static target point, the possibilities are even more
numerous. The selection needs to balance cost and benefit. In
general, the more often a spawn is successful and the longer
the distance between the spawn and target points the more
potential benefit there is. On the other hand, every spawn
point will have some unsuccessful spawns, incurring costs.
We use a cost benefit ratio (Σdistances/#false spawns)
to sort and select the spawn points. Note that a target point
can have more than one spawn points.

3) Loop-level parallelism: Without special processing,
a typical loop using index variable can project a false
loop-carried dependence on the index variable and masks
potential parallelism from our profiling mechanism. After
proper adjustments, parallel loops will present a special case
for our selection mechanism. The appropriate spawn and
target points would be the same static node. The number
of iterations to jump ahead is selected to make the number
of instructions close to a target number (1000 in this paper).

4) Available parallelism: A successful speculative paral-
lelization system maximizes the opportunities to execute code
in parallel (even when there are apparent dependences) and
yet does not create too many squashes at runtime. In that
regard, our methodology has a long way to go. Our goal in
this paper is to show that there are significant opportunities
for speculative parallelization in the special environment of
look-ahead, even without a sophisticated analyzer. Figure 5
shows an approximate measure of available parallelism rec-
ognized by our analysis mechanism. The measure is simply
that of the “height” of a basic block schedule as shown in
Figure 4. For instance, the schedule in Figure 4-a has a height
of 6 and the schedule in Figure 4-b has a height of 4, giving a
parallelism of 1.5 (6/4). (Note that in reality, node d’s Dmin

is too small to be hoisted up for parallel execution.) For
simplicity, at most two nodes can be in the same time slot,
giving a maximum parallelism of 2. For comparison, we also
show the result of using the same mechanism to analyze the
full program trace.

The result shows that there is a significant amount of
parallelism, even in integer code. Also, in general, there is
more parallelism in the look-ahead thread than in the main
program thread.

Figure 5-(b) shows the amount of parallelism when we
impose further constraints, namely finding stable spawn-
target point pairs to minimize spurious spawns. The result
suggests that some parallelism opportunities are harder to
extract than others because there are not always spawn points
that consistently lead to the execution of the target point. We
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Figure 5. An approximate measure of available parallelism
in the trace of the look-ahead thread and the main program
thread (a). A more constrained measure of parallelism that
is likely to be exploited (b).

leave it as future work to explore cost-effective solutions to
this problem.

D. Hardware Support

Typical speculative parallelization requires a whole host
of architectural support such as data versioning and cross-
task dependence violation detection [30]. Since look-ahead
does not require correctness guarantee, we are interested in
exploring a design that minimizes intrusion.

To enable the speculative parallelization discussed so far,
there are three essential elements: we need to (1) spawn a
thread, (2) communicate values to the new thread, and (3)
properly merge the threads.

1) Spawning a new thread: The support we need is not
very different from existing implementation to spawn a new
thread in a multi-threaded processor. For example, the main
thread will set up the context of the newly spawned thread
(Figure 6). A key difference is that the spawned thread is
executing a future code segment in the same logical thread.
If everything is successful, the primary look-ahead thread
is expected to reach where the spawned thread has already
started and “merge” with the spawned thread (Figure 6).
Therefore, the starting PC of the newly spawned thread needs
to be recorded. When the primary thread reaches that same
PC – more specifically, when the instruction under that PC
is about to retire – the primary thread simply terminates,
without retiring that instruction, since it has been executed
by the spawned thread.

2) Support for register access: When a new thread is
spawned, it inherits the architectural state including memory
content and register state. While this can be implemented in a
variety of environments, it is most straightforward to support
in a multithreaded processor. We focus on this environment.

When the spawning instruction is dispatched, the register
renaming map is duplicated for the spawned thread. With
this action, the spawned thread is able to access register
results defined by instructions in the primary thread prior
to the spawn point. Note that if an instruction (with a
destination register of say, R2) prior to the spawn point
has yet to execute, the issue logic naturally guarantees that
any subsequent instruction depending on R2 will receive
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Figure 6. Illustration of runtime thread spawn and marge.

the proper value regardless of which thread the instruction
belongs to (e.g., register r6 in Figure 7).

