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Abstract.  The load-store queue (LQ-SQ) of modern superscalar processors is re-
sponsible for keeping the order of memory operations. As the performance gap be-
tween processing speed and memory access becomes worse, the capacity require-
ments for the LQ-SQ increase, and its design becomes a challenge due to its CAM 
structure. In this paper we propose an efficient load-store queue state filtering 
mechanism that provides a significant energy reduction (on average 35% in the LSQ 
and 3.5% in the whole processor), and only incurs a negligible performance loss of 
less than 0.6%. 

1   Introduction 

As the performance gap between processing and memory access widens, load latency 
becomes critical for performance. Modern microprocessors try to mitigate this problem 
by incorporating sophisticated techniques to allow early execution of loads without com-
promising program correctness.  

Most out-of-order processors include two basic techniques usually denoted as load by-
passing and load forwarding. The former allows a load to be executed earlier than preced-
ing stores when the load effective address (EA) does not match with any of the preceding 
stores. If the EA of any preceding store is not resolved when the load is ready to execute, 
it must wait. When a load aliases (has the same address) with a preceding store, load for-
warding allows the load to receive its data directly from the store. 

More aggressive implementations allow speculative execution of loads when the effec-
tive address of a preceding store is not yet resolved. Such speculative execution can be 
premature if a store earlier in the program order overlaps with the load and executes af-
terwards. When the store executes, the processor needs to detect, squash and re-execute 
the loads. All subsequent instructions, or at least, the dependent instructions of the load 
need to be re-executed as well. This is referred to as load-store replay [1]. To mitigate the 



performance impact of replays, some designs incorporate predictor mechanisms to control 
such speculation [2]. One commercial example of this technique can be found in Alpha 
21264 [1] (and its follow-on generation, Alpha 21364). The processor uses a simple 1-bit 
PC-indexed table to predict whether a load will be dependent upon a previous store or 
not. Loads predicted to be independent will execute as soon as their effective address is 
available, while other loads wait until all prior stores are resolved. 

Modern processors with support for glueless multiprocessor systems, such as Intel's 
Itanium or IBM's POWER 4, also have to include support for memory consistency in 
shared memory multiprocessors systems [3, 4], which makes the memory system even 
more complex. 

These complex mechanisms come at the expense of high energy consumption. Our in-
vestigated design accounts for around 8% of the total consumption. Furthermore, it is 
expected that this consumption will grow in future designs, because structures buffering 
in-flight load and stores (LSQ) need to be scaled up to buffer more load and stores to al-
low the processor to effectively tolerate longer memory latencies. Driven by this trend, 
our main objective in this paper is to design an efficient and scalable LSQ structure, 
which could save energy without sacrificing performance. 

The rest of the paper is organized as follows. Section 2 and 3 present the conventional 
design and our alternative LSQ mechanism respectively. Section 4 describes our experi-
mental framework. Section 5 analyzes experimental results. Section 6 discusses related 
work. Finally, Section 7 presents our conclusions. 

2   Conventional Design of Load-Store Queue 

Conventional implementations of the LSQ are usually based on two separate queues, the 
load queue (LQ) and the store queue (SQ) (see Figure 1). Each entry of these queues pro-
vides a field for the load or store effective address and a field for the load or store data. 
For example, the Alpha 21264 microprocessor [1] incorporates 32+32 entries for the load 
and store queues. 

Techniques such as load forwarding and load bypassing increase the complexity of 
these structures given that they require associative search in the store queue to detect 
aliasing between loads and preceding stores. Speculation increases complexity even more 
since associative search is also necessary in the load queue to detect premature loads: 
when the EA of a store is resolved, an associative search in the load queue is performed; 
if a match with a later load that has already been issued is found, execution from the con-
flicting load is squashed. 
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Fig. 1. Conventional load-store queue design. Each load instruction performs an associative search 
of the SQ to determine if load forwarding or load bypassing is necessary. Each store also performs 
an associative search of the LQ to forward data for a later load with the same address, which can 
happen if the load is waiting for a memory port to be free, or to squash its execution if it is already 
executing. 

