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Abstract—Mainstream chip multiprocessors already include a
significant number of cores that make straightforward snooping-
based cache coherence less appropriate. Further increase in core
count will almost certainly require more sophisticated tracking
of data sharing to minimize unnecessary messages and cache
snooping. Directory-based coherence has been the standard solu-
tion for large-scale shared-memory multiprocessors and is a clear
candidate for on-chip coherence maintenance. A vanilla directory
design, however, suffers from inefficient use of storage to keep
coherence metadata. The result is a high storage overhead for
larger scales. Reducing this overhead leads to saving of resources
that can be redeployed for other purposes.

In this paper, we exploit familiar characteristics of coherence
metadata, but with novel angles and propose two practical
techniques to increase the expressiveness of directory entries,
particularly for chip-multiprocessors. First, it is well known that
the vast majority of cache lines have a small number of sharers.
We exploit a related fact with a subtle but important difference:
that a significant portion of directory entries only need to track
one node. We can thus use a hybrid representation of sharers
list for the whole set. Second, contiguous memory regions often
share the same coherence characteristics and can be tracked by
a single entry. We propose a multi-granular mechanism that does
not rely on any profiling, compiler, or OS support to identify such
regions. Moreover, it allows co-existence of line and region entries
in the same locations, thus making regions more applicable. We
show that both techniques improve the expressiveness of directory
entries, and, when combined, can reduce directory storage by
more than an order of magnitude with negligible loss of precision.
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I. INTRODUCTION

Technology scaling has steadily increased the number of
cores in a mainstream chip-multiprocessor. Special-purpose
large-scale chip-multiprocessors (CMPs) are also appearing in
the marketplace [13], [21], [30]. Shared-memory programming
interface is still a crucial element in productively exploiting the
performance potential of these chip-multiprocessors. Conse-
quently cache coherence will continue to be a key requirement
of chip-multiprocessors. The increasing core count makes
pure snooping protocols less appropriate. A directory-based
approach will be increasingly seen as a serious candidate for
on-chip coherence solution.

This work is supported in part by NSFC under grants 61028004 and
60873112 and by NSF under grants 1217662 and 0747324.

While directory-based coherence design has been studied
extensively in the context of conventional multiprocessor de-
sign, chip-multiprocessors present subtle and yet important dif-
ferences that call for new solutions or new twists. For example,
conventional multiprocessors are built from commercial, off-
the-shelf processor components that are fabricated with a focus
towards personal systems. The directory logic is implemented
outside the processor chip, whereas in a chip multiprocessor,
the directory can closely interact with other on-chip logic.
Also, in conventional multiprocessors, the cost of directories
is only incurred when building a multiprocessor. In contrast,
directory cost is incurred for every chip multiprocessor. Cost
saving is thus more important.

In the most basic incarnation, a directory entry is allocated
for every memory block [8], and each entry uses a full bit
vector to track the list of sharers of that block. The overhead
of a full bit vector is clearly significant in a system with
many cores. For instance, a 64-core system with 32-byte cache
lines, the overhead is 25%. Directory storage can be viewed
as a 2D array, with the height being the number of entries
and the width being the number of sharers to track. Reducing
storage requires reducing one or both dimensions. And there
are plenty of characteristics of access and sharing patterns
that allow us to reduce the two dimensions: only a small
portion of all memory blocks are cached at any time; most
cache lines have a small number of sharers, etc. [9], [11],
[12], [16], [28], [31]. Additionally, we can adjust parameters
to reduce overhead such as using larger cache lines or coarser-
grain sharing vectors. Regardless of the exact mechanism,
reducing the storage size comes at a cost of loss of precision
of coherence tracking, which leads to extra messages, inval-
idations, misses, and ultimately performance loss. However,
the resources saved can be redeployed elsewhere to make up
for the performance loss. In particular, other meta information
such as access pattern, frequency, and affinity can help proces-
sor optimize data placement, storage allocation and so on [17],
[18]. Chip multiprocessor presents brand new opportunities to
provide holistic on-chip data management solutions. Providing
expressive, area-efficient directory systems is a starting step.

One issue about the conventional directory mechanism is
that it is a mechanical, access-pattern-agnostic approach in
tracking coherence. Sharing patterns are tracked cache line by
cache line even though there may be much more expressive
means. For instance, private data have no other sharer than the
owner. The coherence information of a whole region can be



described by a single metadata entry. Similarly, code segments
and other (mostly) read-only data need not be tracked line
by line either. Note that in practice, exploiting private data
and code segments is not trivial, as these access patterns are
not architected. Relying on help from external agents (e.g.,
compiler, programmer) brings its own set of issues. In this
paper, we do not attempt to identify these patterns directly,
but exploit the consequence of these patterns. First, (partly)
because of prevalence of private data, many sharers lists can
be represented by single pointers. Therefore we use hybrid
representation of sharers list within a cache set: many single-
pointers plus a few full-blown vectors. Second, because of
regions of private or read-only data, we can use a single
entry to capture the state of many cache lines simultaneously.
Additionally, we allow exceptions within the region. This
flexibility makes such regions more common than otherwise.
Both types of savings can be achieved with simple, practical
architectural support.

The rest of the paper is organized as follows. Section II
gives the background and related work on directory optimiza-
tions. Section III presents our design in details. Section IV
gives the evaluation result of our schemes and Section V
concludes.

II. BACKGROUND AND RELATED WORK

Typically, all the cached copies of a memory block are
invalidated on eviction of the associated directory entry. In-
creasing the size of a directory cache can reduce the frequency
of evictions and cache miss rate but aggravates memory
overhead and power consumption. As the number of proces-
sors increases, more directory entries are required to track a
growing number of cache blocks. And the size of full bit vector
grows linearly with the number of processors. As a result, the
aggregate area of directory cache grows as the square of the
number of processors, making them very expensive in large-
scale systems [24], [32].