When a rename table entry is duplicated, a physical register
is mapped in two entries and both entries can result in the
release of the register in the future. A single bit per rename
table entry is therefore added to track “ownership” (‘O’ bit
in Figure 7). When the spawned thread copies the rename
table, the ownership bits are set to 0. A subsequent instruction
overwriting the entry will not release the old register, but will
set the ownership bit to 1 (e.g., in Figure 7, ‘O’ bit of register
r6 in spawned thread’s map table is set to 1 after renaming).

6

7

8

p7

p8

1

1

1

p6

0
‘O’

6

7

8

p7

p8

0

0

0

p6

0
‘O’

6

7

8

p9

p8

1

0

0

p10

0
‘O’

6

7

8

p9

p8

1

1

1

p6

0
‘O’

subl r6, 0x4, r6

addl r6, 0x2, r7

Primary thread Spawned thread

mapping tableRegister

Next dispatch instruction

Spawning

Figure 7. Register renaming support for the spawned thread.
Entry ‘O’ in map tables refers to “ownership” bit.

Since the bit indicates whether the spawned thread has
defined its own version of a particular architectural register,
a 0 means the corresponding register should carry the last
update to that architectural register made by the primary
thread. This is approximated by updating the rename mapping
of the architectural register as the primary thread updates its
corresponding entry. This is illustrated in Figure 7, where
update of r7 in the primary thread changes both threads’ r7
mapping to p9. In other words, after the thread is spawned,
it may still receive register inputs from the primary thread.
A slightly simpler alternative is not to support such inputs.
We find that to be also working fine in the vast majority
of cases with negligible performance impact, but it does
result in a significant (16%) performance degradation in one
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application.
Finally, when the primary thread terminates (at merge

point), any physical register that is not mapped in the
secondary thread’s rename table can be recycled. This can
be easily found out from the ownership bit vector: any bit of
1 indicates the threads both have their thread-local mapping
and thus the register is private to the primary thread and can
be recycled.

3) Support for memory access: Getting memory content
from the primary thread is also simplified in the multi-
threaded processor environment since the threads share the
same L1 cache. An extreme option is to not differentiate
between the primary look-ahead thread and the spawned
thread in cache accesses. This option incurs the danger that
write operations to the same memory location from different
threads will not be differentiated and subsequent reads will
get wrong values. However, even this most basic support is
a possible option, though the performance benefit of parallel
look-ahead is diminished as we will show later.

A more complete versioning support involves tagging each
cache line with thread ID and returning the data with the most
recent version for any request. For conventional speculative
parallelization, this versioning support is usually done at a
fine access granularity to reduce false dependence violation
detections [31]. In our case, we use a simplified, coarse-grain
versioning support without violation detection, which is a
simple extension of the cache design in a basic multithreaded
processor. For notational convenience we call this partial
versioning.

The main difference from a full-blown versioning support
is two-fold. First, version is only attached to the cache line as
in the baseline cache in a multi-threaded processor. No per-
word tracking is done. Similar to versioning cache, a read
from thread i returns the most recent version no later than
i. A write from thread i creates a version i from the most
recent version if version i does not already exist. The old
version is tagged (by setting a bit) as being replaced by a
new version. This bit is later used to gang-invalidate replaced
lines. Second, no violation detection is done. When a write
happens, it does not search for premature reads from a future
thread. The cache therefore does not track whether any words
in a line have been read.

E. Runtime Spawning Management

Based on the result of our analysis and to minimize unnec-
essary complexities, we opt to limit the number of threads
spawned at any time to only one. This simplifies hardware
control such as when to terminate a running thread and
partial versioning support. It also simplifies the requirement
on dependence analysis.

