
Replacing Associative Load Queues:
A Timing-Centric Approach

Fernando Castro, Member, IEEE, Regana Noor, Alok Garg, Student Member, IEEE,

Daniel Chaver, Michael C. Huang, Member, IEEE, Luis Piñuel, Member, IEEE,

Manuel Prieto, Member, IEEE, and Francisco Tirado, Senior Member, IEEE

Abstract—One of the main challenges of modern processor design is the implementation of a scalable and efficient mechanism to

detect memory access order violations as a result of out-of-order execution. Traditional age-ordered associative load queues are

complex, inefficient, and power hungry. In this paper, we introduce two new dependence checking schemes with different design

tradeoffs, but both explicitly rely on timing information as a primary instrument to rule out dependence violation. Our timing-centric

designs operate at a fraction of the energy cost of an associative LQ and achieve the same functionality with an insignificant

performance impact on average. Studies with parallel benchmarks also show that they are equally effective and efficient in a

chip-multiprocessor environment.

Index Terms—LSQ, memory disambiguation, energy efficiency.

Ç

1 INTRODUCTION

WITH high operating frequency, modern out-of-order
processors often need to buffer a very large amount of

instructions to be able to overlap useful processing with
relatively long latencies associated with accesses to lower
levels of the memory hierarchy. Processor features such as
multithreading further increase the demand on the instruc-
tion buffering capability. However, increasing the number
of in-flight instructions requires scaling up different micro-
architectural structures, which has a significant impact on
energy consumption, especially if the structure is accessed
associatively.

One such example is the logic that enforces correct
memory-based dependences, commonly referred to as the
load-store queue (LSQ), and typically implemented as two
separated queues: the load queue (LQ) and the store queue
(SQ). Conventional implementations of these queues contain
complete addresses and their entries are allocated in program
order. To enable early execution of loads without compromis-
ing program correctness, memory instructions are tracked
by the two queues and associative searches are used to find
the correct producer or to detect dependence violations.

These associative search operations are a major concern for
the scalability of these queues. Not only energy consumption

increases with the size of the queue, the latency of accesses
also worsens and may present complications in the logic
design. As such, a range of implementations that avoid
associative searches has been explored recently. The main
observation behind these designs is that memory-based
dependencies are very infrequent, and hence, through clever
filtering or prediction, it is possible to reduce the number of
associative accesses.

In this paper, we introduce an alternative timing-centric

dependence violation detection strategy. The central ob-
servation is that memory instructions very often execute in
such a manner that dependence violations can be ruled out
solely based on the instruction execution timing. For these
cases, conventional approach designed to capture all
possible violations becomes an overkill and a source of
energy waste as expensive associative searches are per-
formed unconditionally. We show that a timing-centric
strategy can be implemented with simple circuitry and with
virtually no performance degradation compared to con-
ventional design. In this paper, we discuss two realizations
of this strategy. One performs violation detection early at
the execution time, the other delays the action to the
commit time. In both cases, the conventional associative LQ
is replaced with a more efficient implementation.

The rest of this paper is organized as follows: Section 2
recaps the conventional design of the LQ. Section 3
motivates the timing-centric approach. Sections 4 and 5
present two alternative implementations. Section 6 presents
experimental results and analyses. Section 7 discusses
related work. Finally, Section 8 concludes.

2 CONVENTIONAL DESIGN

2.1 Memory Dependence

Out-of-order microprocessors typically allow early execu-
tion of loads for high performance, even if some older

496 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

. F. Castro, D. Chaver, L. Piñuel, M. Prieto, and F. Tirado are with the
ArTeCS Group, Departamento de Arquitectura de Computadores y
Automática, Facultad de C.C. Fı́sicas, Universidad Complutense de
Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
E-mail: fcastror@fis.ucm.es,
{dani02, lpinuel, mpmatias, ptirado}@dacya.ucm.es.

. R. Noor, A. Garg, and M.C. Huang are with the University of Rochester,
160 Trustee Rd, Rochester, NY 14627.
E-mail: {noor, garg, huang}@ece.rochester.edu.

Manuscript received 26 July 2007; revised 31 Dec. 2007; accepted 23 July
2008; published online 6 Aug. 2008.
Recommended for acceptance by M. Yousif.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-07-0386.
Digital Object Identifier no. 10.1109/TC.2008.146.

0018-9340/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

stores have not yet been resolved.1 Thus, when an earlier
store does access the same memory location, the data
returned by the earlier speculative load becomes incorrect
and the processor must take a corrective action to ensure
the sequential semantics. This dependence enforcement is
achieved using age-ordered LQ and SQ.

When a load executes, in addition to the cache access, its
address is checked with all older stores in the SQ. If a
match is detected, the youngest store forwards the data to
the load (load forwarding). Conversely, when a store
executes, it must check the LQ looking for younger loads
to the same address that have executed prematurely. When
matches are found, the processor needs to reexecute (or
replay) premature loads and their dependents. To simplify
implementation, processors typically replay many more
instructions (such as all instruction groups following the
store [1]), as these premature loads are rare in general and
sometimes extra logic is employed to further reduce their
occurrence [2].

2.2 Cache Coherence

The LQ also serves the purpose of maintaining load-load
ordering for coherence. A cache-coherent design requires
write serialization (WS): all writes to the same location have
to appear in the same order to all processors. Even in a
relaxed consistency model [3], [4], where a load from one
processor need not have a defined order with a store from
another processor, this following sequence of events (all to
the same memory location) is illegal as it violates WS (as
shown in Fig. 1): 1) load j issues, obtaining some data X;
2) an invalidation message then arrives due to a store from
another processor; 3) finally, load i, older in program order
than j, issues and obtains the new data Y . This effectively
makes the store of Y appear earlier than the store of X. In
this case, the common practice is to replay from load j to
ensure that it gets newer data [1], [2].

Detecting this sequence is not trivial, however. This is
because none of the individual ordering is illegal, not even
the reordering of i and j. It is the combination that is not
allowed. In [1], every invalidation will search the entire LQ
to mark a bit for any matching loads. Every load will also
search the entire LQ. If a matching younger entry is found
and the aforementioned bit is set, the sequence has
occurred and the corrective action is taken. As modern
processors are almost all cache-coherent, at least with

respect to DMA operations, WS becomes a standard feature
even for uniprocessors.

2.3 Sequential Consistency

When a system implements sequential consistency (SC),
it needs to present an image of a global ordering: all
processors issue memory requests as if following some
sequential ordering and the requests from each processor
follow the program order. Presenting this image allows the
programmer to argue about program behavior relatively
easily. It does not necessarily limit the implementation to
sequentially performing memory operations. Indeed, high-
end microprocessors supporting SC allow load instructions
to speculatively issue early and perform corrections when
such speculation may violate the SC model. For instance, in
MIPS R10000 [5], loads and stores have the appearance of
being performed at the time of commit, but a load can issue
early because so long as the memory location is not
changed in between issue and commit, the result would
be the same. Hence, if the location is changed—manifested
as an invalidation received before the commit of the
load—then the result from the speculatively issued load
cannot be trusted. Thus, during an invalidation, the LQ is
searched to find any loads that have been issued to the
cache line. If so, the load and all subsequent instructions are
basically squashed and reexecuted.

In summary, in a typical microarchitecture, the LQ is
being searched very frequently, by all stores, loads, and
external invalidation messages. As current processors are
routinely designed to have a capacity of hundreds of in-
flight instructions, the LQ also needs to have a fairly large
size to support that capacity. Clearly, large associative
queues with wide entries (full address) and multiple ports
are undesirable in wide-issue, high-frequency designs. In
addition to creating timing challenges, they consume
significant energy.

3 A TIMING-CENTRIC APPROACH

An important inefficiency in conventional design is that it
does not fully exploit the common case: actual order
violations are rare; and ruling out a violation can often be
done very inexpensively, with partial information: timing.

A memory ordering violation happens only when both
temporal and spatial conditions are satisfied. For instance,
only when a load executes before an older store and they
overlap in address will there be a memory dependence
violation. Although processors allow out-of-order issue of
memory instructions, in typical programs, the execution
order of memory instructions is often not wildly different
from the program order. Thus, the timing condition for a
violation is quite hard to establish. Therefore, observing the
timing condition alone can be sufficient for ruling out
violation. This point is easily illustrated by an extreme
example: in a uniprocessor, if all memory instructions
happened to be issued all in program order, the forwarding
logic in the SQ already ensures memory dependence and
without any knowledge about the addresses used, we can
still be certain of the absence of any memory dependence
violation.

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 497

1. A store has two operands—the address and the data—which can be
separately handled [1]. The store is resolved when the address is ready. If
only the address of a store is ready, the SQ cannot perform forwarding and
instead will reject the consumer load to issue later [1]. We assume such an
implementation in this paper.