3 Efficient Load-Store Queue Management 

3.1 Rationale 

While the techniques outlined above such as load forwarding and load bypassing improve 
performance, they also require a large amount of hardware that increases energy con-
sumption. In this paper, we propose a more efficient LSQ design that allows for a more 
efficient energy usage. Besides, the size of the structure scales significantly better than the 
conventional approach described before. 

The new approach is based on the following observations:  
1- Memory dependencies are quite infrequent. Our experiments indicate that only 

around 11% of the load instructions need a bypass. This suggests that the complex disam-
biguation hardware available in modern microprocessors is often being underutilized. 

2- On average, around 73% of the memory instructions that appear in a program are 
loads. Therefore, their contribution to the dynamic energy spent by the disambiguation 
hardware is much greater than that of the stores. This suggests that more attention must be 
paid to handling loads.  

3.2 Overall Structure 

As shown in Figure 2, the conventional LQ is split into two different structures: the Asso-
ciative Load Queue (ALQ) and the Banked Non-associative Load Queue (BNLQ). ALQ is 



similar to a conventional LQ, but smaller. It provides fields for the effective address and 
the load data, as well as control logic to perform associative searches. The BNLQ consists 
of a simple buffer to hold the load effective address and the load data. An additional 
mechanism, denoted as Exclusive Bloom Filter (EBF), is added to assure program cor-
rectness. To distribute load instructions into these two queues, we employ a dependence 
predictor. We describe the operation of each component in the following. 
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Fig. 2. Effective LQ-SQ Management. LQ is divided into two queues, an associative load queue 
(ALQ) for those predicted-dependent loads and a Banked Non-associative Load Queue (BNLQ) for 
those predicted-independent loads. The ALQ and the SQ work similarly to a conventional LQ-SQ. 
To ensure premature loads are detected even if they are sent to BNLQ, an Exclusive Bloom Filter 
(EBF) is used. 

3.3 Distribution of Loads and Dependency Prediction 

The distribution of loads between the ALQ and the BNLQ is a key aspect to be consid-
ered. Our distribution is based on a broadened notion of dependency. We classify as de-
pendent-loads those loads that while in-flight, happen to have the same effective address 
as any store from the SQ. This would include loads that overlap with younger in-flight 
stores as well. A more conventional definition of dependent load would only consider 
those loads that receive their data directly from an earlier, in-flight store – loads that over-
lap with older, in-flight stores. This broadened definition is due to the imprecise (and 
hence more energy-efficient) disambiguation mechanism used for handling independent 
loads as we will explain later. Using our alternative definition, 23% of loads (on average) 
are classified as dependent. 



After decoding a load instruction, it will be suggested by either a dynamic dependency 
predictor or profiling-based information, into which queue the load should be accommo-
dated. According to this information and taking into account the queue occupancy, the 
load is allocated in the ALQ or the BNLQ. Occupancy information is used to improve the 
balance among both queues. In our current design, if an independent load arrives and the 
BNLQ is full, it is accommodated in the ALQ, since an independent load can always be 
allocated into the associative queue without compromising program correctness. Al-
though it is out of the scope of this paper, more sophisticated distribution policies can be 
devised. For example, distribution could also take into account the occupancy of the dif-
ferent BNLQ banks. 