Compressing a full bit vector into a compact structure
can reduce the size of a directory entry. Some information
is lost during the compression and this imprecision would
cause performance degradation. Limited pointers scheme [2]
associates a few pointers to each directory entry to track
a small set of sharers. Pointer overflow occurs when the
number of sharers exceeds the number of pointers. LimitLESS
directory [9] extends the directory pointer array into local
memory by software on pointer overflow. Pointers are either
linked to increase their number [23] or converted into a coarse
vector [16]. Scalable coherence directory (SCD) [29] combines
limited pointers and hierarchical directory [15], [33], [36].
Dynamic pointer allocation scheme [31] associates pointers dy-
namically based on the number of sharers. SLiD [11] combines
limited pointer scheme and chained directory scheme [19].
Other than pointers, Tagless directory [38] uses bloom filter
to encode the tags in each private cache. SPACE [39] encodes
the sharing patterns and stores the code in each directory entry.
SPATL [40] combines Tagless and SPACE. Trees can used
to encode sharers [27] and a hybrid of limited pointers and
tree scheme has also been proposed [10]. Segment directory
scheme [12] chops the full bit vector into smaller pieces and
stores only the non-zero pieces each with an identifying pointer
so that the full bit vector can be reconstructed. Multilayer

clustering [1], tristate [2], gray-tristate [26] and home [26]
stores processor numbers in the sharing state.

In a shared memory system, memory blocks can be thought
of as those that need coherence tracking (read-write shared by
multiple nodes) and those that do not (private to one node
or read-only). The latter is sometimes referred to as non-
coherent [14]. Space can be saved when these “non-coherent”
blocks are recognized in advanced and sharers tracking can be
avoided, thus saving directory entries. This can be achieved
with the help of page-level information with the aid of TLB
and the operating system [14]. Another example is Spatiotem-
poral Coherence Tracking [3], which sets the first processor
accessing a region as the owner. When a region is accessed
by other processors, the data are tracked with the granularity
of a block. Coarse-Grain Coherence Tracking [7] and Region-
Scout [25] remove unnecessary broadcast by tracking large
regions at the expense of extra storage. RegionTracker [37]
supports region tracking and management, which can be used
as the building block for coarse-grain optimization. These
region-based schemes are most effective when memory layout
is such that data with the same access behavior (e.g., private, or
read-only) are grouped together, separate from other types, and
placed in aligned regions. In reality, without conscious layout
optimization, different types of data may well be commingled
and render these region-based schemes less effective. Indeed,
it is found that “non-coherent blocks” make up about half of
the space inside coherent pages [14]. In our analysis (with
a broader set of applications), more than 60% of the lines
in coherent pages are non-coherent. In our opinion, allowing
exceptions is an important factor in making region-based
tracking effective.

III. HYBRID REPRESENTATION AND MULTI-GRANULAR
TRACKING

Our goal is to reduce the memory overhead of directory
cache for effectiveness and scalability. The total size of direc-
tory cache is the product of directory entry size and the number
of entries. We target both in this paper. We first discuss the
underlying baseline directory cache. We then discuss hybrid
representation and multi-granular tracking that target reduction
in entry size and entry number, respectively.

A. Baseline directory cache

We assume a tiled chip-multiprocessor baseline where each
tile contains a core, private caches, and a slice of the globally
shared cache as Fig. 1 shows. Data are mapped to their home
L2 slice in a round-robin fashion based on their (physical)
address. In the most straightforward implementation, the direc-
tory is directly attached to the data cache, where the sharers list
is essentially part of the cache lines metadata. Alternatively,
the directory is decoupled from the data cache. In this case,
the number of directory entries need not match the number of
cache lines. Indeed, a directory cache [16], [28] is one such
example where the number of directory entries is significantly
smaller than the number of cache lines. Even considering that
the directory cache has to include a separate tag field, the result
is often a net savings in total storage. A natural side effect of
such decoupling is that inclusivity is only necessary between
the directory entry and L1 cache lines. In other words, when
an L2 cache line is evicted, there is no need to invalidate the



corresponding L1 cache lines. Only when the directory entry
is evicted, the corresponding L1 cache lines are invalidated.

Core

Private
L1 cache

Shared
L2 cache

Tile 0

Core

Shared
L2 cache

Tile 1

... Core

Shared
L2 cache

Tile N-1

Globally Shared cache

Private
L1 cache

Private
L1 cache

Fig. 1. System overview of a tiled chip-multiprocessor.

B. Hybrid representation

In terms of directory entry size, a full bit vector provides
complete freedom to track all possible sharing patterns. But the
size is large and grows linearly with the number of processors.
Earlier studies have shown that a large number of lines are
shared by only a few processors at any given time [34]. A
handful of compact structures are proposed to replace the
full bit vector based on this knowledge. Compact structures
cannot track as many sharers as vectors and may cause pointer
overflow [22]. Schemes are proposed to address the issue of
pointer overflow at a cost of extra traffic and performance
degradation [2], [16].

We exploit sharing pattern from a different angle: a signifi-
cant fraction of the cache lines have only one sharer/owner at a
time. If we consider the storage of directory entries in a set as
a whole, we can use hybrid representation with a few entries
capable of tracking multiple sharers and the rest tracking just
single sharers. By pooling resources together, we need not
attempt to make a single entry versatile and self-sufficient.
The cost is that when a single-sharer-tracking entry proves
to be insufficient, we need to perform intra-set swapping.
Fortunately, such swapping is infrequent in the steady state and
only involves the directory cache entries and not data cache
lines.

To quantify the potential, we track the number of multi-
sharer entries in any set of an 8-way associative directory
cache. As shown in Fig. 2, at any given time, in a vast majority
(on average 90%) of the cases, all 8 entries are tracking cache
lines with a single sharer. In more than 99% of the cases, there
are no more than 2 entries tracking multiple sharers.
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Fig. 2. The ratio of number of multi-sharer entries for an 8-way associative
directory cache in a 16-way CMP.