Fig. 1. Example of violation of WS.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

Based on this observation, we propose a timing-centric
approach to violation detection where we focus on memory
instructions’ ordering and rely on execution timing and the
instruction’s program order (or age) to rule out violation
and eliminate the need for any further action in the
common case. In contrast, a conventional LQ performs the
(expensive) associative address comparisons uncondition-
ally leading to energy waste.

Even though timing information is not always enough
to lead to definitive conclusions by itself, it can still serve
as a first-cut filtering mechanism, which allows a more
efficient implementation to perform further inspection of
the addresses information. In the following, we will show
two different flavors of implementation. Both use very
simple indexing tables for address inspection and no
associative LQ is needed.

4 ISSUE-TIME MEMORY DEPENDENCE CHECKING

The first timing-centric implementation we propose is
similar to the conventional design in that the memory
dependence violation checking is still performed at the issue
time of a store instruction [6] and the goals of individual
actions are all the same. The only difference is the circuits
used to perform the actions.

4.1 Hash Table-Based Tracking

The key difference between our timing-centric design and the
conventional design is that we explicitly assign and track the
age of loads. Recall that determining whether a store-load
replay is needed requires two pieces of information: address
and age. Conventional design allocates an LQ entry for each
load at dispatch time in program order thereby implicitly
encoding the age information within the position of the entry.

By explicitly encoding and tracking the age, we no
longer need to allocate an entry for every load at the early
stage of dispatch. Instead, we use the simple, oft-used
indexing table or a hash table. We refer to this table as the
load table. Upon execution, each load will use the address to
hash into the table and record its age. When a store
executes, the address is also used to hash into the load
table. If the age recorded in the entry is younger than that of
the store, then the load and store are executed out of order
with respect to each other. Since they map into the same
entry, their addresses are conservatively assumed to be the
same, and a replay is triggered to correct the (possible)
dependence violation.

Clearly, multiple loads can hash into the same entry of
the load table. We simply keep the age of the youngest load.
This is because the existence of an order violation is all-
important, whereas the identity of the load(s) involved is
dispensable. Keeping the age of the youngest load is
sufficient to detect the existence of order violation. When a
replay is needed, we can simply replay from the instruction
following the store in program order—rather than starting
from the oldest load among all triggering loads. In fact,
trying to identify the oldest load that needs to replay
requires additional circuit complexity, which existing
processors such as the IBM POWER 4 chose to avoid [1].
It, too, replays from the store onward.

4.1.1 Representing Age

In the conventional design, load and store ages are
recorded largely implicitly—by their relative position in
the associative queues. For timing-centric dependence
checking to work, we need to explicitly track and compare
instructions’ age to determine if they have issued out of
program order. As long as comparison is possible and there
is no ambiguity, any age representation will work. In
typical microprocessor implementations, ROB entry ID
already serves as a convenient age representation2 and is
used by other microarchitectural structures and thus is an
obvious choice in our design. Later in Section 4.3, we
discuss a simple additional mechanism to make the
representation more suitable for our tasks.

4.1.2 Ensuring Write Serialization

The guarantee of WS can be supported by the hash table
implementation as well. For load instructions, we already
need to perform a read of the hash table to determine
whether the recorded age needs to be updated. Thus,
checking of load-load replay is essentially for free in our
design. In fact, we can simply replay when loads mapping
to the same hash table entry execute out of order, similar
to the way a load-load replay is triggered in Alpha 21264
[2]. However, we choose to make a simple addition to the
circuitry that would reduce unnecessary false replays.
Each entry has an “INV” bit to record invalidations. An
invalidation will also hash into the load table and mark the
INV bit of the entries corresponding to the invalidated
addresses. When a load executes, we inspect the INV bit in
the entry. We only replay when the bit is set and the age
recorded in the table is younger than that of the current
load ðLcÞ.

Similar to the store-load replay, we cannot pinpoint the
identity of the younger loads and have to replay from the
instruction following Lc. Again, such a more conservative
range of replay is already adopted in existing processors for
circuit simplicity [1]. After the replay, we also set the entry’s
age to that of Lc, since all instructions younger than that
have been squashed.

Finally, the invalidation mark needs to be cleared at
some point. Specifically, when an invalidation arrives, the
youngest in-flight load will be recorded by a pointer
ðPyoungestÞ. If another invalidation arrives, the pointer will be
pushed to point to the then youngest load. After the load
identified by Pyoungest retires, all the INV bits will be flash-
cleared. In the extremely unlikely case where invalidations
are so frequent that clearing never happens, all INV bits
will probably be set. Then, the circuit essentially falls back
to ensuring all loads mapping the same location always
happen in program order [2].

4.1.3 Supporting Sequential Consistency

SC can also be supported with the load table. Recall that
in R10000 [5], if an invalidation overlaps with an in-flight
load instruction that has issued, the instructions from the
load onward will be squashed. Similarly, if an invalidation

498 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

2. Strictly speaking, ROB entry ID is a representation of “date of birth,”
not age in the conventional sense. So, the larger the number, the younger
the age.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

covers a load table entry with a valid age, we need to
conservatively replay. Note that because the load table
only records the age of the youngest load, we cannot
identify the oldest load that potentially violates SC. Thus,
we can only conservatively replay from the oldest in-flight
load instruction.

4.2 Handling Multiple Data Sizes

Unfortunately for memory order tracking, accesses come at
different sizes: from 1 to 8 bytes or even larger. This creates
a challenge to accurately and efficiently track accesses: If
tracking happens at a fine granularity (e.g., byte), a wider
access needs to simultaneously mark multiple entries. This
creates the need for a bigger tracking table and increases
circuit complexity. If, on the other hand, tracking is done at
a coarse granularity, e.g., 8-byte quadword,3 we lose the
ability to distinguish two finer grain accesses to two
different portions within the same quadword. In general,
we found this to be an acceptable approximation in our
test environment. However, for certain applications, this
can result in pathological scenarios and can create
numerous spurious replays. Consider a conceptual exam-
ple: If a loop performs a read-modify-write cycle on an
array of bytes and the issue logic favors loads over stores,
then there can be many reorderings of stores and loads
from consecutive iterations to neighboring bytes. These
would be incorrectly construed by the coarse-grain track-
ing logic as order violations to the same memory location,
resulting in unnecessary replays and performance losses.

4.2.1 Tracking Loads

One approach to handle multiple access widths efficiently
and without complicated circuitry is to use a two-tiered
system: a main table to track the predominant access width
(64 bits, or quadword in our experimental system) and a
“side” table to keep additional fine-grain information. For
the programs we studied, fine-grain accesses are less
numerous and the side table need not be big in size. If a
quadword is being accessed at the granularity of byte, the
main table only tracks the age of the youngest instruction
accessing any part of the quadword whereas the side table
can tell us the age of instructions accessing every one of the
8 bytes within the quadword (Fig. 2). At any moment, the
fine-grain tracking of any quadword is done at a fixed
granularity. This granularity, however, can be different for
different quadwords and can change over time for the same
quadword. The mechanism works as follows:

Each entry in the main table contains 2 bits to encode the
current tracking width. When a load-quadword instruction
executes, it only accesses the main table. When a load
instruction with a narrower width executes, we may start to
track at a finer granularity. This happens when there are no
other pending loads accessing the quadword, i.e., the
entry’s age is invalid. At this time, the load will set the
entry’s width field to its own width and proceed to the side
table to update it. It will also set the age of the main table.
This way, the main table always contains the age of the

youngest load that accessed any part of the quadword. (This
allows us to avoid the circuit complexity of having to scan
multiple entries as will be explained later.) If, when a load
executes, the main table’s entry is valid, then we compare
the entry’s existing width and that of the load. There are
three possible cases: the entry’s width is 1) the same as,
2) wider than, or 3) narrower than that of the load.

Case 1 is the most straightforward to handle. We simply
update the main table and, if the width is less than
quadword, the side table.

In case 2, because we are already tracking at a coarser
granularity, finer grain information is useless. So, we
simply “upgrade” the width of the load to the same as
the entry’s and proceed as in case 1.

In case 3, we can potentially treat the wider load as a
collection of loads with narrower width and keep on
maintaining fine-grain information currently tracked by
the system. However, we want to avoid the complexity of
having to access and update multiple entries. Thus, we
forgo the fine-grain information we have accumulated so
far and upgrade the entry’s width. It is nontrivial to
determine the correct age to keep at the new granularity as
can be explained by an example.

In Fig. 2, we show a sequence of four instructions in
which the two younger ldb instructions execute first. The
figure shows the state of the two tables after their execution.
When ldl executes, we will upgrade the tracking width to
longword. Note that the way the side table is indexed
depends on the width. For instance, to track words, the least
significant bit is ignored and a quadword maps to eight
consecutive entries. When the tracking width changes from
byte to longword, the same quadword maps to an entirely
different region of two consecutive entries. To get the most

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 499

3. Our study uses Alpha ISA and we follow their terminology to refer to
8-, 16-, 32-, and 64-bit quantities as byte, word, longword, and quadword,
respectively [2].