At run-time, two thread contexts are reserved (in a mul-
tithreaded core) for look-ahead. There is always a primary
thread. A spawn instruction is handled at dispatch time and
will freeze the pipeline front end until the rename table is
duplicated and a new context is set up. If another thread
is already occupying the context, the spawn instruction is
discarded. Since the spawn happens at dispatch, it is a
speculative action and is subject to a branch misprediction
squash. Therefore we do not start the execution immediately,
but wait for a short period of time. This waiting also makes it

less likely that a cross-thread read-after-write dependence is
violated. When the spawn instruction is indeed squashed due
to branch misprediction, we terminate the spawned thread.

When the primary thread reaches the point where the
spawned thread started execution, the two successfully merge.
The primary thread is terminated and the context is available
for another spawn. The spawned thread essentially carries
on as the primary look-ahead thread. At this point, we gang
invalidate replaced cache lines from the old primary thread
and consolidate the remaining lines into the new thread ID.

When the primary thread and the spawned thread deviate
from each other, they may not merge for a long time.
When this happens, keeping the spawned thread will prevent
new threads from being spawned and limit performance. So
run-away spawns are terminated after a fixed number of
instructions suggested by the software.

F. Communicating Branch Predictions to Primary Thread

Branch predictions produced by look-ahead thread(s) are
deposited in an ordered queue called branch queue. There are
many options to enforce semantic sequential ordering among
branch predictions despite that they might be produced in
different order. One of the simpler options we explored in
this paper is to segment the branch queue in a few banks of
equal size as shown in Figure 8.

Bank 2Bank 1Bank 0

tailBank 0

Global head
tailBank 1

Figure 8. Example of a banked branch queue. Bank 0
and bank 1 are written by primary (older) look-ahead and
spawned (younger) look-ahead threads respectively. Primary
thread uses global head pointer, currently pointing to an entry
in bank 0, to read branch predictions.

The bank management is straightforward. When a thread is
spawned a new bank is assigned in sequential order. A bank
is also de-allocated sequentially as soon as the primary thread
consumes all branch predictions form that bank. If a thread
exhausts the entries in its current bank, the next sequential
bank is used. It is possible, but very rare, that the next bank
has already been allocated to a spawned thread. In such a
case, to maintain the simplicity of sequential allocation, we
kill the younger thread and reclaim bank for re-assignment.

IV. EXPERIMENTAL SETUP

We perform our experiments using an extensively modified
version of SimpleScalar [32]. Support was added for Simul-
taneous Multi-Threading (SMT), decoupled look-ahead, and
speculative parallelization. Because of the approximate nature
of the architecture design for look-ahead, the result of the
semantic execution is dependent on the microarchitectural
state. For example, a load from the look-ahead thread does
not always return the latest value stored by that thread
because that cache line may have been evicted. Therefore,
our modified simulator uses true execution-driven simulation
where values in the caches and other structures are faithfully
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modeled. The values are carried along with instructions in the
pipeline and their semantic execution are emulated on the fly
to correctly model the real execution flow of the look-ahead
thread.

1) Microarchitecture and configuration: The simulator
is also enhanced to faithfully model issue queues, register
renaming, ROB, and LSQ. Features like load-hit speculation
(and scheduling replay), load-store replays, keeping a store
miss in the SQ while retiring it from ROB are all faithfully
modeled [33]. We also changed the handling of prefetch
instructions (load to ZERO register – R31). By default, the
original simulator not only unnecessarily allocates an entry
in the LQ, but fails to retire the instruction immediately upon
execution as indicated in the alpha processor manual [33]. In
our simulator, a prefetch neither stalls nor takes resource in
the LQ. Our baseline core is a generic out-of-order microar-
chitecture loosely modeled after POWER5 [34]. Details of
the configurations are shown in Table II.

Baseline core
Fetch/Decode/Commit 8 / 4 / 6
ROB 128
Functional units INT 2+1 mul +1 div, FP 2+1 mul +1 div
Issue Q / Reg. (int,fp) (32, 32) / (120, 120)
LSQ(LQ,SQ) 64 (32,32) 2 search ports
Branch predictor Bimodal + Gshare
- Gshare 8K entries, 13 bit history
- Bimodal/Meta/BTB 4K/8K/4K (4-way) entries
Br. mispred. penalty at least 7 cycles
L1 data cache 32KB, 4-way, 64B line, 2 cycles, 2 ports
L1 I cache (not shared) 64KB, 1-way, 128B, 2 cyc
L2 cache (uni. shared) 1MB, 8-way, 128B, 15 cyc
Memory access latency 400 cycles

Table II. Core configuration.