In terms of implementation, we use a pointer for entries of
single sharer (which we call pointer entries) and full vectors
for multi-sharers (vector entries) as illustrated in Fig. 3. In this
figure, we show the directory cache set of an 8-way associative
directory cache in a 16-way CMP. Each set uses 2 vector
entries and 6 pointer entries. The average size of a directory
entry depends on the fraction of vector entries. Assuming a
P -way CMP, with an A-way associative directory cache that
has V vector entries per set, the average size of a directory
entry is thus V ∗P+(A−V )∗log2P

A + TagSize.

tag

tag

vector entry ( VE ) :

pointer entry ( PE ) :

traditional set :

hybrid representation set :

VE

PE

VE VE VE VE VE VE VE

PE VE VE

8 9 10 11 12 13 14 154 5 6 70 1 2 3

B1 2 30

PE PE PE PE

Fig. 3. Storage for the proposed hybrid representation compared to traditional
representation in a 16-way CMP with 8-way associative directory sets.

Since a pointer entry can only track one sharer, when
another processor requests to read the line, the pointer entry
can no longer track both sharers. We handle the overflow by
swapping its content with a vector entry (in the same set).
If there is an unused vector entry, or a vector entry tracking
just one sharer, such a swap is straightforward as illustrated in
Fig. 4. If all vector entries are multi-sharer entries, the least
recently used (LRU) vector entry is converted into a single-
sharer vector entry to allow the swap.

A Pointer ( i )B Vector ( j )

Swap A and B

B Vector ( j, k )

A Vector ( i ) B Pointer ( j ) B is accessed by k

Add the new sharer

Fig. 4. Swap between pointer entry and vector entry.

To minimize imprecision of this conversion, we use a
threshold (Fig. 5) to “round” the sharers list either down
to a randomly selected current sharer (which we call down
conversion), or up to all nodes (up conversion). In the former
case, other sharers are invalidated. In the latter case, a single
broadcast bit (“B” in Fig. 3) is set to indicate that all nodes
potentially share the cache line.

Yes No

Yes No

Apply for swap

Single-sharer
vector entry

available?

Sharer number
> threshold?

Up conversion Down conversion

Swap

Fig. 5. Adaptive conversion.



TABLE I. OPERATIONS OF HYBRID REPRESENTATION.

entry type request broadcast bit operation

vector — — Conventional.
pointer write 0 Invalidation message is sent to the exclusive owner.
pointer write 1 Invalidation message is sent to all processors except the writer.
pointer read 0 Swap occurs. Then the coherence operation is conventional.
pointer read 1 The copy is obtained from the shared data cache, private cache of the sharer or main memory.
pointer eviction 0 Invalidation message is sent to the exclusive owner.
pointer eviction 1 Invalidation message is sent to all processors.

Note that the swap is between two (metadata) entries in
the directory cache, not the data cache lines. When a swap
occurs, the directory cache needs to be read and written to in
consecutive cycles, increasing its occupancy. Such swaps are
very rare: only about 1 in every 1000 transactions involves a
swap (experimental setup will be discussed later in Sec. IV,
and the occupancy is faithfully modeled).

Finally, the operations of hybrid representation are summed
up in Table I.

C. Multi-granular tracking

In addition to reducing the size of each entry, reducing the
number of entries is another factor of reducing the overall
footprint of directory cache. One approach is to exclude
regions that contain only private data. These regions can be
considered to be non-coherent regions [14]. The challenge of
such an approach is the determination of private data as it is
not semantically guaranteed by the architecture. Thus if one
line in the region is detected to be coherent and thus require
coherence tracking, the entire region ceases to be treated as
non-coherent [14].

We take a different approach in reducing the number of
entries. First, we employ region entries to capture a region of
data with similar access patterns such as private and read-only.
Second, a region entry does not preclude regular line-tracking
entries to describe individual special cases inside an otherwise
homogeneous region. In other words, the region entries are
more of an optimization that describe common patterns than
a special element to exclude the special case of non-coherent
data.

1) Identifying regions: Perfectly identifying the right
boundaries of regions is challenging as these regions come
with different sizes and access patterns and their behavior
changes dynamically. For simplicity of implementation, we
use fixed-size, aligned regions and a simple online algorithm
as follows to allocate region entries. This approach requires
no pre-characterization from the compiler, off-line profiling,
or OS support to identify or demarcate regions.

• Upon the first access to a line without an existing
directory entry, we always start with a region entry.
The implicit, optimistic assumption is that the whole
region has similar sharing patterns and hence requires
no fine-grain, line-by-line tracking.

• From that point on, any additional nodes reading from
any cache line in that region will be added to the
region’s sharers list. In other words, a region entry
is simply one where the coherence tracking unit is a
region.

• When a write request arrives at the directory and
the requester is the only sharer so far, we treat the
region as private and change the region entry’s state
to “modified”. If on the other hand the write requester
is not the only sharer, we treat this line as a special
case and start a line entry to track it. All sharers of
the region will be sent an invalidation message just
for the line.

• Similarly, if a region in modified state receives a read
request from a node other than the owner, a line entry
will be allocated to track the line under request.

2) Sizing of regions: Since we use fixed-size regions for
simplicity, the design decision becomes their size. Clearly, a
larger size creates a more compact tracking when the region
is homogeneous, but can lead to more space waste when the
actual size of a region with homogeneous sharing pattern is
smaller. This can be seen in the example shown in Fig. 6.
In this example, the chosen region size (eight lines) is bigger
than the actual size of the two regions of homogeneous sharing
patterns. As a result, the number of entries uses is more than
when the region size is four.

0

1

2

3

R
0 - 3

a,b,c,d,f

4

5

6

7

R
4 - 7

d

R
0 - 3

a,b,c,d,f

L
4
d

L
5
d

L
6
d

L
7
d

region size = 8 region size = 4memory blocks

entry type
range

sharer List

access pattern sharer list

shared a, f

shared b, c, d

shared a, c, d

shared d, f

modified d

modified d

modified d

modified d

directory entry:

memory block:

R: region entry
L: line entry

Fig. 6. An example of mismatch between the actual and chosen region size.

3) Implementation issues: The operations of multi-granular
tracking scheme are summarized in Table II. Here are a few
implementation issues worth noting.