Fig. 2. Example of table update with width and age upgrades. ldl, stl,
and ldb stand for load-longword, store-longword, and load-byte,
respectively. For illustration purposes, the example shows a side table
with only 16 entries and takes the four least significant bits of byte, word,
or longword addresses, depending on the access width. The state
shown is after the two ldb instructions have finished execution. The
current tracking width (01) of the quadword is byte.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

accurate information, we should scan the old entries to
update the new ones. Specifically, find the youngest age
among entries 8 to 11 and update entry 2 unless it has an
even younger age. Similarly, we need to scan entries 12 to
15 and update entry 3. Hard-wired logic is unsuited for
iterative tasks such as scanning different entries to con-
solidate information.

Our solution, therefore, is simply to always upgrade all
the way to quadword whenever an upgrade is required.
This way, the side table is not accessed at all and the main
table entry already contains the age of the youngest load
accessing any part of the quadword. With this policy, there
is never any need to either read or update more than one
entry in the side table. Though this loses some information
and is conservative, the only impact is on performance as it
might generate spurious replays. In our testbed, we found
that width upgrades are extremely rare to begin with, and
that spurious replays due to width upgrades are even rarer.
This justifies using the simple circuit. In other environments
such as x86, width upgrades may not be as rare and a more
involved circuit to scan and update multiple entries may be
warranted.

4.2.2 Checking the Tables

When a store executes, it compares its age to that in the
corresponding entry in the main table. If the store’s age is
younger, then no replay is needed. Otherwise, we may need
to replay. However, if the store has a narrower width, we
may have more fine-grained tracking information from the
side table that can rule out violation.

If the store’s width is the same or narrower than the
corresponding entry’s width, we simply treat the store as a
wider access (with the same width as the entry) and consult
the side table to determine whether we replay. However, if
the store’s width is wider that the entry’s, the side table still
contains more information about access ordering, but it
does so in a “fragmented” way, and we need to piece
together the information from multiple entries, which we
avoid as before. In this case, we simply ignore the side table.

In summary, the side table essentially provides some
extra space to allow us to “zoom in” and track select
quadwords at a finer granularity. At any time, a single
quadword is tracked with only one data width. However,
that width differs from quadword to quadword. The entries
in the side table, therefore, are tracking different widths. For
circuit simplicity, the side table never requires update or
checking of multiple entries. In general, we found the side
table does not need to be as big as the main table. Hashing
conflicts may incur spurious replays but do not affect
correctness.

4.2.3 Handling Unaligned Accesses

A memory access is unaligned when the starting address is
not a multiple of the size of the access. An unaligned access
of, say, a word, straddles the “natural” boundary of two
words. Depending on the exact location, this natural word
boundary can also be the boundary of two longwords or
even two quadwords. Unless the unaligned word straddles
quadword boundary, the unaligned word access can be
treated as an aligned longword or quadword access. In the
cases when the unaligned data straddle a quadword

boundary (regardless of the size of the access), it has to be
treated as an access to both quadwords.

4.3 Pollution-Resistant Age Representation

Using ROB entry ID as an age representation is a source of
spurious replays due to a branch misprediction recovery or
a replay. Recall that updates to the load tables (main table
and side table) occur at execution time when the instruc-
tions are speculative and may be on the wrong path. Later
on, when a misprediction recovery or replay takes place,
the processor rolls back and starts to reuse some ROB
entries for newly fetched instructions and, as a side effect,
reassigns older ages to memory instructions on the right
path. The age recorded in the load tables by the wrong-path
instructions can easily be younger and create the appear-
ance of order violation, which in turn triggers unnecessary
replays. As it turns out, this is actually a very serious source
of false replays: the number of false replays triggered this
way is about 10 times that of true replays.

If we can ensure age representation to monotonically
increase—even during misprediction recovery or replay, we
continue to assign age IDs younger than all squashed
instructions—we can eliminate most of the age confusion
and the resulting false replays. This can be achieved with a
very simple mechanism. We augment the ROB entry ID
with a few bits of prefix. When we squash instructions
during a replay or a recovery, we increment the prefix. This
way, even though the least significant bits of the age
representation (the ROB entry ID) is being rolled back, the
overall age number is still increasing and is guaranteed to
be younger than any squashed instruction. Note that a
prefix is already needed to handle ROB wraparounds [7].
We only increase the number of bits needed. Similar to [7],
if an ROB wraparound demands a prefix increment, but the
new prefix is still being used by in-flight instructions, we
stall the dispatch until the new prefix is freed up. However,
if after a recovery or a branch misprediction we cannot
increment the prefix anymore, we do not stop dispatch but
simply keep using the original prefix.

Finally, it is worth noting that the increment of prefix
cannot prevent certain false replays. Consider a series of
instructions (and their age representation): load l1 (4),
store s (5), branch b (6), and load l2 (7). Suppose all three
memory instructions map to the same load table entry and
the execution order is l1, l2, b followed by a misprediction
recovery, and then s. The execution of l2 will irrevocably
increment the age recorded in the load table’s entry to 7
and create the impression of an order violation when later
s executes, no matter what age we assign to the newly
dispatched right-path instructions.

5 DELAYED MEMORY DEPENDENCE CHECKING

We now discuss a second timing-centric implementation. In
this design, we separate the use of timing and address
information and exploit the timing information to quickly
cut down the dependence checking workload necessary,
which in turn allows us to delay the checking to commit
time so that a simpler, area-, and energy-efficient circuitry
suffices.

500 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

5.1 YLA-Based Filtering

As explained earlier, when memory instructions happen to
issue in program order, certain dependence checking
becomes unnecessary. For instance, when a store searches
the LQ, the intention is to identify any younger load to the
same address that has already issued. The knowledge that
no younger load has ever issued can help avoid accessing
the queue for dependence violation checking altogether. To
know that, we can track explicitly the age of issued loads,
specifically, the age of the youngest one.

5.1.1 The YLA Register

We keep a dedicated register to hold the age of the youngest
issued load. We call the register YLA for Youngest issued
Load’s Age. When a load executes, the YLA register is
updated with the load’s age if it is younger. When a store is
resolved, it compares its age with that recorded in YLA. If
the store is younger, no violation has occurred and no
further action is needed. We call that a YLA hit. Otherwise
(a YLA miss), a potential violation of memory ordering can
exist and additional checking must be done.

5.1.2 Multiple YLA Registers

Dependence violations are only possible if both the store
being executed and the younger issued loads access the
same memory location. Therefore, the YLA-based filtering
can be enhanced by taking into account some address
information. Specifically, we can use multiple YLA registers
to cover different address banks and to spread loads and
stores among them according to their memory addresses (a
few bits are enough). This can increase the probability of
YLA hits, thereby reducing LQ searches.

5.2 Delayed Memory Dependence Checking

Although the simple age-based filtering can be a stand-alone
optimization applied to reduce the associative searches for
the LQ and is in fact very effective, its main appeal really lies
in the new opportunities of more effective designs it enables.
As only a small portion of stores need to check for possible
premature loads, the associative searching can be substi-
tuted with energy-efficient albeit slower processes. Specifi-
cally, for every store, 1) instead of using associative searches
of the LQ, we employ a sequential process to inspect each
possible premature load (we keep a FIFO LQ) and 2) we
delay the process to commit time. We call this scheme
Delayed Memory Dependence Checking (DMDC) [8].

The high-level procedure consists of three steps as
follows:

1. The YLA-based filtering logic classifies stores into
two disjoint sets at issue time: those that do not need
to check for premature loads as no younger loads
have issued earlier and those that do need addi-
tional checking. For convenience, we call them safe
and unsafe stores, respectively. This safety informa-
tion is recorded in the SQ.

2. As an unsafe store commits, it triggers a special
checking mode to start the sequential checking
process.

3. During the checking mode, as a load completes, we
test to see if a memory dependence violation has

happened at execution. Note that the responsibility
of checking conventionally associated with stores is
shifted to loads.

From a high-level point of view, the reason such a
process is viable is twofold. First, although a sequential
process gets less done per cycle (e.g., only checking one
load against a store), the throughput is sufficient as only a
small portion of stores need to enable the delayed checking.
Second, as actual memory dependence violation is typically
very rare, the small delay incurred in identifying depen-
dence violation (by postponing the checking to commit
time) will not result in a significant slowdown.

5.3 Implementation

From an implementation point of view, delaying memory
dependence violation checking is a challenging task as we
need to propagate information through some media to be
used at a later time. The information includes address and
execution timing. Conventionally, the timing information is
implicitly embedded in the queue: When a store issues, by
inspecting the LQ, it is easy to know which loads have
already executed. When we delay the checking, the LQ no
longer provides the correct timing information.

A naive implementation of DMDC would call for
explicit recording of execution time of loads and stores in
the LQ and SQ. Additionally, since the delayed checking
only starts as an unsafe store commits, we would have to
move information kept in the SQ to some other place as the
SQ entry is recycled. Instead of introducing these complex-
ities, we choose a much simpler circuit. With this design,
we introduce approximations in both timing and address
information.