An advanced hardware-based global stream prefetcher
based on [35], [36] is also implemented between the L2 cache
and the main memory: On an L2 miss, the stream prefetcher
detects an arbitrarily sized stride by looking at the history
of past 16 L2 misses. If the stride is detected twice in the
history buffer, an entry is allocated on the stream table and
prefetch is generated for the next 16 addresses. Stream table
can simultaneously track 8 different streams. For a particular
stream, it issues a next prefetch only when it detects the use
of previously prefetched cache line by the processor.

2) Applications and inputs: We use SPEC CPU2000
benchmarks compiled for Alpha. We use the train input
for profiling, and run the applications to completion. For
evaluation, we use ref input. We simulate 100 million instruc-
tions after skipping over the initialization portion as indicated
in [37].

V. EXPERIMENTAL ANALYSIS

We first look at the end result of using our speculative
parallelization mechanism and then show some additional
experiments that shed light on how the system works and
point to future work to improve the design’s efficacy.

A. Performance analysis

Recall that a baseline look-ahead system can already
help many applications execute at a high throughput that
is close to saturating the baseline out-of-order engine. For
these applications, the bottleneck is not the look-ahead mech-
anism. Designing efficient wide-issue execution engine or
look-ahead to assist speculative parallelization of the main

thread are directions to further improve their performance.
For the remaining applications, Figure 9 shows the relative
performance of a baseline, single-threaded look-ahead system
and our speculative, dual-threaded look-ahead system. All
results are normalized to that of the single-core baseline
system.

crafty eon gzip mcf pbmk twolf vortex vpr ammp art eqk fma3dgalgel lucasgmean
1

2

3

4

5 Baseline look−ahead
Speculatively parallel look−ahead

Figure 9. Speedup of baseline look-ahead and speculatively
parallel look-ahead over single-core baseline architecture.
Because the uneven speedups, the vertical axis is log-scale.

Our speculative parallelization strategy provides up to
1.39x speedup over baseline look-ahead. On average, mea-
sured against the baseline look-ahead system, the contribution
of speculative parallelization is a speedup of 1.13. As a result,
the speedup of look-ahead over a single core improves from
1.61 for single look-ahead thread to 1.81 for two look-ahead
threads. If we only look at the integer benchmarks in this set
of applications, traditionally considered harder to parallelize,
the speedup over baseline look-ahead system is 1.11.

It is worth noting that the quantitative results here represent
what our current system allows us to achieve. It does not
represent what could be achieved. With more refinement
and trial-and-error, we believe more opportunities can be
explored. Even with these current results, it is clear that
speeding up sequential code sections via decoupled look-
ahead is a viable approach for many applications.

Finally, for those applications where the main thread has
(nearly) saturated the pipeline, this mechanism does not slow
down the program execution. The detailed IPC results for all
applications are shown in Table III.

B. Comparison with conventional speculative parallelization

As discussed earlier, the look-ahead environment offers
a unique opportunity to apply speculative parallelization
technology partly because the code to drive look-ahead
activities removes certain instructions and therefore provide
more potential for parallelism. However, an improvement in
the speed of the look-ahead only indirectly translates into end
performance. Here, we perform some experiments to inspect
the impact.

We use the same methodology on the original program
binary and support the speculative threads to execute on a
multi-core system. Again, our methodology needs further
improvement to fully exploit available parallelism. Thus the
absolute performance results are almost certainly underesti-
mating the real potential. However, the relative comparison
can still serve to contrast the difference in the two setups.