To support multi-granular tracking, a grain size bit is used
to distinguish between a region entry and a line entry. The



TABLE II. OPERATIONS OF MULTI-GRANULAR TRACKING SCHEME.

entry type request sharer list operation

line — — Conventional.
region write equal writer The region is accessed by one processor. No line entry is allocated.
region write other sharers The line is recognized to be coherent. A line entry is allocated for it.
region read — The line is obtained from the shared data cache or memory. the requester is added to the sharer list.
region write back — The requester may cache other lines of the region and cannot be removed from the sharer list.
region eviction — Except exceptional lines, copies of the lines in the region are invalidated in the sharers’ private cache.

natural indexes for the two types of entries are different, calling
for two separate accesses to the directory. This need not be
the case. We can shift the index for line entries to align with
that of their corresponding region entry as shown in Fig. 7.
This way, both line and region entries of any line will reside
in the same set. When both are found, the line entry takes
priority (Fig. 8). In that case, the region entry is not counted
as a hit in the (LRU) replacement circuitry. Consequently, a
region that has a diverse set of sharing patterns among its lines
will have many individual line entries and the region entry
will quickly fall into disuse and get recycled. In a sense, the
system is thus automatically choosing the right type of entries
to use depending on the circumstance. Mapping consecutive
lines into the same set may cause increased conflict. Intuitively,
given reasonable associativity for the directory cache, the mag-
nitude of the problem should be small. Besides, region entries
naturally eliminate many individual line entries that would
otherwise exist, further reducing conflict pressure. Indeed, in
our simulations we found that mapping both types of entries to
the same set is slightly better than using their natural indexes.

tag blockoffset

tag index blockoffset

line entry:

region entry:

index tag

Fig. 7. Address fields of region and line entries.

Yes No

Yes No

Yes No

Search for both region 
and line entries

Line entry 
hits?

Region entry 
hits?

Searching for Directory entry finishes.

Allocate a region entry

Read-write 
block?

Allocate a line entry

Fig. 8. Search of directory entry with multi-granular scheme.

When an L1 cache miss is serviced, we may find a region
entry to the line and at the same time no data in the L2 cache
since we do not maintain L2-L1 inclusivity. In this case, if
the region entry is in shared state, we do not have a high
confidence any node on the sharers list actually has the line:

Intuitively, the L2 cache has a much larger capacity and is
thus unlikely to evict a line still in some L1 cache. (We found
through simulations that in those cases there is only a small
chance – 2.4% on average – that some L1 cache actually has
the data on-chip.) For simplicity, we go off-chip for the data.
Of course, if the region entry is in modified state, we will
forward the request to the owner node first. We also check the
sharers first if the line is tracked by a line entry.

Upon the eviction of a region entry from the directory
cache, we need to inform all the sharers to invalidate those
lines in the region that are not tracked by line entries. In
this paper, for simplicity, we infer from the coherence state
at the L1 level which lines must have line entries already and
therefore need not be invalidated. We compare the coherence
state of the line in L1 cache to that of the region to be
invalidated. If they are incompatible, then the line must have
been tracked by a line entry. For example, if the region is in
modified state and the line is in shared state. Clearly, these
lines are only a subset of those that can be exempted from
invalidation. We found that on average 85% of lines that can
be exempted from region invalidation can be inferred this way.

D. Combinations

The two techniques described can be combined together or
with other space-saving techniques in a rather straightforward
manner. For instance, in multi-granular tracking the sharers list
can be implemented in either pointer or vector format as in
hybrid representation. As another example, the vector entries
in hybrid representation can also be replaced by a few pointers
as in [9]. In some cases, applying multiple techniques working
on the same source of storage inefficiency quickly reaches
diminishing returns. The techniques can be contrasted based
on cost benefit ratio. Section IV contains some quantitative
analysis.

IV. EXPERIMENTAL ANALYSIS

We analyze in detail hybrid representation (Sec. IV-B) and
multi-granular tracking (Sec. IV-C) in isolation as well as in
conjunction (Sec. IV-D).

A. Experimental Setup

Our quantitative analyses are performed using an exten-
sively modified version of SimpleScalar [6]. We use wattch [5]
and orion 2.0 [20] for power analysis. The execution-driven
simulator models in great detail the cache coherence substrate
using a MESI protocol, the processor microarchitecture, the
communication substrate and the energy consumption of 16-
way and 64-way CMP. The system parameters are summarized
in Table III.



TABLE III. SYSTEM PARAMETERS.

Processor core
Fetch/Decode/Commit 4 / 4 / 4
ROB 64
Issue Q/Reg. (int,fp) (32, 32) / (64, 64)
LSQ(LQ,SQ) 32 (16,16) 2 search ports
Branch predictor Bimodal + Gshare
- Gshare 8K entries, 13 bit history
- Bimodal/Meta/BTB 4K/8K/4K (4-way) entries
Br. mispred. penalty at least 7 cycles
Memory hierarchy

L1 D cache (private) 16KB, 2-way, 64B line, 2 cycles, 2 ports
L1 I cache (private) 32KB, 2-way, 64B line, 2 cycles
L2 cache (shared) 256KB slice, 8-way, 64B line, 15 cycles, 2 ports
Directory cache(shared) 128 sets slice, 8-way, 15 cycles, 2ports
Intra-node fabric delay 3 cycles
Main memory at least 250 cycles, 8 memory controllers
Network packets Flit size: 72-bits

data packet: 5 flits, meta packet: 1 flit
NoC interconnect 4 VCs; 2-cycle router; buffer: 5x12 flits

wire delay: 1 cycle per hop

TABLE IV. BENCHMARKS.