The algorithm is simple. When a store’s address is
resolved, the YLA registers are consulted to determine
whether the store is safe. If not, some younger load may
have executed prematurely. The age can be as young as that
indicated in the YLA register corresponding to the store’s
address bank. We will remember that age and later check
every load in between. These loads effectively form a
checking window. The timing approximation is that only
some loads in this window actually executed prior to the
store, but all are treated as potentially premature. The
architectural support needed to encode this checking
window is a single global end check register.

As for the address information, we use a hash table
called the checking table to mark the location of the store.
Two memory accesses are considered overlapping when
they hash to the same entry. At commit time, loads in the
checking window are inspected to see if they map to an
entry marked by the unsafe store. With these supports, we
no longer need any associative LQ. A FIFO-allocated queue
to record the address is enough. In fact, as we will only use
the address to index the checking table, we only need a
queue to record the hash keys of the loads. The operation
procedure is given as follows:

. Issue—store: If a store is unsafe, the end check
register is updated with the content of the YLA
register corresponding to the store’s address bank—
unless the end check register already records a
younger age.

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 501

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

. Issue—load: When a load issues, we record its hash
table entry in the FIFO LQ.

. Commit—store: As an unsafe store commits, it sets
the corresponding entry in the checking table and
triggers the checking mode if not already active.

. Commit—load: During the checking mode, as a load
commits, it indexes the checking table. A marked
entry indicates a possible dependence violation and a
replay is performed. Otherwise, no further action is
required. After the load pointed to by the end check
register commits, the checking mode is terminated
and the checking table is cleaned up.

Local versus global DMDC. Note that in this imple-
mentation described above, the end check register is a global
register in that there can be multiple unsafe stores in-flight
and they all update the register as they issue (can only
increase the checking window size). Thus, when an unsafe
store commits and activates the checking mode, the register
may have been pushed forward by an unrelated store to the
end of its own checking window. In the pathological case,
the end of the checking period can be perpetually pushed
forward and never reached, creating an endless checking
period. Without the chance to clean the table, the prob-
ability of a false replay will become higher and higher. Note
that even in this case, a replay (false or true) will clean the
table. As we will show later, this does not lead to runaway
performance degradation—the worst-case performance im-
pact is 5.8 percent in our experiments.

An alternative to using the global register is to use “local”
information: Each unsafe store can remember its boundary
of checking period and only update the register at commit
time. We call these two options global and local DMDC.

5.4 Exploiting Safe Loads

A very important and cost-effective optimization to the above
design is to identify safe loads. When a load issues, if all older
stores have resolved their addresses, then we can already rule
out the possibility of a store-load replay concerning this load
and mark it as safe. During commit, a safe load bypasses the
checking process even in checking mode. This not only saves
energy but, more importantly, avoids false replays due to the
approximations.

The circuit support to identify safe loads is straightfor-
ward and will not affect SQ timing as it is much simpler
than the forwarding logic: Typically, the forwarding control
signal is generated as follows [9]: The physical address of
the load is sent to the SQ’s address CAM. The match
signals of all the entries then go through a mask logic that
inhibits match signals from entries younger than the load.
These masked match signals then go through a priority
encoder to find the youngest entry for forwarding (Fig. 3a).

To determine the safety of a load, we only need to feed
the bit indicating unresolved address into the same kind of
mask logic and use the masked result to pull down a global
line precharged to high: if any masked bit is high, then the
load is not safe (Fig. 3b).

In summary, the complexity of our proposed implemen-
tation of DMDC is very low as we use various approxima-
tions. The loss of information obviously leads to false replays.
However, as we will see later in Section 6, due to the large

number of loads and stores identified as safe, the number of
false replays is very limited and thus the performance
degradation is low.

5.5 Supporting Coherence and Consistency

DMDC essentially uses simplified forms to record the
timing and address information of loads. Thus, coherence
and consistency functionalities of the conventional LQ can
also be supported, albeit with more conservative policies.
The performance impact of these approximations depends
on the exact consistency model supported and the
characteristics of the coherence traffic.

5.5.1 Ensuring Write Serialization

Recall that WS is violated only when all conditions are
satisfied at the same time: loads executed out of order, an
external invalidation happened in between, and all accesses
are to the same location. In reality, performing a correction
when only a subset of the conditions happen may be
sufficient: it is more conservative and thus guarantees
correctness; and the combination of even a subset of the
conditions may be infrequent enough that the cost of extra
replays is minimal.

In DMDC, the timing information of loads is not kept in
the LQ. Thus, we will not be able to tell if two loads
executed out of program order with respect to each other.
We could add another structure to explicitly track timing as
in Section 4.1.2, but we choose to leverage the existing
DMDC mechanism and achieve WS enforcement economic-
ally and effectively. We do this by ignoring the timing of
the loads and conservatively performing a replay when two
same-location loads are both in-flight when an invalidation
happens. We replay from the younger load. This can be
detected as follows:

We extend the checking table to have one extra bit per
entry to capture the invalidation address—now, each entry
has an INV bit in addition to the original bit(s), which we call
the WRT bit(s). When an external invalidation arrives, the
checking mode is also activated. However, instead of setting
the WRT bit, we set the INV bit of the appropriate entries.

When committing a load during this checking period, the
hash table is indexed. If the WRT bit is set, we replay as
before. If only the INV bit is set, we do not replay as there is
only one load (so far) to the location being invalidated.
Instead, we “upgrade” the entry by setting the WRT bit(s).
This ensures that if a second load to the same location is
discovered in the checking period, a replay will happen.

502 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

Fig. 3. (a) SQ forwarding logic. (b) Safe load detection logic.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

To properly determine the end of the checking period,
we need additional YLA registers. This is because for store-
load dependence checking, YLA registers are best banked
by word address. Since invalidations are at cache line
granularity, we add another set of YLA registers banked by
cache line address. With two sets of YLA registers, every
address maps to one in each set. Of course, a load will need
to update the two and a store is safe as long as one of the
two records an older age.

Finally, we note that when an invalidation message
starts or extends a checking window, a safe load (which is
“safe” with respect to store instructions from the same
processor) within that checking window can no longer be
treated as safe.

5.5.2 Ensuring Sequential Consistency

Supporting SC is very straightforward. We mark INV bit as
before and if a committing load maps to an entry with the
INV bit set, we replay from this load onward and terminate
the checking mode.

5.6 Other Design Options

5.6.1 Handling Multiple Data Sizes

As discussed earlier, memory accesses are performed at
different sizes. Tracking accesses at a coarse granularity (e.g.,
longword) will incur unnecessary replays. However, unlike
the issue-time dependence checking mechanism discussed
in Section 4, the checking table in the DMDC scheme does
not record age IDs but only marks single bits. Therefore, it
is very easy to use a bitmap to preserve more fine-grain
information about the memory accesses. In this paper, we
index the checking table using quadword address but use a
4-bit bitmap to discern accesses with a smaller width.

5.6.2 Using a Checking Queue

In the design discussed above, we use a hash table to
record the store address information. The primary advan-
tage is the conceptual simplicity. As multiple unsafe stores
can have overlapping checking periods, a load may need to
be checked against the address of multiple stores. A hash
table can accommodate any number of stores, and loads
only need indexing. An alternative is to use an associative
checking queue to keep track of the address of unsafe
stores. Of course, when the queue overflows, a replay is
necessary.

5.7 Contrasting the Two Designs

Though both adopt a timing-centric approach to dependence
checking, the two designs have quite different implementa-
tions. The issue-time memory dependence checking (IMDC)
design takes a unified dependence checking step and acts
much like a drop-in replacement of the conventional LQ. In
contrast, DMDC is more decoupled, taking two steps to
finish the checking: the first step acting mostly on timing
information, and the second step, the address information.

The chief advantage of such a decoupled approach is the
economy and simplicity of encoding information. The
timing information is maintained by a handful of registers.
This allows a much simpler and cheaper bit table to be used
for address information, providing two tangible benefits.
First, for the same hardware cost, more entries can be

maintained to encode more address information and thus
reduce false replays due to hashing conflicts. Second, as
each access can be represented by only a bit, we can track
different access widths very effectively via a bitmap and can
avoid certain types of false replays that the side table
approach used in IMDC could not avoid.

This better discernment of spatial information comes at

the expense of some loss of information about timing: The
checking window encompasses loads executed after the
store and these loads, if having an overlapping address, will
be misconstrued as having violated execution order and
trigger a false replay. Note that the optimization exploiting
safe loads significantly mitigates this problem. Section 6
shows quantitative results to help understand better the
tradeoff between the two designs.