Figure 10 shows the results. For a more relevant compar-
ison, conventional speculative parallelization is executed on
two cores to prevent execution resource from becoming the
bottleneck. It is worth nothing, the base of normalization is
not the same. For the conventional system, the speedup is
over a single core running the original program (A). For our
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bzip2 crafty eon gap gcc gzip mcf pbmk twolf vortex vpr ammp applu apsi art equake fac fma3d galgel lucas mesa mgrid six swim wup
1 1.32 2.30 2.63 1.92 2.20 2.14 0.51 0.89 0.57 1.93 1.31 0.79 1.81 1.75 0.27 1.09 3.03 2.72 2.35 0.58 2.99 3.03 2.84 1.26 3.77
2 1.75 2.47 2.90 3.35 4.60 2.34 0.83 1.14 0.74 2.24 1.77 1.92 2.76 2.34 1.13 2.73 3.65 3.12 3.79 1.75 3.36 3.83 3.12 3.78 4.11
3 1.75 2.48 2.91 3.36 4.81 2.36 0.84 1.35 1.01 2.27 2.43 1.93 2.75 2.49 1.57 2.85 3.68 3.12 4.17 2.44 3.37 3.83 3.12 3.78 4.11

Table III. IPC of baseline (1), baseline look-ahead (2), and speculatively parallel look-ahead (3). Note that all prefetch instructions
in the main thread are superfluous in our system and are assumed to be eliminated in predecode stage and do not consume
resources.

crafty eon gzip mcf pbmk twolf vortex vpr ammp art eqk fma3dgalgellucasgmean

1

1.2

1.4

1.6
Speculatively parallel look−ahead

Speculatively parallel main

1.65

Figure 10. Comparison of the effect of our speculative
parallelization mechanism on the look-ahead thread and on
the main thread.

system, the speedup is over a baseline look-ahead system
running a sequential look-ahead thread (B). B has much
higher absolute performance than A.

As we showed earlier using a simple model of potential
parallelism (Figure 5), there is more parallelism in the look-
ahead binary (the skeleton) than in the full program binary.
In Figure 10, we see that in many cases, this translates into
more performance gain in the end for the look-ahead system.
However, there are phases of execution where the look-ahead
speed is not the bottleneck. A faster look-ahead thread only
leads to filling the queues faster. Once these queues that
pass information to the main thread fill up, look-ahead stalls.
Therefore, in some cases, the advantage in more potential
parallelism does not translate into more performance gain.

C. System Diagnosis

1) Recoveries: When the look-ahead thread’s control flow
deviates from that of the main thread, the difference in branch
outcome eventually causes a recovery. The ability of the
look-ahead to run far ahead of the main thread is crucial
to performing useful help. This ability is a direct result of
approximations such as ignoring uncommon cases, which
come at the price of recoveries. Speculative parallelization
in the look-ahead environment also introduces its own sets
of approximations. Otherwise, the opportunities will be in-
sufficient and the implementation barrier will be too high.
Certainly, too much corner-cutting can be counter-productive.
Table IV summarizes the maximum, average, and minimum
recovery rate for integer and floating-point applications.

INT FP
Max Avg. Min Max Avg. Min

Baseline look-ahead 3.21 1.24 0.05 2.87 0.34 0.00
Spec. parallel look-ahead 6.55 1.21 0.05 2.83 0.34 0.00

Table IV. Recovery rate for baseline and speculatively par-
allel look-ahead systems. The rates are measure by number
of recoveries per 10,000 committed instructions in the main
thread.

For most applications, the recovery rate stays essentially
the same. For some applications the rate actually reduces
(e.g., perlbmk, from 3.21 to 0.43). Recall that skipping an L2
miss (by returning a 0 to the load instruction) is an effective
approach to help the look-ahead thread stay ahead of the main
thread. Frequent applications of this technique inevitably

increase recoveries. In our system, this technique is only
applied when the trailing main thread gets too close. With
speculative parallelization, the need to use this technique
decreases, as does the number of resulting recoveries.