Splash-2 barnes, fft, fmm, lu, ocean, radiosity, radix, raytrace,
water-spatial

Parsec blackscholes, canneal, dedup, ferret,freqmine, fluidan-
imate,streamcluster, swaptions, vips

Others em3d, jacobi, mp3d, shallow, tsp

We perform the evaluation with a suite of parallel ap-
plications including SPLASH2 [35] benchmark suite, PAR-
SEC [4], a program to solve electromagnetic problem in 3
dimensions (em3d), a program to iteratively solve partial dif-
ferential equations (jacobi), a 3-dimensional particle simulator
(mp3d), a shallow water benchmark from the National Cen-
ter for Atmospheric Research to solve differential equations
on a two-dimensional grid for weather prediction (shallow),
and a branch-and-bound based implementation of the non-
polynomial traveling salesman problem (tsp). The applications
are summarized in Table IV. The cache sizes are smaller than
typical values to compensate for the reduced data sets used by
many applications. With these sizes, the average L1 miss rate
is 5.6%.

The directory cache of baseline is configured to be 128-set
and 8-way associative per slice. This configuration is chosen
since it performs close to a system with full directory. Further
reducing the size of the directory cache will cause serious
performance degradation. At this configuration, assuming a 40-
bit physical address and a 16-way CMP, the directory storage
overhead (including the extra tag) comes to about 11 bits per
L2 cache line, or about 2.0%, compared to 3.6% for an in-L2
directory. In a 64-way CMP, those overheads would rise to
4.2% for directory cache and 12.6% for the in-L2 directory.

B. Hybrid Representation

In the following, we use a 16-way CMP as baseline for
analysis (Sec. IV-B1); then show that the design’s impact
on execution is not sensitive to configuration parameters
(Sec. IV-B2); and finally show that the technique saves more
space with far less performance impact than related designs
(Sec. IV-B3). The baseline conventional directory cache is
noted as DC(set, associativity). In particular, the baseline
configuration is DC(2048, 8). The proposed hybrid represen-
tation will be noted as DC(set, v/associativity) where v
means the number of vector entries in a set.
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1) Effects on the baseline system: As discussed earlier
(Fig. 2), in a typical set, only a few entries need vectors to track
sharers. When the number of vector entries is limited, there is
an increased chance of victimizing a vector entry. The result
can be a down conversion that invalidates all but one current
sharer. Such invalidations have nothing to do with program’s
true communication and are purely due to directory impreci-
sion. We call these directory-induced invalidations (DIIs). Note
that without hybrid representation, a directory cache already
creates DIIs.

Fig. 9 shows the relative number of DIIs for different
applications under hybrid representation with one to four
vector entries. For clarity, we sort the applications based on
decreasing values and only show the several applications where
these values are large. The rest of the 25 applications have
results very close to 1.

As we can see, having a single vector entry is a bit too
extreme and for a few applications can dramatically increase
DIIs. It is worth noting that normalizing the number of DIIs
highlights the imprecision introduced by the hybrid representa-
tion. Overall, DIIs represent a small portion of the total number
of invalidations (15.1% in the baseline). So even a several-
fold increase may not cause significant increase in overall
invalidation number. This can be seen from Fig. 10, which
shows the L1 cache miss rate normalized to that in baseline.

Take application lu for example. Having just one vector
entry increases DIIs by 13.6X. But this dramatic increase in
DIIs only results in 46% increase in miss rate. On average,
even having just one vector entry only increases miss rate by
5%. With two vector entries per set, the increase in the number
of misses (and off-chip traffic) is 0.4% on average, and 2.3%
in the worst case, which is almost negligible.
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Fig. 10. L1 cache miss rate of DC(2048, v/8) normalized to DC(2048, 8).



Recall that victimizing a vector entry that tracks more
than one sharer results in either a down or an up conversion.
While down conversions increase the number of DIIs, up
conversions cause imprecision that increases the number of
unnecessary invalidation messages later on. In DC(2048, 2/8),
the increase in all invalidation messages averages about 0.7%.
Of course, both type of conversions lead to performance loss
and energy overhead. Finally, the swapping between a vector
and a pointer entry increases the occupancy of directory cache,
potentially delaying other requests. According to the experi-
mental result, the port usage increases by 1.9% on average for
DC(2048, 2/8). All these factors impact the overall execution
time and energy. These statistics for DC(2048, 2/8) are shown
in Fig. 11.
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Fig. 11. Execution time, number of network packets and energy of
DC(2048, 2/8) normalized to DC(2048, 8).

As the figure shows, when using a quarter of the entries as
vector entries, the execution time, number of network packets,
and energy consumption of DC(2048, 2/8) increase by less
than a half of a percentage point (specifically 0.2%, 0.4% and
0.2%, respectively). Since we use a quarter of the entries as
vector entries, the asymptote of area savings is 4x. The actual
savings in storage depends on a number of parameters. For
the 16-way CMP, DC(2048, 2/8) reduces the total directory
storage by about 1.31x (24% reduction). For 64-way CMP
the savings becomes 2x with similarly negligible impact on
execution (details later). In contrast, if the directory cache is
shrunk by a quarter (in the number of sets), the performance
degradation is a much more pronounced 10%.

2) Sensitivity analysis: Hybrid representation exploits the
fact that most lines in a set have a single sharer at any moment.
In roughly 99% of the cases, less than a quarter of the lines
in a set have more than one sharer. This statistic is largely
unchanged with increase of directory cache associativity (as
shown in Table V) or the number of nodes in a CMP.

TABLE V. THE RATIO OF NUMBER OF MULTI-SHARER ENTRIES.

Number of multi- Cumulative ratio
sharer entries DC(2048, 8) DC(1024, 16)

0 91.4% 87.0%
≤ 1 97.7% 96.0%
≤ 2 99.0% 97.8%
≤ 3 99.7% 98.3%
≤ 4 99.9% 99.2%

In a 64-way CMP, keeping each tile the same, the execution
impact is essentially the same as in a 16-way CMP. The
increase of execution time, number of packets, and energy
consumption are 0.6% or less on average and 2.5% for the
worst case.

3) Comparison with related schemes: We compare hybrid
representation (HR) with other compacting schemes, including
limited pointer (LP) [2], coarse vector (CV) [16] and scalable
coherence directory (SCD) [29]. Table VI shows the relative
area savings and performance degradation of these schemes
compared to the full bit vector scheme in a 64-way CMP.