6 EXPERIMENTAL ANALYSIS

6.1 Experimental Setup

We have evaluated our proposed design using a heavily
modified version of SimpleScalar [10] with the Wattch
extension [11]. The modeling of the LSQ is modified to
faithfully reflect the state of the art in modern micro-
processors. We allow the issue of loads with unresolved
older stores. The SQ supports load rejection [1] and rejected
load retries later. The processor also handles partial

memory matches between memory addresses. For energy
modeling, the Wattch is modified to reflect the common
approach of using a split LQ/SQ organization. A memory
instruction incurs energy cost for insertion in one queue
and associative search of the other. Our table structures are
modeled similarly as a pattern history table used in the
branch predictor, using different number of entries and
entry width, of course. The technology parameters corre-
spond to 0.1 �m, with a 1.9-V Vdd and 1.25-GHz clock.

In the applications and simulation windows we studied,

true store-load replays are very rare, on the orders of a few
per million instructions on average. Even with our approx-
imations, replays remain rare. Thus, PC-based prediction
and replay prevention mechanisms seem unnecessary and
are not modeled for either the baseline or our designs. The
microarchitecture loosely models after POWER4 [1]. Some
of the simulation parameters are listed in Table 1. To
understand the issue of scalability, we use three configura-
tions, varying only the buffering structures’ size.

The uniprocessor evaluation is performed using all
26 benchmarks from the SPEC CPU2000 suite compiled
for the DEC Alpha instruction set. For the experiments, we
simulate single sim-point regions [12] of 100 million
instructions. To better understand the timing-centric design
in multiprocessing environment, we also simulate a set of
10 parallel applications including those in the SPLASH-2
benchmark suit [13] and the parallel version of the traveling
salesman problem [14] (tsp). When simulating parallel

benchmarks, we fast-forward through the initialization
phase and simulate 1.6 billion instructions for all threads
or to completion, whichever comes first. This multiproces-
sor simulator is an in-house version based on SimpleScalar
that supports both SC and DEC Alpha’s consistency model

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 503

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

[2]. The Alpha consistency is used when testing the
enforcement of WS.

As we lack a validated energy model for multiproces-
sors, our parallel benchmark simulation will be focused on
studying the performance impact and the number and
source of false replays. The modeled chip multiprocessor
(CMP) contains eight cores, each as described in Table 1,
taking only config2. However, the L2 cache is a globally
shared 2-Mbyte eight-way (128-byte line) cache. For the
SPLASH-2 benchmarks, the L1 cache size is set to 8 Kbytes,
according to the recommendation in [13] to mimic realistic
cache miss rates. For tsp, the L1 size is 32 Kbytes. Cache
coherence is achieved with a snoop-based MESI protocol
implemented on top of an on-chip bus interconnect with a
one-cycle link latency and a 16-byte link capacity. All write-
serialization and SC incurred replays are modeled follow-
ing [2]—the pipeline is flushed and instruction fetch restarts
from the faulting instruction.

In the following, we perform some quantitative analysis
to further understand the rationale behind age-based
mechanisms and the effectiveness of the proposed designs.
For brevity, applications are treated as two groups—integer
(INT) and floating point (FP)—and most results are only
shown as the average of metrics, often normalized to the
conventional configurations (baselines). As a reference, we
also show the absolute per-application performance results
in the baseline architecture. Results of SPEC benchmarks
are summarized in Fig. 4. Results of parallel benchmarks
are shown later in Fig. 11.

6.2 Overall Comparison

6.2.1 Performance and Energy Results

We start with the bottom-line results where we compare the
performance and energy of complete systems using either

conventional LQ or the timing-centric alternatives (IMDC
and DMDC). For brevity, we use only the local version of
DMDC. Fig. 5 shows the performance impact and the
energy savings (both in the LQ only and processor-wide) in
three configurations.

The figure illustrates the following points. First, by
eliminating the need for associative LQ, most of the energy
consumption of the LQ is eliminated. The added energy
compared to that is very insignificant, especially in DMDC.
As a result, overall energy reduction in implementing the LQ
functionality is about 88 percent to 97 percent, depending on
the design and configuration. Note that this comparison is
very conservative in that we are not considering coherence
requirements. If coherence is considered, the baseline LQ
energy consumption can be far higher as not only far more
searches to the LQ are performed, the LQ itself needs to be
multiported, increasing the cost of every search.

Second, the performance degradation is very limited. The
main reason is that false replays as a result of approxima-
tions in timing-centric designs are relatively rare. In config2
for example, the average number of false replays (DMDC) is
about 25 and 11 per 1 million committed instructions for
INT and FP applications, respectively. The average slow-
down is practically negligible. In DMDC, the worst-case
slowdown among all configurations and for all applications
is only 1.2 percent. Furthermore, without LQ capacity issue
in the timing-centric designs, the chance of stalling is
reduced, which can offset some of the slowdown due to
replays. Indeed, performance can even increase, as seen in
the best-case results in the FP applications.

Third, as the machine scales up its capacity of in-flight
instructions and, in particular, the size of the associative
LQ, the portion of energy spent there also increases. As a

504 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

TABLE 1
Simulation Parameters

Fig. 4. Absolute performance in our baseline configurations.

Fig. 5. LQ energy savings, slowdown, and total processor-wide energy

savings of IMDC and DMDC in three processor configurations. Each bar

shows the average of the group of applications, whereas an “I-beam”

shows the range of the value within that group of the applications.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

result, the energy savings from timing-centric designs

become more pronounced. Overall, taking into account

the energy overhead from the performance degradation

and extra circuit, chip-wide energy savings can be about

2.2 percent to 7.5 percent depending on the design and

configuration (again, conservatively ignoring multiproces-

sor issues).
Finally, DMDC is generally more effective than IMDC,

showing more energy savings and less performance degra-

dation. This is due to the decoupled approach DMDC uses,

which allows a simpler and more effective disambiguation

of address information.

6.2.2 Analysis of Replays

Clearly, the timing-centric approaches involve simpler and

cheaper operations in memory dependence checking: For

the most part, the system performs only comparisons

between one or two pairs of age IDs, which are 12 to 14 bits.

In contrast, conventional LQ performs associative matches

of wide operands (e.g., 64-bit memory addresses) with tens

of others. However, the main cost of the timing-centric

design is false replays due to approximation of address or

timing information. Thus, understanding the replays is very

important.
Fig. 6 shows the breakdown of replays in the timing-

centric implementations. In general, false replays are rela-

tively rare, less than 1 for every 10,000 instructions. False

replays can be roughly broken down into address related

and timing or pollution related. As explained earlier in

Section 5.7, DMDC allows a simpler, more space-efficient

bitmap table to resolve addresses. As a result, we get fewer

hashing conflicts and better handling of accesses with

different widths. Although delaying address comparison to

commit time results in some loss of timing information (and

thus false replays), it naturally eliminates replays falsely

generated by squashed instructions. In contrast, for IMDC,

squashed loads pollute the load table—even though pollu-

tion is mitigated by our age representation.

6.3 In-Depth Analysis

To better understand why the timing-centric approach is

effective, we need some in-depth analysis to reveal the

inner working of the mechanism. For brevity, in the

following, we focus on config2. The results for the other

configurations show similar trends.

6.3.1 YLA-Based Filtering

We first inspect the YLA registers as a filtering mechanism. As
shown in Fig. 7, with even a single YLA register, an average of
81 percent (INT) and 86 percent (FP) of stores can be marked
as safe, and their LQ searches filtered out. With multiple
address-interleaved YLAs, these percentages are even higher.
As shown in Fig. 7, with eight registers, the filtering efficiency
is a remarkable 96 percent to 98 percent—only 2 percent to
4 percent of stores are not marked as safe.

Recall that to support invalidations, we use another set of
YLA registers to determine the end of an invalidation-
triggered checking window. In that case, the YLA registers
have to be cache line interleaved. Naturally, one possibility
is to use only one set of cache-line-interleaved YLA registers.
However, as we can see in Fig. 7, quadword-interleaved
YLA registers are far more effective to handle in-flight
stores. Indeed, using 16 line-interleaved YLA registers, we
are only able to mark about as many safe stores as using four
quadword-interleaved YLA registers. Therefore, we choose
to employ two sets of eight registers each using different
interleaving.

Energy savings. Using YLAs alone can save a significant
number of LQ searches. As a result, energy consumption in
the LQ is also reduced. With eight YLA registers, the
reduction in LQ energy is about 31.7 percent. That translates
into about 1.5 percent processor-wide energy savings. Note
that the savings are obtained without a performance impact.

Comparison with address-only filtering. YLA exploits an
important characteristic of load and store execution to rule
out dependence violation: their relative timing. Using only
one age register, we can already filter out a very significant
portion (81 percent to 86 percent) of stores. When address
interleaving is employed, the effect is quite dramatic—only
a few percent of stores are left unfiltered. In comparison,
this is much more effective than if only address information
is used, such as with a bloom filter (BF) [15], as can be seen
from Fig. 8.

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 505

Fig. 6. Breakdown of store-load replays.