Table 1. Static load distribution. We show for each benchmark the percentage of static loads that 
are independent for all its dynamic instances, the percentage of static loads that are dependent for 
all dynamic instances, and the rest of the static loads in the program. 

bzip2 gap vpr lucas wupwise
Static Always Independent Loads (%) 72 57 39 100 78

Static Always Dependent Loads (%) 17 19 37 0 16
Remaining Static Loads (%) 11 24 24 0 6

apsi fma3d galgel sixtrack art Average
Static Always Independent Loads (%) 86 81 85 66 87 75

Static Always Dependent Loads (%) 7 14 11 23 11 15
Remaining Static Loads (%) 7 5 4 10 2 10  

 
In a profiling-based system, every static load is tagged as dependent or independent 

based on profile. This way, load dependency prediction is tied to the static instructions. 
Results in Table 1 show that this is a reasonable approach given that the runtime depend-
ency behavior of static load instructions remains very stable. Only 10% (on average) of 
the load instructions in our simulations change their dependency behavior during program 
execution. Nevertheless, apart from profiling, load annotation involves some changes in 
the instruction set so that it is possible to distinguish between dependent and independent 
load instructions. 

We have chosen a dynamic approach where dependency prediction is generated dy-
namically. To store the prediction information, we can augment the instruction cache or 
use a dedicated, PC-indexed table. We have opted to use a PC-indexed prediction table as 
in the Alpha 21264 [1]. All loads are initially considered as independent. However, as 
will be explained below, this initial prediction is changed if a potential dependency is 
detected. Once a prediction has been changed, this prediction will hold during the rest of 
the execution. This decision, which is based on the stable behavior observed in Table 1, 
simplifies the implementation and has little impact on the prediction accuracy. Unlike the 
profiling approach, this alternative needs neither change in the instruction set architecture 
nor profiling. However, as mentioned above, it requires extra storage and a prediction 
training phase. 

Our results indicate that both strategies provide similar performance. In this paper, we 
have only explored the dynamic version given that its extra cost (in terms of design com-
plexity and power) is insignificant. 



3.4 Load-Store Replay and Dependency Predictor Update 

Once the memory instructions are distributed to their corresponding queues, it is neces-
sary to perform different tests to detect violations of the memory consistency. 

As described above, in a conventional LQ-SQ mechanism, these violations are detected 
using associative searches. Our proposed mechanism follows the same strategy for those 
loads accommodated in the ALQ. However, for those loads accommodated in the BNLQ, 
an alternative mechanism needs to be incorporated to detect potential violations. As in 
[5], our implementation adds a small table of two-bit counters, denoted as EBF (Figure 2). 
When a load of the BNLQ is issued, it indexes the EBF based on its effective address and 
increases the corresponding counter. When the load commits, the counter is decremented.  
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Fig. 3. Dependence predictor update in the DPU mode when loads commit. 

When stores are issued, miss-speculated loads accommodated in the ALQ are detected 
by performing an associative search, as in a conventional mechanism. Miss-speculated 
loads in the BNLQ are detected by indexing the EBF with the store’s EA. If the corre-
sponding counter is greater than zero, a potentially truly dependent load is in-flight. In 
this case, our mechanism conservatively squashes execution from the subsequent load and 
triggers a special mode, denoted as DPU (dependency predictor update mode), to update 
the dependency prediction information.  Note that any in-flight load that aliases with the 
store in the EBF causes a squash, independent of its relative position to the store. This is 
why we use a broadened notion of dependency. 

Two different hashing functions (H0 and H1) have been proposed in [5] for indexing 
the EBF. H0 uses lower order bits of the memory instruction address to index into the 
hash table, whereas the H1 uses profile to index the EBF using those bits in the addresses 
that were the most random. We have opted to employ H0, given that H1 does not provide 
any significant improvement. In fact, for a large enough EBF, H0 outperforms H1 in our 
simulations. 

When a store triggers the DPU mode, its corresponding EBF index and EBF counter 
are saved in special registers (see Figure 3). During the DPU mode, when a load commits, 



its prediction is changed to dependent if its hashed EA matches with the EBF index value. 
Based on the saved EBF counter value, this mode is held until all the in-flight loads that 
aliased with the trailing store have committed. 

4   Experimental Framework 

We evaluated our proposed load-store queue design on a simulated, generic out-of-order 
processor. The main parameters used in the simulations are summarized in Table 2. As 
the evaluation tool, we employed a heavily modified version of SimpleScalar [6] that in-
corporates our LQ-SQ model and a tuned Wattch framework [7] that models the energy 
consumption in the proposed LQ-SQ mechanism. 