TABLE VI. STORAGE OF DIRECTORY CACHE AND PERFORMANCE OF
DIFFERENT COMPACTING SCHEMES.

area increment of increment of
reduction network packets(%) execution time(%)

HR 2X 0.4 0.6
LP 1.8X 8.0 8.5
LP+HR 2.5X 8.1 8.8
CV 1.8X 2.7 2.4
CV+HR 2.5X 2.8 2.5
SCD 2.1X 9.3 10.2
SCD+HR 2.6X 9.6 10.7

As the table shows, hybrid representation outperforms other
schemes and causes negligible degradation in both network
traffic and execution time. Hybrid representation is able to
track the sharers more precisely with the same storage for its
dynamic allocation and adaptive conversion schemes. We also
evaluate the combination of hybrid representation and other
schemes. As the table shows, hybrid representation is quite
orthogonal to other schemes and is able to reduce the storage
further with little performance degradation.

C. Multi-Granular Tracking

In the following, we first analyze the appropriate size
for region in multi-granular tracking in Sec. IV-C1, then
show the overall effect in Sec. IV-C2, and finally compare
to an alternative design [14] in Sec. IV-C3. We use the
notation DC(set, associativity, regionsize) to represent a
specific configuration. Again, we start from the baseline of
DC(2048, 8).

1) Region size: Region size is an important parameter in
our design. Increasing the size of a region reduces the cost
to track a large, homogeneous region but increases the chance
a region is no longer homogeneous. We start with a directory
cache 8x smaller than baseline and compare a number of region
sizes from 8 to 64 cache lines and the average results of major
statistics from all applications are summarized in Fig. 12.

When the region size increases from 8 to 16, the overall
effective tracking capability of the directory is on average
better than the baseline directory 8 times larger and sometimes
generates significantly less DIIs. As a result, fewer invalida-
tions and acknowledgement packets are sent, which leads to a
noticeable (10%) average reduction in overall network packets.
Note that some DIIs merely time-shift a future eviction as a
present invalidation. Thus the impact on cache miss rate is
smaller. Note that there is unevenness in application behavior
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Fig. 12. The impact of region size on the number of L1 data cache misses,
total network packets, and the execution time. For clarity, all results are first
normalized to baseline DC(2048, 8), then averaged over all applications. In
all cases, lower is better.

and the performance of DC(256, 8, 16) is slightly worse (by
1.2%) than DC(2048, 8) on average despite having a slightly
lower average cache miss rate. When the region size further
increases, the intra-region disparity starts to increase and
negates the benefit of larger regions. In our setup, the best
performing region size is 16, although both 32 and 64 produce
rather similar results in terms of performance.

2) Effects of multi-granular tracking: Region entries mag-
nify the descriptive power of a directory entry, thereby requir-
ing less storage. Depending on the application, the average
magnification factor ranges from 4 to 11, with a suite-wide
average of about 7. In other words, a region entry replaces
an average of 7 line entries, albeit with a slight loss of
precision. Specifically, compared to baseline DC(2048, 8), the
number of DIIs of DC(256, 8, 16) is 10% lower on average
for an 8x reduction in directory size, though with significant
variation among applications. In contrast, a mere 2x reduction
in directory size (to DC(1024, 8)) results in an average of 10x
increase in DIIs and consequently a 41% increase in L1 misses.
An 8x reduction in directory size (to DC(256, 8)) would make
those increases balloon to 25x and 89%, respectively.

We evaluate the performance impact of directory cache size
with and without multi-granular tracking. Fig. 13 shows the
relative performance of different configurations normalized to
an ideal directory cache system. The associativity of directory
cache is fixed to be 8 and the number of sets is changed from
4096 to 128.
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Fig. 14. Execution statistics of DC(256, 8, 16) normalized to DC(2048, 8).

As the figure shows, without multi-granular tracking, the
degradation in performance is negligible when the size is
reduced to 2048 (sets), but noticeable even with a small
reduction from 2048 (which is why we set the baseline to
this configuration). Indeed, halving the entries to 1024 would
reduce performance by more than 30%. In stark contrast, when
employing multi-granular tracking, with only 256 sets, the
performance is only 1.2% lower than DC(2048, 8) and 3%
lower than DC(4096, 8). Note that there is non-trivial variation
from application to application. However, even in the worst
case, the performance impact is 13% as shown in Fig. 14. We
have also evaluated multi-granular tracking in a 64-way CMP.
With an average increase of execution time, number of packets,
and energy consumption of less than 1.0%, the observations
are essentially the same as in the 16-way CMP.

3) Comparison to coarse grain coherence tracking: An
example of related coarse grain coherence tracking schemes
is the use of page translation information in bypassing private
pages as non-coherent regions [14]. There are a number of
differences between the two techniques. First, our system
is completely transparent to other subsystems and does not
require modifications to TLB control. Second, regions can
be in any coherence state and are not limited to just private
pages. Third, our regions allow exceptions, making regions
more applicable. The net effect of these differences is that
given the same storage capacity for entries, our directory is
able to capture the coherence states with less DIIs and cache
misses. As Fig. 15 shows, using a 256-set directory cache with
the page-based technique [14], the cache miss rate increases
by 15% on average over the baseline DC(2048, 8). In contrast,
with our multi-granular scheme, the increment is less than
0.5%.
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Fig. 15. Cache miss rate normalized to DC(2048, 8). DC P indicates
directory cache with page-based coarse-grain technique [14].
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Fig. 16. Relative performance of multi-granular tracking, page-based bypass-
ing, and their combination as a function of directory cache size.

Even though multi-granular tracking is on average more
effective, page-based technique has an advantage that bypassed
pages occupy no entries in the directory at all. It is conceivable
that page-based bypassing can be implemented on top of
multi-granular tracking to allow further reduction of directory
expenditure. Fig. 16 shows the relative performance of these
two approaches acting independently and when combined.
Indeed, when the two are combined, the resulting scheme
shows smaller performance loss than either technique alone,
and extends the range of acceptable performance to even
smaller configurations of directory cache.