Fig. 7. Percentage of safe stores marked using YLA registers with

different interleaving.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

6.3.2 Checking Window

Table 2 shows some statistics of the checking window for

the DMDC approach. For global DMDC, on average, a

checking window covers about 26 (INT) and 98 (FP)

instructions and has 8 (INT) and 34 (FP) loads in between.

Out of these, only about four to seven loads are unsafe and

need to go through the checking process. Clearly, with only

about 2 percent to 4 percent of stores characterized as

unsafe, and each one only requiring to be cross-checked

with a handful of loads, the sequential process used in

DMDC is sufficient to provide the throughput for depen-

dence enforcement. Furthermore, although DMDC detects a

violation later than conventional system or IMDC, this

delay (19-45 cycles) is relatively small, especially consider-

ing that replays are infrequent.
In local DMDC, due to locally recording checking

window for every unsafe store, the windows are less likely

to overlap to form bigger ones. The effect is that windows

are about 20 percent shorter and contain proportionally

fewer loads. The percentage of safe loads, however, reduces

slightly faster. This is expected as the shrinking windows

are more likely to exclude safe loads.
On average, the processor spends about 7.4 percent (INT)

and 2.2 percent (FP) of the cycles in checking mode. As

there are more safe stores in FP applications in general, it is

more likely to finish the current checking window before

encountering another unsafe store. On average, 51 percent

of the windows contain just one unsafe store. In INT

applications, this becomes 45 percent.

6.3.3 Safe Loads

Safe loads are quite numerous in typical executions. On

average, 91 percent (INT) and 97 percent (FP) of loads are

safe. However, as seen in Table 2, the percentage of safe

loads is much smaller inside the checking window but still

nontrivial, about 35 percent to 56 percent. (This is not

surprising as the checking mode is triggered only when there
are out-of-order executions—and hence nonsafe loads.)

The primary benefit of detecting safe loads is to cut
down the number of false replays. Indeed, with the safe-
load mechanism, the number of false replays is reduced
by an average of 92 percent and as high as 97 percent in
integer applications. In other words, without safe loads,
the number of false replays can increase by more than an
order of magnitude. The simple circuit to detect safe loads
is clearly worthwhile. In FP applications, the reduction is
less significant, about 75 percent.

6.3.4 False Replays

IMDC. Fig. 9 shows the breakdown of the replays in IMDC
into the following categories (from bottom up): true replays,
false replays due to the mismatch between the access width
and the tracking width, those due to hashing conflict, and
finally, those due to table pollution caused by squashed
instructions. We show the results of IMDC using only the
main table (M) and using the main plus the side table (MS).

We see that the results are rather intuitive: 1) Integer
applications tend to have many narrow-width data ac-
cesses, which cause some false replays when we track
access order only using the main table at quadword
granularity. FP applications, on the other hand, have far
fewer replays due to width mismatch when we only use the
main table. With the use of the side table, these false replays
are almost completely eliminated; 2) due to the pollution-
resistant age representation, false replays due to pollution
are moderate. Integer applications tend to suffer more from
table pollution than FP applications, and 3) because the
working set of FP applications is generally larger than their
integer counterpart, hashing conflict-induced false replays
are relatively higher. Because they tend to have fewer
branch mispredictions and replays, pollution-induced re-
plays are fewer for FP applications.

506 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

Fig. 8. Comparison of the filtering capability of using one or eight YLA

registers and BFs with different sizes (H0 hashing function [15] is used).

TABLE 2
Number of Instructions, Loads, Safe Loads within a Checking

Window, and Cycles of Delay in Handling True Replays in
Global and Local DMDC Implementations

Fig. 9. Breakdown of replays in IMDC.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

DMDC. Recall that DMDC makes two approximations
in the dependence checking: address and timing. We can
thus break down the false replays according to the
approximations that triggered them. This breakdown is
shown in Table 3. In the timing approximation, a load may
be suspected of violating dependence with an older store
even though the load actually issued after the store.
Within this type of loads, there are two subcategories. In
the first case (X), the load indeed falls into the checking
window of the store. In the second case (Y), the load does
not even fall into the determined checking window of the
store. However, when multiple checking windows are
merged together, a load will effectively be checked against
other stores, even though it does not belong to their
original checking window.

The first interesting thing to observe from the table is
that the large majority of false replays are triggered
because of either the timing approximation or the address
(hashing) approximation but not both. This suggests that
we can improve upon the two approximations largely
independently.

Second, with the particular configuration studied
(2,048-entry checking table), imperfect hashing is not the
dominant cause of false replays in global DMDC, account-
ing for around 10 percent and 22 percent of all replays for
INT and FP applications, respectively. Thus, increasing the
size of the checking table will have limited effectiveness
due to diminishing returns.

In local DMDC, the main benefit of having smaller
windows is having more chances to clear the table to avoid
unnecessary false replays. The average number of replays
per 1 million committed instructions reduces from 41 to 25
(by 39 percent) for integer codes and from 14 to 11 (by
21 percent) for FP codes. Although the statistics are
imperfect for pinning down exactly which replays are
avoided,4 they do suggest that false replays due to over-
lapping windows (the Y column) are indeed mitigated in
local DMDC.

Pollution-resistant age representation. The pollution-
resistant age representation attempts to increment the age
prefix when a misprediction recovery or a replay takes place.
Without this simple measure, pollution will be rampant and
false replays will be unacceptably high. However, this
measure requires sufficient number of bits in the prefix.
Otherwise, we may frequently encounter the situation where
we cannot increment the prefix and keep using the old one.
We found that 3 bits are insufficient, whereas 5 bits are
enough to make pollution level acceptable.

6.3.5 Performance Comparison of Local and Global

DMDC

Because false replays are already infrequent even in global
DMDC, the difference in energy and performance between
global and local versions of DMDC is insignificant, as can
be seen in Fig. 10. The local version moderately improves
the effectiveness at the expense of a slight increase in design
complexity.

6.3.6 Using Associative Queue in DMDC

Instead of using a hash table in DMDC, another option is to
keep unsafe stores’ address in an associative queue and
check loads against all valid addresses in the queue.

This way, we will not have replays due to hashing
conflicts but instead will have to replay when the queue
cannot accommodate a new store. Based on statistics of the
degree of overlapping checking windows, we estimate that
the checking table we used (2,048 entries) is equivalent to a
16-entry associative queue in terms of average number of
replays. Note that this estimate can only serve as a rough
equivalency measure because individual applications be-
have wildly differently. If we calculate a per-application
equivalent queue size, the results will be so divergent that
their average is perhaps no longer meaningful.

6.4 Multiprocessor Considerations

Due to the various approximations, invalidations gener-
ated in a cache-coherent multiprocessor environment can
also trigger false replays in our timing-centric designs. We
performed studies to quantify the cost associated with our
designs. We model two environments enforcing only WS
(alpha consistency model) and enforcing SC. Fig. 11 shows
the absolute performance in the conventional design and
the relative performance degradation of using our timing-
centric implementation to replace the associative LQ.

On average, the performance degradation is very small,
which suggests that the increase in replays induced by the
timing-centric designs is tolerable. In some cases, increases in
replays degrade performance more noticeably. In other
cases, the performance actually improves (indicated by bars
below the axis) due to the absence of LQ fill-up induced stalls.

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 507

4. Note that the breakdown can fluctuate because 1) having different
replays changes the timing of execution and thus can affect whether other
loads will cause a replay and 2) different timing can affect the way we
categorize false replays in our simulator in certain situations.

TABLE 3
Breakdown of the Number of False Replays per 1 Million

Committed Instructions in Global and Local DMDC

The two subcategories are given as follows. X: load falls into the “real”
checking window of the store. Y: load is checked because multiple
checking windows are merged together.

Fig. 10. The comparison of slowdown between local and global DMDC.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

In fact, when ensuring only WS, we have an average
performance gain. Our results show that extra false replays
due to external invalidations are insignificant when enfor-
cing WS, and tolerable when enforcing SC. Table 4 sum-
marizes the absolute replay rate and a percentage breakdown
by causes.5

Finally, we stress test our system by introducing false
invalidations. The injected invalidations do not actually
cause any cache line invalidation but only force our timing-
centric memory logic to generate more false replays. We inject
extra fake invalidations at an extreme rate of 1 every 10 cycles.
The real invalidation rate observed is only about 1 every
100 cycles. Under this elevated invalidation frequency, with a
relaxed consistency model (enforcing only WS), both IMDC
and DMDC perform essentially the same as without injected
invalidations. The average performance degradation is
0.01 percent and 0.16 percent, respectively. When enforcing
SC, the impact of false replays is more noticeable. The average
performance degradation for IMDC and DMDC is 1.5 percent
and 3.1 percent, respectively. These results suggest that the
approximations are reasonable and the performance results
are quite robust against different degrees of background
invalidation activities.