Table 2. System Configuration 

Processor Caches and Memory 
8-issue out of order processor 
Register File: 
256 integer physical registers 
256 floating-point physical registers 
Units: 
4 integer ALUs, 2 integer Mult-Dividers, 3 
floating-point ALUs, 1 floating-point Mult-
Dividers 
Branch Predictor:  
Combined, bimodal: 8K entries 2level, 8K 
entries, 13 bits history size, meta-table: 8K 
entries 
BTB: 4K entries 
RAS: 32 entries 
Queues: 
I-Queue: 128 entries 
FP-Queue: 128 entries 

L1 data cache: 
32-KB, 4-way, LRU, latency: 3 cycles 
 
L2  data cache: 
2-MB, 8-way,LRU, latency: 12 cycles 
 
L1 instruction cache: 
64-KB, 2-way, LRU, latency: 2 cycles 
 
Memory access: 
100 cycles 
 
 
 
 
 
 

Standard LQ-SQ  
LQ: 80 entries  
SQ: 48 entries 

Proposed LQ-SQ  
ALQ: 32 entries 
BNLQ: 3x16 entries 
SQ: 48 entries 
EBF: 4K entries 

EBF-based LQ-SQ 
Non-Asoc-LQ: 80 entries 
SQ: 48 entries 
EBF: 4K entries 

 
The evaluation of our proposal has been performed selecting several benchmarks from 

the SPEC CPU2000 suite. In selecting those applications, we tried to cover a wide variety 
of behavior. We simulated single sim-point regions [8] of one hundred million instruc-
tions. 

We have simulated three different schemes: a conventional LQ-SQ mechanism (base-
line configuration), our proposed alternative and the original state filtering scheme pro-



posed in [5]. The associative LQ from the conventional approach provides 80 entries, 
whereas the ALQ from our proposal provides only 32 entries. Our BNLQ allocates 3 
banks with 16 entries in each bank, whereas the non-associative LQ (NLQ) of the original 
scheme has 80 entries. The EBF provides 4096 2-bit saturating counters. For this reason, 
if more than 4 issued loads happen to hash into the same entry, a potential issue of a fifth 
load would stall until any of the others commit (this situation almost never occurs in our 
experiments). 

5   Experimental Results 

Tables 3 and 4 report performance gains over the baseline configuration, as well as en-
ergy savings achieved in the load-store queue and in the whole processor. The original 
proposal of Sethumadhavan [5] manages to reduce the energy spent in the LQ-SQ 
mechanism (Table 3), but both overall energy and performance suffer a significant drop 
due to squashes caused by dependence violations. 

Table 3. Energy savings and performance loss for the original Sethumadhavan’s state filtering ap-
proach. A negative value for performance denotes performance loss over the conventional LQ-SQ, 
while a positive value for the energy means energy savings. 

bzip2 gap vpr lucas wupwise
∆IPC (%) -37,3 -9,5 -21,9 -7,3 -14,3

∆ LQ-SQ Energy (%) -3,7 16,5 5,8 13,2 26,1
∆Energy (%) -24,0 -5,3 -18,6 -3,4 -5,2

apsi fma3d galgel sixtrack art Average
∆IPC (%) -15,7 -5,6 -5,5 -30,4 -41,6 -18,9

∆ LQ-SQ Energy (%) 23,7 30,5 33,4 -2,6 -14,8 12,8
∆Energy (%) -5,3 -0,7 0,1 -28,3 -46,8 -13,8  

Our scheme (Table 4) outperforms this previous proposal by reducing dramatically the 
number of squashes, which allows for a negligible performance loss (less than 0.6% on 
average). Besides, the splitting of the LQ into a set of smaller tables (ALQ + 3xBNLQ) 
further improves energy consumption. On average, our implementation saves 35% energy 
in the LQ-SQ, which translates into an important reduction in the whole processor 
(around 3.25%). 

