
A Memory Soft Error Measurement on Production Systems∗

Xin Li Kai Shen Michael C. Huang
University of Rochester

{xinli@ece, kshen@cs, huang@ece}.rochester.edu

Lingkun Chu
Ask.com

lchu@ask.com

Abstract

Memory state can be corrupted by the impact of par-
ticles causing single-event upsets (SEUs). Understanding
and dealing with these soft (or transient) errors is impor-
tant for system reliability. Several earlier studies have pro-
vided field test measurement results on memory soft error
rate, but no results were available for recent production
computer systems. We believe the measurement results on
real production systems are uniquely valuable due to var-
ious environmental effects. This paper presents method-
ologies for memory soft error measurement on production
systems where performance impact on existing running ap-
plications must be negligible and the system administrative
control might or might not be available.

We conducted measurements in three distinct system en-
vironments: a rack-mounted server farm for a popular
Internet service (Ask.com search engine), a set of office
desktop computers (Univ. of Rochester), and a geograph-
ically distributed network testbed (PlanetLab). Our pre-
liminary measurement on over 300 machines for varying
multi-month periods finds 2 suspected soft errors. In par-
ticular, our result on the Internet servers indicates that,
with high probability, the soft error rate is at least two or-
ders of magnitude lower than those reported previously.
We provide discussions that attribute the low error rate to
several factors in today’s production system environments.
As a contrast, our measurement unintentionally discov-
ers permanent (or hard) memory faults on 9 out of 212
Ask.com machines, suggesting the relative commonness of
hard memory faults.

1 Introduction

Environmental noises can affect the operation of micro-
electronics to create soft errors. As opposed to a “hard” er-
ror, a soft error does not leave lasting effects once it is cor-
rected or the machine restarts. A primary noise mechanism
in today’s machines is particle strike. Particles hitting the
silicon chip create electron-hole pairs which, through dif-
fusion, can collect at circuit nodes and outweigh the charge

∗This work was supported in part by the National Science Foun-
dation (NSF) grants CCR-0306473, ITR/IIS-0312925, CNS-0509270,
CNS-0615045, and CCF-0621472. Shen was also supported by anNSF
CAREER Award CCF-0448413 and an IBM Faculty Award.

stored and create a flip of logical state, resulting in an error.
The soft error problem at sea-level was first discovered by
Intel in 1978 [9].

Understanding the memory soft error rate is an impor-
tant part in assessing whole-system reliability. In the pres-
ence of inexplicable system failures, software developers
and system administrators sometimes point to possible oc-
currences of soft errors without solid evidence. As another
motivating example, recent studies have investigated the
influence of soft errors on software systems [10] and par-
allel applications [5], based on presumably known soft er-
ror rate and occurrence patterns. Understanding realistic
error occurrences would help quantify the results of such
studies.

A number of soft error measurement studies have been
performed in the past. Probably the most extensive test re-
sults published were from IBM [12, 14–16]. Particularly
in a 1992 test, IBM reported 5950 FIT (Failures In Time,
specifically, errors in109 hours) of error rate for a vendor
4Mbit DRAM. The most recently published results that
we are aware of were based on tests in 2001 at Sony and
Osaka University [8]. They tested 0.18µm and 0.25µm
SRAM devices to study the influence of altitude, technol-
ogy, and different sources of particles on the soft error rate,
though the paper does not report any absolute error rate. To
the best of our knowledge, Normand’s 1996 paper [11] re-
ported the only field test on production systems. In one 4-
month test, they found 4 errors out of 4 machines with total
8.8 Gbit memory. In another 30-week test, they found 2 er-
rors out of 1 machine with 1 Gbit memory. Recently, Tez-
zaron [13] collected error rates reported by various sources
and concluded that 1000–5000FIT per Mbit would be a
reasonable error rate for modern memory devices. In sum-
mary, these studies all suggest soft error rates in the range
of 200–5000FIT per Mbit.