7 RELATED WORK

In recent years, many schemes are designed to improve the
conventional LSQ. Some schemes continue to rely on
associative queues in these two blocks but cut down their
access frequency using, for example, filtering. Others use

alternative circuit structures, such as indexed queues, to
replace or augment the associative queues.

Sethumadhavan et al. [15] propose to use BFs to cut
down the access of the queues. With a much smaller
hardware budget, our age-based filtering is much more
effective in cutting down unnecessary searches for LQ.
However, we have yet to explore the implementation for
SQ filtering.

Age-based filtering allows us to use a completely
different process for verification: a sequential checking
delayed to commit time (DMDC). Such sequential verifica-
tion at commit time is not a new concept. Gharachorloo et al.
suggested that a conceptual way of detecting speculative
memory accesses that are incorrect is to repeat the access
when the consistency model allows and compare the value
[4]. In an implementation, naively reaccessing the memory
subsystem for every load would lead to elevated memory
bandwidth requirement. To reduce this requirement, timing
and address information of the speculative accesses could be
tracked to enable efficient filtering [16], [17]. The key
difference between DMDC and this past work is that our
focus is efficient circuit implementation. DMDC still follows
the conventional approach of ruling out dependence or
coherence violation through address and timing information
of memory accesses. We showed that by primarily relying on
timing information, we can use cheaper circuitry with
acceptable performance loss. Unlike these value-based
approaches, actual results of the memory accesses are not
used at all in our design.

A central enabling factor for both IMDC and DMDC is
that the relative timing information is very useful in ruling
out dependence violations. While timing information is
implicitly encoded in the conventional age-ordered LQ/SQ,
explicitly recording and comparing age enables new ways
of dependence checking. To that end, Roth [17] also
explores age information. Through a hash table, a load
can know if the last store to the same memory location has
already retired before it is decoded. If so, load reexecution is
not necessary. The intended applications of the two
mechanisms are different and so are the design choices.
For example, false negatives in [17] result in load reexecu-
tion. In contrast, a false negative causes a replay in our

508 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

Fig. 11. Absolute performance of the parallel benchmarks on the

baseline CMP machine enforcing either WS or SC, and performance

degradation caused by IMDC and DMDC. (a) Baseline performance.

(b) Enforcing WS. (c) Enforcing SC.

5. The per-cause absolute replay rate often varies by several orders of
magnitude from application to application. This makes averaging per-
cause absolute rates misleading as they tend to be distorted by extreme
outliers. So, the breakdown is calculated as an average of per-application
breakdown.

TABLE 4
The Breakdown of Replays by Cause and the Geometric Mean
of Total Number of Replays per 1 Million Committed Instructions

Internal replays are caused by dependence violations between instruc-
tions within one processor. External replays are caused by (potential)
violations of WS or SC.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

design, which is much more costly. As such, we need to
keep false replays very rare. Also, while we have a
conventional SQ without speculation, [17] is designed to
support techniques such as SQ speculation [18], [19]. As
such, our age information tracks execution timing, whereas
theirs essentially tracks the commit time of a store.

While our work optimizes the violation detection logic
(LQ), another set of related work optimizes the forwarding
logic (SQ). Many proposals rely on memory dependence
prediction [20], [21] to narrow the range of stores to
forward from. Park et al. [22] employ the store-load pair
predictor to predict the necessity of searching the SQ,
thereby saving SQ search bandwidth. A number of two-
level designs [23], [24], [25], [26] keep only a subset of in-
flight stores in the smaller, faster first-level structure. This
structure is allocated to stores predicted by dependence
predictor or simply according to execution or program
order. The larger second-level structure is either slower,
address-banked, or without forwarding capability. A
number of approaches have been proposed to predict the
exact store for a load to forward from. This is either done
entirely in hardware [27], [28] or with software support
using a feedback-directed approach [29].

Finally, Garg et al. propose Slackened Memory Depen-
dence Enforcement, where loads and stores are allowed to
communicate via an L0 cache with minimum effort to
correctly enforce dependence and simply rely on reexecu-
tion to provide a correctness guarantee [30].

8 CONCLUSIONS

In this paper, we have introduced a timing-centric
alternative to CAM-based LQs. The central observation
behind the proposed designs is that even with out-of-order
execution, a significant majority of loads and stores
demonstrate partial ordering. With the presence of the
forwarding SQ, this partial ordering can rule out store-load
replays in a large majority of cases. This makes a fully
associative LQ an overkill and timing information should be
a primary consideration in implementing a more efficient
memory dependence checking mechanism.

We have presented two different timing-centric designs.
The first one is an issue-time implementation (IMDC),
which can serve as a drop-in replacement for the conven-
tional LQ. While LQ implicitly encodes age information (as
relative position in the queue) and explicitly records
address, IMDC explicitly records age in a hash table, which
implicitly encodes address. This way, power-hungry
associative address comparison is replaced by much more
energy-efficient indexing and simpler age comparison
operations.

The second design, DMDC, further decouples the use of
timing and address information. Age-based filtering is done
using a few address-interleaved registers at instruction
issue time. These registers keep track of age information
and filter out about 95 percent of stores from further
dependence-violation checking. For the remaining stores,
these registers delineate the window of loads that need
further inspection. Due to the remarkably effective filtering,
the remaining loads and stores can be easily inspected using
a sequential checking process at the commit time using only
address information. Compared to IMDC, DMDC brings
two additional benefits. First, it allows an even simpler,

more space-efficient hashing bitmap to be used to track
address information. This in turn cuts down on the number
of false replays due to hashing conflict or access width
mismatch. Second, the commit-time checking process
naturally avoids certain false replays caused by squashed
instructions. These benefits outweigh the cost of timing
approximation due to delaying the checking process.

Besides greatly simplifying the LQ circuit structure, both
designs allow significant savings in LQ energy consumption.
At about 0.3 percent, the average performance overhead is
negligible. Depending on the design and configuration, the
average processor-wide energy savings for SPEC application
suites range between 2 percent and 7 percent. Studies of
parallel benchmarks showed that the timing-centric designs
also work well in multiprocessor environment, with insig-
nificant performance impacts.

ACKNOWLEDGMENTS

This work was supported in part by the Spanish govern-
ment through Research Contract CICYT-TIN 2005/5619,
CICYT-TIN 2008/508, Consolider Ingenio2010 2007/2011,
by the Hipeac2 European Network of Excellence, and by the
US National Science Foundation through Grants 0509270,
0719790, and 0747324.

REFERENCES

[1] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy,
“POWER4 System Microarchitecture,” IBM J. Research and
Development, vol. 46, no. 1, pp. 5-25, Jan. 2002.

[2] Alpha 21264/EV6 Microprocessor Hardware Reference Manual,
Compaq Computer, Sept. 2000.

[3] S. Adve and K. Gharachorloo, “Share Memory Consistency
Models: A Tutorial,” Computer, vol. 29, no. 12, pp. 66-76, Dec. 1993.

[4] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two Techniques
to Enhance the Performance of Memory Consistency Models,”
Proc. Int’l Conf. Parallel Processing (ICPP ’91), pp. I355-I364,
Aug. 1991.

[5] K. Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.

[6] A. Garg, F. Castro, M. Huang, L. Piñuel, D. Chaver, and
M. Prieto, “Substituting Associative Load Queue with Simple
Hash Table in Out-of-Order Microprocessors,” Proc. Int’l Symp.
Low-Power Electronics and Design (ISLPED ’06), pp. 268-273,
Oct. 2006.

[7] P. Jordan, B. Konigsburg, H. Le, and S. White, Data Processing
System and Method for Using a Unique Identifier to Maintain an Age
Relationship between Executing Instructions, US Patent 5,805,849,
Sept. 1998.

[8] F. Castro, L. Piñuel, D. Chaver, M. Prieto, M. Huang, and
F. Tirado, “DMDC: Delayed Memory Dependence Checking
through Age-Based Filtering,” Proc. 39th Ann. IEEE/ACM Int’l
Symp. Microarchitecture (MICRO ’06), pp. 297-308, Dec. 2006.

[9] S. Meier, Store Queue Multimatch Detection, US Patent 6,523,109,
Feb. 2003.

[10] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,”
Technical Report 1342, Computer Sciences Dept., Univ. of
Wisconsin-Madison, June 1997.

[11] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
27th Ann. Int’l Symp. Computer Architecture (ISCA ’00), pp. 83-94,
June 2000.

[12] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program Behavior,”
Proc. 10th Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’02), pp. 45-57,
Oct. 2002.

[13] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Ann. Int’l Symp. Computer Architecture
(ISCA ’95), pp. 24-36, June 1995.

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 509

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

[14] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
and W. Zwaenepoel, “TreadMarks: Shared Memory Computing
on Networks of Workstations,” Computer, vol. 29, no. 2, pp. 18-28,
Feb. 1996.

[15] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, and
S. Keckler, “Scalable Hardware Memory Disambiguation for
High ILP Processors,” Proc. 36th Ann. IEEE/ACM Int’l Symp.
Microarchitecture (MICRO ’03), pp. 399-410, Dec. 2003.