2) Partial recoveries: As discussed earlier, when a recov-
ery happens, we reboot only the primary look-ahead thread.
If there is another look-ahead thread spawned, we do not
terminate the spawned thread, even though the recovery
indicates that some state in the look-ahead threads is cor-
rupted. We have this option because the look-ahead activities
are not correctness critical. This essentially allows a partial
recovery (without any extra hardware support) and maintains
some lead of look-ahead. Nevertheless, it is possible that
the spawned thread is corrupt and this policy only delays
the inevitable. Table V shows that this is not the case. The
first row of numbers indicate how often a recovery happens
when both look-ahead threads are running. In some of these
cases, the rebooting of the primary thread may send it down a
different control flow path so it can no longer merge with the
spawned thread. In the rest of the cases (the majority in our
experiments as indicated by the second row of the table), the
merge happens successfully despite the reboot of the primary
thread.

Still, the corruption exists and can cause latent errors that
triggers a recovery soon down the road. The next two rows
show how often the spawned thread is still live (has not
encountered its recovery) 200 and 1000 instructions after
the merge point. In most applications, a large majority of
instances of the spawned thread are alive and well past 1000
instructions, indicating that indeed they deserved to be kept
alive at the recovery point. Also, the difference between the
number of instances alive at 200 and 1000 instructions point
is small, indicating that those that do not survive long actually
terminate rather early. All in all, it is clear that keeping these
spawned threads live has low risks.

gap mcf pbm twf vor vpr amp eqk fac fma msa wup
Recv-Both 44 91 20857 37774 2280 5804 1938 7396 415 2030 231 6008
Recv-Merge 38 91 6085 30234 1460 4997 1185 6380 409 1992 226 6008
Live-200 36 91 4099 22633 1446 4855 933 2617 71 1985 224 6008
Live-1000 32 90 1480 10821 1433 4457 760 2025 69 1982 220 6008

Table V. Partial recoveries in speculative look-ahead. Recv-
Both are the number of total recoveries when both look-
ahead threads are running. Recv-Merge are the instances
when after the reboot of the primary look-ahead thread, it
successfully merges with the spawned thread which is not
rebooted. Out of these instances, Live-200 and Live-1000
are those where the spawned thread is still live (no recovery
of their own) 200 and 1000 instructions respectively post
merge.

Of course, these numbers can only suggest that not killing
an already-spawned thread during recovery may be justifiable.
In reality, each case is different, and a more discerning
policy may be a better choice than a fixed policy. In our
simulations, we found that consistently keeping the spawned
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look-ahead thread alive performs about 1% better on average
than always killing it at recovery. However, two applications
demonstrate the opposite behavior where always killing the
spawned thread is the better choice.

3) Spawns: Table VI shows statistics about the number
of spawns in different categories. The top half shows the
cases where a spawn happens on the right path. They are
predominantly successful. Only a handful of them become
runaway spawns (not merging with primary thread after a
long time).

mcf pbm twf vor vpr ammp art eqk fma gal lucas
Spawns invoked under correct path

Successful 2297 26873 21067 1273 42082 6328 29598 16676 9687 20997 24022
Runaway 257 245 1738 37 409 3542 363 0 3965 0 1

Spawns invoked under incorrect path
No disp. 11 707 2837 96 1633 26 29 245 363 1 0
Some disp. 28 69 1803 6 273 45 116 10 1 0 0
WP 11 184 2997 152 111 339 6 62 4 17 0

Table VI. Breakdown of all the spawns. The top half
shows spawns on the right path, which either successfully
merged or were killed because they become runaway spawns.
The bottom half shows all spawns on the wrong path –
either predicted wrong path (fixed by branch execution) or
committed wrong path (fixed by recovery). In the former
case, the spawn may have dispatched no instruction or some
instructions by the time the branch is resolved. For crafty,
eon, and gzip we do not see any spawns in our experiments.