Most of the earlier measurements (except [8]) were over
a decade old and most of them (except [11]) were con-
ducted in artificial computing environments where the tar-
get devices are dedicated for the measurement. Given the
scaling of technology and the countermeasures deployed
at different levels of system design, the trends of error rate
in real-world systems are not clear. Less obvious environ-
mental factors may also play a role. For example, the way
a machine is assembled and packaged as well as the mem-
ory chip layout on the main computer board can affect the



chance of particle strikes and consequently the error rate.
We believe it is desirable to measure memory soft er-

rors in today’s representative production system environ-
ments. Measurement on production systems poses signif-
icant challenges. The infrequent nature of soft errors de-
mands long-term monitoring. As such, our measurement
must not introduce any noticeable performance impact on
the existing running applications. Additionally, to achieve
wide deployment of such measurements, we need to con-
sider the cases where we do not have administrative control
on measured machines. In such cases, we cannot perform
any task requiring the privileged accesses and our measure-
ment tool can be run only at user level. The rest of this
paper describes our measurement methodology, deployed
measurements in production systems, our preliminary re-
sults and the result analysis.

2 Measurement Methodology and Imple-
mentation

We present two soft error measurement approaches tar-
geting different production system environments. The first
approach, memory controller direct checking, requires ad-
ministrative control on the machine and works only with
ECC memory. The second approach, non-intrusive user-
level monitoring, does not require administrative control
and works best with non-ECC memory. For each approach,
we describe its methodology, implementation, and analyze
its performance impact on existing running applications in
the system.

2.1 Memory Controller Direct Checking

An ECC memory module contains extra circuitry stor-
ing redundant information. Typically it implements single
error correction and double error detection (SEC-DED).
When an error is encountered, the memory controller hub
(a.k.a. Northbridge) records necessary error informationin
some special-purpose registers. Meanwhile, if the error in-
volves a single bit, then it is corrected automatically by
the controller. The memory controller typically signals the
BIOS firmware when an error is discovered. The BIOS
error-recording policies vary significantly from machine to
machine. In most cases, single-bit errors are ignored and
never recorded. The BIOS typically clears the error in-
formation in memory controller registers on receiving er-
ror signals. Due to the BIOS error handling, the operating
system would not be directly informed of memory errors
without reconfiguring the memory controller.

Our memory controller direct checking of soft errors in-
cludes two components:

• Hardware configuration: First, we disable any BIOS
manipulation of the memory controller error handling

in favor of error handling by the OS software. Partic-
ularly, we do not allow BIOS to clear memory con-
troller error information. Second, we enable peri-
odic hardware-level memory scrubbing which walks
through the memory space to check errors. This is
in addition to error detection triggered by software-
initiated memory reading. Errors discovered at the
hardware level are recorded in appropriate mem-
ory controller registers. Memory scrubbing is typi-
cally performed at a low frequency (e.g., 1 GB per
1.5 hours) to minimize its energy consumption and in-
terruption to running applications.

• Software probing: We augment the OS to periodically
probe appropriate memory controller registers and ac-
quire desired error information. Since the memory
controller register space is limited and usually only a
few errors are recorded, error statistics can be lost if
the registers are not read and cleared in time. Fortu-
nately, soft error is typically a rare event and thus our
probing can be quite infrequent — it only needs to be
significantly more often than the soft error occurrence
frequency.

Both hardware configuration and software probing in
this approach require administrative privilege. The imple-
mentation involves modifications to the memory controller
driver inside the OS kernel. The functionality of our imple-
mentation is similar to the Bluesmoke tool [3] for Linux.
The main difference concerns exposing additional error in-
formation for our monitoring purpose.

In this approach, the potential performance impact on
existing running applications includes the software over-
head of controller register probing and memory bandwidth
consumption due to scrubbing. With low frequency mem-
ory scrubbing and software probing, this measurement ap-
proach has a negligible impact on running applications.

2.2 Non-intrusive User-level Monitoring

Our second approach employs a user-level tool that
transparently recruits memory on the target machine and
periodically checks for any unexpected bit flips. Since our
monitoring program competes for the memory with run-
ning applications, the primary issue in this approach is to
determine an appropriate amount of memory for monitor-
ing. Recruiting more memory makes the monitoring more
effective. However, we must leave enough memory so
that the performance impact on other running applications
is limited. This is important since we target production
systems hosting real live applications and our monitoring
must be long running to be effective.