[16] H. Cain and M. Lipasti, “Memory Ordering: A Value-Based
Approach,” Proc. 31st Ann. Int’l Symp. Computer Architecture
(ISCA ’04), pp. 90-101, June 2004.

[17] A. Roth, “Store Vulnerability Window (SVW): Re-Execution
Filtering for Enhanced Load Optimization,” Proc. 32nd Ann.
Int’l Symp. Computer Architecture (ISCA ’05), pp. 458-468,
June 2005.

[18] S. Subramaniam and G. Loh, “Fire-and-Forget: Load/Store
Scheduling with No Store Queue,” Proc. 39th Ann. IEEE/ACM
Int’l Symp. Microarchitecture (MICRO ’06), pp. 273-284, Dec. 2006.

[19] T. Sha, M. Martin, and A. Roth, “NoSQ: Store-Load Communica-
tion without a Store Queue,” Proc. 39th Ann. IEEE/ACM Int’l Symp.
Microarchitecture (MICRO ’06), pp. 285-296, Dec. 2006.

[20] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi, “Dynamic
Speculation and Synchronization of Data Dependences,” Proc.
24th Ann. Int’l Symp. Computer Architecture (ISCA ’97), pp. 181-193,
June 1997.

[21] G. Chrysos and J. Emer, “Memory Dependence Prediction Using
Store Sets,” Proc. 25th Ann. Int’l Symp. Computer Architecture
(ISCA ’98), pp. 142-153, June/July 1998.

[22] I. Park, C. Ooi, and T. Vijaykumar, “Reducing Design Complexity
of the Load/Store Queue,” Proc. 36th Ann. IEEE/ACM Int’l Symp.
Microarchitecture (MICRO ’03), pp. 411-422, Dec. 2003.

[23] H. Akkary, R. Rajwar, and S. Srinivasan, “Checkpoint
Processing and Recovery: Towards Scalable Large Instruction
Window Processors,” Proc. 36th Ann. IEEE/ACM Int’l Symp.
Microarchitecture (MICRO ’03), pp. 423-434, Dec. 2003.

[24] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai,
“Scalable Load and Store Processing in Latency Tolerant
Processors,” Proc. 32nd Ann. Int’l Symp. Computer Architecture
(ISCA ’05), pp. 446-457, June 2005.

[25] E. Torres, P. Ibanez, V. Vinals, and J. Llaberia, “Store Buffer
Design in First-Level Multibanked Data Caches,” Proc. 32nd
Ann. Int’l Symp. Computer Architecture (ISCA ’05), pp. 469-480,
June 2005.

[26] L. Baugh and C. Zilles, “Decomposing the Load-Store Queue by
Function for Power Reduction and Scalability,” IBM J. Research and
Development, vol. 50, nos. 2-3, pp. 287-298, 2006.

[27] T. Sha, M. Martin, and A. Roth, “Scalable Store-Load Forward-
ing via Store Queue Index Prediction,” Proc. 38th Ann. IEEE/
ACM Int’l Symp. Microarchitecture (MICRO ’05), pp. 159-170,
Dec. 2005.

[28] S. Stone, K. Woley, and M. Frank, “Address-Indexed Memory
Disambiguation and Store-to-Load Forwarding,” Proc. 38th Ann.
IEEE/ACM Int’l Symp. Microarchitecture (MICRO ’05), pp. 171-182,
Dec. 2005.

[29] C. Fang, S. Carr, S. Onder, and Z. Wang, “Feedback-Directed
Memory Disambiguation through Store Distance Analysis,”
Proc. 20th Ann. Int’l Conf. Supercomputing (ICS ’06), pp. 278-287,
June 2006.

[30] A. Garg, M. Rashid, and M. Huang, “Slackened Memory
Dependence Enforcement: Combining Opportunistic Forwarding
with Decoupled Verification,” Proc. 33rd Ann. Int’l Symp. Computer
Architecture (ISCA ’06), pp. 142-153, June 2006.

Fernando Castro received the MS degree in
physics from the University of Santiago de
Compostela in 2000 and the MS degree in
electrical and computer engineering and the
PhD degree in computer science from the
Universidad Complutense de Madrid in 2004
and 2008, respectively. He is currently a teacher
assistant of physics, electrical and computer
engineering, and computer science at the Uni-
versidad Complutense de Madrid. His research

interests include energy-aware processor design and efficient memory
management. His recent activities focused on the LSQ structure,
exploring new techniques to reduce its energy consumption without
affecting performance. He is a member of the IEEE and the IEEE
Computer Society.

Regana Noor received the BS degree in
computer science and engineering from
Bangladesh University of Engineering and Tech-
nology in 2003 and the MS degree in electrical
and computer engineering from the University of
Rochester in 2007. She is currently with the
University of Rochester. Her research interests
include designing scalable processor microarch-
itecture and investigation of efficient techniques
for handling memory disambiguation.

Alok Garg received the BTech degree in
electrical engineering from Indian Institute of
Technology, Kharagpur, India, in 2002 and
the MS degree in electrical and computer
engineering from the University of Rochester,
New York, in 2006. He is currently a PhD
candidate at the University of Rochester. From
2002 to 2004, he was a design engineer at
Paxonet communications, leading the design of
north-side bridge for MIPS RM7000 processor.

During his PhD, he also interned at Intel, Folsom, California, for
eight months, where he worked on the verification of cache coherency
protocol. His research interests include microarchitecture design
energy-efficient and complexity-effective architectures, software-
hardware cooperative architectures, decoupled architectures, and
multicore architectures. He is a student member of the IEEE.

Daniel Chaver received the BS degree in
physics from the University of Santiago de
Compostela in 1998 and the BS degree in
electrical engineering and the MS and PhD
degrees in computer science from the Universi-
dad Complutense de Madrid in 2000, 2002, and
2006, respectively. He is currently an assistant
professor of electrical and computer engineering
and of computer science at the Universidad
Complutense de Madrid. His research interests

include various aspects of high-performance computer architecture such
as processor microarchitecture and energy-efficient and complexity-
effective design. He is part of the Spanish government’s research
project CYCIT-TIN 2005/5619 and the Hipeac European Network of
Excellence.

510 IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO. 4, APRIL 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

Michael C. Huang received the BS degree in
computer science and engineering from
Tsinghua University, Beijing, in 1994 and the
MS and the PhD degrees in computer science
from the University of Il l inois, Urbana-
Champaign in 1999 and 2002, respectively. He
is currently an associate professor of electrical
and computer engineering and of computer
science at the University of Rochester. His
research interests include various aspects of

high-performance computer architecture such as processor microarch-
itecture, communication and memory substrate, reliability, and energy-
efficient and complexity-effective design. His research focuses on
addressing emerging issues and exploring new technologies in the
underlying device, circuit, and manufacturing technology. He is a
recipient of the US National Science Foundation (NSF) CAREER Award.
He is a member of the IEEE, the IEEE Computer Society, and the ACM.

Luis Piñuel received the PhD degree in
computer science from the Universidad Com-
plutense de Madrid (UCM). He is an associate
professor in the Departamento de Arquitectura
de Computadores y Automática, UCM. His
research interests include computer architec-
ture, high-performance computing, compiling for
novel architectures, low-power microarchitec-
tures, embedded systems, and resource man-
agement for emerging computing systems. He is

a member of the IEEE and the IEEE Computer Society.

Manuel Prieto received the PhD degree in
computer science from the Universidad Com-
plutense de Madrid (UCM). He is an associate
professor in the Departamento de Arquitectura
de Computadores y Automática, UCM. His
research is focused on computer architecture
and parallel processing, with a special emphasis
on emerging architectures, code generation, and
optimization. He is a member of the ACM, the
IEEE, and the IEEE Computer Society.

Francisco Tirado received the BS degree in
applied physics and the PhD degree in
physics from the Universidad Complutense
de Madrid (UCM) in 1973 and 1977, respec-
tively. He is a professor of computer archi-
tecture and technology at UCM. He has
worked on computer architecture, parallel
processing, and design automation. His cur-
rent research areas are parallel algorithms
and architectures, and processor design. He is

a coauthor of more than 200 publications. He has served in the
organization of more than 60 international conferences and has also
held various positions such as the dean of the Physics Science and
Electronic Engineering Faculty, the general manager of the Spanish
National Program for Robotics and Advanced Automation, and a
member and the chair of the research evaluation committee of
Spain. He is currently the director of the Center for Super
Computation (CSC) and Madrid Science Park, a member of the
Informatics Advisory Board of the UCM, and the adviser of the
National Agency for Research and Development (CICYT). He is a
senior member of the IEEE, the IEEE Computer Society, and several
European institutions and committees.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CASTRO ET AL.: REPLACING ASSOCIATIVE LOAD QUEUES: A TIMING-CENTRIC APPROACH 511

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 16:43 from IEEE Xplore. Restrictions apply.