D. Multi-granular tracking and hybrid representation

To see if the two schemes would affect each other, we
implement multi-granular tracking and hybrid representation
together in the 16-way CMP. As cache lines are consolidated
into region entries, the composition of the entries in a set
changes. Intuitively, many single-sharer entries are private
blocks. They are particularly amenable to region-based track-
ing and thus single-sharer entries see more reduction than
multi-sharer entries. Furthermore, the sharers list of the region
entry is the union of the sharers of the constituent cache lines,
increasing the number of multi-sharer entries.

Fig. 17 shows the breakdown of entries in a set based
on the number of multi-sharer entries for DC(256, 8, 16).
As we can see, only 86% of the sets have no more than
2 multi-sharer entries. This compares to 99% of sets in the
baseline (see Table V). Apparently, more vector entries are
needed to accommodate the increased ratio of multi-sharer
entries. According to Fig. 17, having 4 multi-sharers entries
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Fig. 17. The ratio of numbers of multi-sharer entries in a set for
DC(256, 8, 16).

in a set will cover 98% of the cases, similar to what 2
such entries cover without region-based scheme. The real
performance impact of increased multi-sharer entries, however,
is barely measurable. When enabling hybrid representation on
top of DC(256, 8, 16) and using 2 vector entries per set, the
performance is only around 0.1% lower.

To sum up the overall effect, when the directory con-
figuration changes from the knee-of-the-curve baseline direc-
tory cache DC(2048, 8) to DC(256, 2/8, 16) which has 10x
smaller storage requirement in 16-way CMP (or 16x smaller in
64-way CMP), the average performance degradation is 1.2%.

V. CONCLUSION

We have proposed an expressive, area-efficient directory
cache in this paper. Two schemes of hybrid representation and
multi-granular tracking are used to reduce directory entry size
and directory entry number respectively. In a shared memory
system, a significant fraction of cache lines are owned by
one processor. Hybrid representation uses a combination of
vector and pointer entries in each directory cache set. The
pointer or vector entry is allocated based on the number of
sharers. The result is a reduction of directory entry size with
little performance degradation. Multi-granular tracking allows
a region of cache lines with similar coherence characteristics
to be tracked by a single directory entry, thereby reducing the
total number of entries needed. By allowing the co-existence
of line and region entries in the same locations, we make
the region entries more applicable and allow the system to
automatically adapt to the right type of entry simply via normal
eviction in the directory cache. Moreover, the use of region
does not rely on any profiling, compiler, or OS support.

We evaluate 16-way and 64-way CMP systems with a
detailed execution-driven simulator across a wide range of
parallel applications. According to the experimental results,
only a quarter of the sharers lists need to use a vector, making
the asymptote of area savings of hybrid representation 4x.
In 16-way and 64-way CMP, the actual area saving is 1.31x
and 2x, respectively. The resulting degradation in runtime,
network traffic, and energy consumption are essentially neg-
ligible. Multi-granular tracking is able to reduce the number
of directory entries needed by 8x with a 1.2% performance
degradation. When the two simple schemes are combined
(reaping multiplicative savings benefits), the directory becomes
much more expressive and area-efficient: Space expenditure
is reduced by more than an order of magnitude (to about
0.2% of the L2 cache) while the loss of precision costs a
small performance penalty of 1.2%. Such space efficiency can
allow better scalability of directory without resorting to more
drastic design overhauls. Also, some of the space saved can be
redeployed to track access patterns and offer a more intelligent
support of on-chip communication.

REFERENCES

[1] M. Acacio, J. Gonzalez, J. Garcia, and J. Duato, “A New Scalable
Directory Architecture for Large-Scale Multiprocessors,” in Proceed-
ings of the International Symposium on High-Performance Computer
Architecture, Jan. 2001, pp. 97–106.

[2] A. Agarwal, R. Simoni, and J. Hennessy, “An Evaluation of Directory
Schemes for Cache Coherence,” in Proceedings of the International
Symposium on Computer Architecture, May–Jun. 1988, pp. 280–289.



[3] M. Alisafaee, “Spatiotemporal Coherence Tracking,” in Proceedings of
the International Symposium on Microarchitecture, Dec. 2012, pp. 341–
350.

[4] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the International Conference on Parallel Architecture and Compila-
tion Techniques, Sep. 2008, pp. 72–81.

[5] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in Proceedings
of the International Symposium on Computer Architecture, Jun. 2000,
pp. 83–94.

[6] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,”
Computer Sciences Department, University of Wisconsin-Madison,
Technical Report 1342, Jun. 1997.

[7] J. Cantin, M. Lipasti, and J. Smith, “Improving Multiprocessor Per-
formance with Coarse-Grain Coherence Tracking,” in Proceedings of
the International Symposium on Computer Architecture, Jun. 2005, pp.
246–257.

[8] L. Censier and P. Feautrier, “A New Solution to Coherence Problems
in Multicache Systems,” IEEE Transactions on Computers, vol. C-27,
no. 12, pp. 1112–1118, Dec. 1978.

[9] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS Directories:
A Scalable Cache Coherence Scheme,” in Proceedings of the Inter-
national Conference on Arch. Support for Prog. Lang. and Operating
Systems, Apr. 1991, pp. 224–234.

[10] Y. Chang and L. Bhuyan, “An Efficient Hybrid Cache Coherence
Protocol for Shared Memory Multiprocessors,” in Proceedings of the
International Conference on Parallel Processing, Aug. 1996, pp. 172–
179.

[11] G. Chen, “SLiD–A Cost-Effective and Scalable Limited-Directory
Scheme for Cache Coherence,” in Proceedings of Parallel Arch. and
Lang. Europe, Jun. 1993, pp. 341–352.

[12] J. Choi and K. Park, “Segment Directory Enhancing the Limited Direc-
tory Cache Coherence Schemes,” in Proceedings of the International
Parallel and Distributed Processing Symposium, Apr. 1999, pp. 258–
267.

[13] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,
“Cache Hierarchy and Memory Subsystem of the AMD Opteron Pro-
cessor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.

[14] B. Cuesta, A. Ros, M. Gomez, A. Robles, and J. Duato, “Increasing the
Effectiveness of Directory Caches by Deactivating Coherence for Pri-
vate Memory Blocks,” in Proceedings of the International Symposium
on Computer Architecture, Jun. 2011, pp. 93–104.