We should remark that, although the end results are quite satisfactory, our current de-
pendency predictor is far from ideal.  On average, about 50% of all loads are classified as 
dependent, most falsely so due to conflict of hashing function: only 23% of loads will be 
classified as dependent loads if a hash table with an infinite size is used. This observation 
suggests that there is still significant room for improvement, which motivates us to in-
clude more accurate prediction and bloom filter hashing in future implementations. 



Table 4. Energy savings and performance loss of our proposed LQ-SQ design. A negative value for 
performance denotes performance loss over the conventional LQ-SQ, while a positive value for the 
energy means energy savings. 

bzip2 gap vpr lucas wupwise
∆IPC (%) -0,02 -1,08 -0,47 -0,28 -0,01

∆ LQ-SQ Energy (%) 32,9 29,4 31,4 24,6 44,7
∆Energy (%) 3,59 3,66 3,44 1,45 4,37

apsi fma3d galgel sixtrack art Average
∆IPC (%) -1,92 -0,01 -0,50 -0,05 -1,32 -0,57

∆ LQ-SQ Energy (%) 45,6 49,2 29,5 32,4 33,2 35,28
∆Energy (%) 3,72 4,23 2,77 4,26 2,24 3,37  

6   Related Work 

Recently, a range of schemes have been proposed that use approximate hardware hashing 
with Bloom filters to improve LSQ scalability [5, 9]. These schemes fall into two broad 
categories. The first, called search filtering, reduces the number of expensive, associative 
LSQ searches [5], and in partitioned search filtering [9], reduces the number of entries 
that the hardware must search if a search must be done. In the second category, called 
state filtering, LSQs handle memory instructions that are likely to match others in flight, 
and Bloom filters (denoted as EBF in [5]) encode the other operations that are unlikely to 
match. In [5] they report only one simple preliminary design, in which the LQ is com-
pletely eliminated and all loads are hashed in the EBF. Experimental results using such 
scheme suffered a significant performance loss. Our work improves upon prior art and 
provides an EBF-based design with a negligible performance penalty (1% on average). In 
addition, we have also extended early studies by evaluating the power consumption of 
both schemes. 

In the LSQ domain, several researchers have proposed alternative solutions to the dis-
ambiguation challenges. Park et al. [10] proposed using the dependence predictor to filter 
searches to the store queue. Cain and Lipasti [11] proposed a value-based approach to 
memory ordering that enables scalable load queues.  Roth [12]   has  proposed  combining 
Bloom  filters,  address-partitioned  store queues,  and  first-in,  first-out  retirement 
queues  to  construct  a  high-bandwidth load/store unit. Baugh et al. [13] proposed an 
LSQ organization that decouples the performance-critical store-bypassing logic from the 
rest of the load-store queue functionality, for which they also used address-partitioned 
structures. 

7   Conclusions and Future Work 

In this paper we have presented a state filtering scheme, which with a negligible perform-
ance penalty allows for a significant energy reduction: around 35% for the LSQ, and close 



to 3.5% for the whole processor. These experimental results were obtained using a mod-
erate configuration, in terms of instruction window and LSQ sizes. When employing 
more aggressive configurations, the expected energy savings would be much higher. The 
key points of our proposal are the following: 

– We have designed a simple dependence predictor, specially adapted for using 
with Exclusive Bloom Filters (traditional predictors are not suitable for this 
scheme). 

– We have explored the asymmetric splitting of LQ/SQ, as well as ALQ/BNLQ. 
– Since the BNLQ is not associative, banking is straightforward and provides fur-

ther energy reductions. This also simplifies gating. 
Our future research plans include applying bank gating, as well as dynamic structure 

resizing, both based on profiling information. In addition, we also envisage enhancing 
both the bloom filter hashing and the dependence predictor, since the actual implementa-
tion is too conservative and there is a significant room for improvement. 
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