The bottom half shows spawns on the wrong path due to
branch mispredictions of the look-ahead thread or because the
primary look-ahead thread deviate from the right control flow.
All these spawns are wasteful, spurious spawns. We can see
that their numbers are much smaller than successful spawns.
Furthermore, recall that the spawned thread does not execute
immediately after the spawn, but wait for a small period
of time (to minimize unnecessary execution due to branch
misprediction-triggered spawns and also to reduce violation
of dependence). As a result of this small delay, in many cases
(row labeled “No disp.”), the waste is small as spuriously
spawned threads have not dispatched any instruction before
the branch is resolved and the spawn squashed. Almost all
of these spurious spawns are short lived even for those cases
where some instructions on the spawned thread have been
dispatched. In summary, speculative parallelization does not
significantly increase the energy cost as the waste is small.
Our speculatively parallel look-ahead system executes on
average 1.5% more instructions than sequential look-ahead
due to very few failed spawns.

4) Effect of speculation support: Because look-ahead
thread is not critical for correctness, supporting speculative
parallelization can be a lot less demanding than otherwise
– in theory. In practice, there is no appeal for complexity
reduction if it brings disproportionate performance loss. Sec-
tion III-D described a design that does not require full-blown
versioning and has no dependence violation tracking.The
cache support required is a much more modest extension
of cache for multithreaded core. In Figure 11, we compare
this design to one that is even more relaxed: the data
cache has no versioning support and in fact is completely
unaware of the distinction between the primary look-ahead
thread and the spawned one. As the figure shows, some
applications (e.g., twolf ) suffer a noticeable performance loss.

However, for most applications the degradation is negligible.
The impact on average is very small. Since L1 caches are
critical for performance and is often the subject of intense
circuit timing optimization, any significant complication can
create practical issues in a high-end product. Speculative
parallelization in look-ahead, however, gives the designers the
capability to choose incremental complexity with different
performance benefits, rather than an all-or-nothing option as
in conventional speculative parallelization.

crafty eon gzip mcf pbmk twolf vortex vpr ammp art eqk fma3d galgel lucas gmean
0.9

1

1.1

1.2

1.3

1.4 Spec. parallel look−ahead

No versioning support

Violation detect & squash

Figure 11. Speedup comparison of regular support and
two other alternatives, one removing the partial versioning
support altogether, the other adding dependence violation
detection to squash the spawned thread.

Another example of the design flexibility is about whether
to detect dependence violations. Dependence violation de-
tection also requires intrusive modifications. The flexibility
of not having to support it is thus valuable. Figure 11 also
compares our design to another one where accesses are
carefully tracked and when a dependence violation happens,
the spawned thread is squashed. This policy provides no
benefit in any application window we simulated and degraded
performance significantly in several cases (e.g., perlbmk and
vpr). Intuitively, the look-ahead process is somewhat error
tolerant. Being optimistic by ignoring the occasional errors
is not only easier to support but better in effects.

VI. CONCLUSIONS

Improving single-thread performance for general-purpose
programs continues to be an important goal in the design of
microprocessors. Executing dedicated code to run ahead of
program execution to help mitigate performance bottlenecks
from branch mispredictions and cache misses is a promis-
ing approach. A particularly straightforward implementation,
which we call decoupled look-ahead runs an independent,
program-length thread to achieve performance enhancement.
In some cases, the approach allows the program to nearly
saturate a high-performance out-of-order pipeline. In many
other cases, the speed of the look-ahead thread becomes the
bottleneck.

In this paper, we have proposed a mechanism to apply
speculative parallelization to the look-ahead thread. This
approach is motivated by two intuitions: 1. Look-ahead code
contains fewer dependences and thus lends itself to (specula-
tive) parallelization; and 2. Without correctness constraints,
hardware support for speculative parallelization of the look-
ahead thread can be much less demanding. We have presented
a software mechanism to probabilistically extract parallelism
and shown that indeed the look-ahead code affords more
opportunities. We have also presented a hardware design that
does not contain the array of support needed for conventional
speculative parallelization such as dependence tracking and
complex versioning. For an array of 14 applications where
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the speed of the look-ahead thread is the bottleneck, the
proposed mechanism speeds up the baseline, single-threaded
look-ahead system by up to 1.39x with a mean of 1.13x.
Experimental data also suggest there is further performance
potential to be extracted which would be investigated as
future work.
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