[15] S. Guo, H. Wang, Y. Xue, D. Li, and D. Wang, “Hierarchical Cache
Directory for CMP,” Journal of Computer Science and Technology,
vol. 25, no. 2, pp. 246–256, 2010.

[16] A. Gupta, W. Weber, and T. Mowry, “Reducing Memory and Traffic Re-
quirements for Scalable Directory-Based Cache Coherence Schemes,”
in Proceedings of the International Conference on Parallel Processing,
Aug. 1990, pp. 312–321.

[17] H. Hossain, S. Dwarkadas, and M. Huang, “Improving Support for
Locality and Fine-Grain Sharing in Chip Multiprocessors,” in Pro-
ceedings of the International Conference on Parallel Architecture and
Compilation Techniques, Sep. 2008, pp. 155–165.

[18] H. Hossain, S. Dwarkadas, and M. Huang, “DDCache: Decoupled and
Delegable Cache Data and Metadata,” in Proceedings of the Interna-
tional Conference on Parallel Architecture and Compilation Techniques,
Sep. 2009, pp. 227–236.

[19] D. James, A. Laundrie, S. Gjessing, and G. Sohi, “Distributed-Directory
Scheme: Scalable Coherent Interface,” IEEE Computer, vol. 23, no. 6,
pp. 74–77, 1990.

[20] A. Kahng, B. Li, L. Peh, and K. Samadi, “ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration,” in Proceedings of the Design, Automation and Test in
Europe, Mar. 2009, pp. 423–428.

[21] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd, “Power7: IBM’s Next-
Generation Server Processor,” IEEE Micro, vol. 30, no. 2, pp. 7–15,
2010.

[22] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly

Scalable Server,” in Proceedings of the International Symposium on
Computer Architecture, Jun. 1997, pp. 241–251.

[23] Y. Maa, D. Pradhan, and D. Thiebaut, “Two Economical Direc-
tory Schemes for Large-Scale Cache Coherent Multiprocessors,” ACM
SIGARCH Computer Architecture News, vol. 19, no. 5, pp. 10–18, 1991.

[24] M. Marty and M. Hill, “Virtual Hierarchies to Support Server Consol-
idation,” in Proceedings of the International Symposium on Computer
Architecture, Jun. 2007, pp. 46–56.

[25] A. Moshovos, “RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence,” in Proceedings of the International Sympo-
sium on Computer Architecture, Jun. 2005, pp. 234–245.

[26] S. Mukherjee and M. Hill, “An Evaluation of Directory Protocols for
Medium-Scale Shared-Memory Multiprocessors,” in Proceedings of the
International Conference on Supercomputing, Jul. 1994, pp. 64–74.

[27] H. Nilsson and P. Stenstrom, “The Scalable Tree Protocol-A Cache
Coherence Approach for Large-Scale Multiprocessors,” in Proceedings
of the International Parallel and Distributed Processing Symposium,
Apr. 1992, pp. 498–506.

[28] B. O’Krafka and A. Newton, “An Empirical Evaluation of Two
Memory-Efficient Directory Methods,” in Proceedings of the Interna-
tional Symposium on Computer Architecture, May 1990, pp. 138–147.

[29] D. Sanchez and C. Kozyrakis, “SCD: A Scalable Coherence Directory
with Flexible Sharer Set Encoding,” in Proceedings of the International
Symposium on High-Performance Computer Architecture, Feb. 2012,
pp. 1–12.

[30] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski, N. Gura,
R. Hetherington, P. Jordan, M. Luttrell, and C. Olson, “UltraSPARC
T2: A Highly-Treaded, Power-Efficient, SPARC SOC,” in Proceedings
of the IEEE Asian Solid-State Circuits Conference, Nov. 2007, pp. 22–
25.

[31] R. Simoni, “Cache Coherence Directories for Scalable Multiprocessors,”
Ph.D. dissertation, Department of Electrical Engineering, University of
Stanford, 1992.

[32] R. Singhal, “Inside Intel Next Generation Nehalem Microarchitecture,”
in Hot Chips, Aug. 2008.

[33] D. Wallach, “PHD: A Hierarchical Cache Coherent Protocol,” Ph.D.
dissertation, Department of Electrical Engineering and Computer Sci-
ences, MIT, Sep. 1992.

[34] W. Weber and A. Gupta, “Analysis of Cache Invalidation Patterns in
Multiprocessors,” in Proceedings of the International Conference on
Arch. Support for Prog. Lang. and Operating Systems, Apr. 1989, pp.
243–256.

[35] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,” in
Proceedings of the International Symposium on Computer Architecture,
Jun. 1995, pp. 24–36.

[36] Q. Yang, G. Thangadurai, and L. Bhuyan, “Design of an Adaptive
Cache Coherence Protocol for Large Scale Multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 3, no. 3, pp.
281–293, May 1992.

[37] J. Zebchuk, E. Safi, and A. Moshovos, “A Framework for Coarse-Grain
Optimizations in the On-Chip Memory Hierarchy,” in Proceedings of
the International Symposium on Microarchitecture, Dec. 2007, pp. 314–
327.

[38] J. Zebchuk, V. Srinivasan, M. Qureshi, and A. Moshovos, “A Tagless
Coherence Directory,” in Proceedings of the International Symposium
on Microarchitecture, Dec. 2009, pp. 423–434.

[39] H. Zhao, A. Shriraman, and S. Dwarkadas, “SPACE: Sharing Pattern-
based Directory Coherence for Multicore Scalability,” in Proceedings of
the International Conference on Parallel Architecture and Compilation
Techniques, Sep. 2010, pp. 135–146.

[40] H. Zhao, A. Shriraman, S. Dwarkadas, and V. Srinivasan, “SPATL:
Honey, I Shrunk the Coherence Directory,” in Proceedings of the
International Conference on Parallel Architecture and Compilation
Techniques, Oct. 2011, pp. 33–44.