This approach does not require administrative control on
the target machine. At the same time, it works best with
non-ECC memory since the common SEC-DED feature in
ECC memory would automatically correct single-bit errors



and consequently our user-level tool cannot observe them.
Earlier studies like Acharya and Setia [1] and Cipar et

al. [4] have proposed techniques to transparently steal idle
memory from non-dedicated computing facilities. Unlike
many of the earlier studies, we do not have administra-
tive control of the target system and our tool must function
completely at user level. The system statistics that we can
use are limited to those explicitly exposed by the OS (e.g.,
the Linux/proc file system) and those that can be mea-
sured by user-level micro-benchmarks [2].

Design and Implementation Our memory recruitment
for error monitoring should not affect the performance of
other running applications. We can safely recruit the free
memory pages that are not allocated to currently running
applications. Furthermore, some already allocated mem-
ory may also be recruited as long as we can bound its
effects on existing running applications. Specifically, we
employ astale-memory recruitment policyin which we
only recruit allocated memory pages that have not been
recently used (i.e., not used for a certain duration of time
D). Under this policy, within any time period of duration
D, every physical memory page can be recruited for no
more than once (otherwise the second recruitment would
have recruited a page that was recently allocated and used).
Therefore, within any time period of durationD, the addi-
tional application page evictions induced by our monitor-
ing is bounded by the physical memory sizeS. If we know
the page fault I/O throughputR, we can then bound the
application slowdown induced by our monitoring toS

D·R
.

Below we present a detailed design to our approach,
which includes three components.

• Memory recruitment: We periodically invoke a rou-
tine to recruit memory to the monitoring pool. First,
it checks the amount of free memory in the sys-
tem that is not used by any running applications
(through existing system interface or a user-level
micro-benchmark). In order to further utilize those
allocated but rarely used memory, we may also re-
cruit a certain amount of extra memory in the absence
of memory contention. Memory contention can be
detected by observing recent eviction of pages from
the monitoring pool (see below) or a slowdown of
memory-intensive tasks (motivated by [6]).

• Periodic touching: Since our monitoring tool runs as a
normal user-level program, it competes memory with
other running applications according to the OS mem-
ory management. We assume that the OS employs the
Least-Recently Used (LRU) page replacement order
or its approximation. To realize the stale-memory re-
cruitment policy, we periodically access the recruited
memory pages so that each page is reused at the fre-
quency of once per time durationD. Under the LRU

replacement order, application pages that are accessed
more often are unlikely to be evicted before the re-
cruited pages in our monitoring tool.

The touching also serves the purpose of error check-
ing. We read every single word of the page and ex-
amines if the pattern written initially still remains. If
not, it indicates an error just occurred in the most re-
cent period.

• Releasing evicted pages: Recruited memory pages
may be swapped out of physical memory during
memory contention when all existing application
pages are not stale enough (i.e., have been used within
the last time durationD). We should detect these
evicted pages and release them from the monitoring
pool.

We discuss some implementation issues in practice.
First, the OS typically attempts to maintain a certain min-
imum amount of free memory (e.g., to avoid deadlocks
when reclaiming pages) and a reclamation is triggered
when the free memory amount falls below the thresh-
old (we callminfree). We can measureminfree of a
particular system by running a simple user-level micro-
benchmark. At the memory recruitment, we are aware that
the practical free memory in the system is the nominal free
amount subtractminfree.

Second, it may not be straightforward to detect evicted
pages from the monitoring pool. Some systems provide di-
rect interface to check the in-core status of memory pages
(e.g., themincore system call). Without such direct in-
terface, we can tell the in-core status of a memory page
by simply measuring the time of accessing any data on the
page. Note that due to OS prefetching, the access to a sin-
gle page might result in the swap-in of multiple contiguous
out-of-core pages. To address this, each time we detect
an out-of-core recruited page, we discard several adjacent
pages (up to the OS prefetching limit) along with it.

Performance Impact on Running Applications We
measure the performance impact of our user-level mon-
itoring tool on existing running applications. Our tests
are done in a machine with a 2.8 GHz Pentium4 processor
and 1 GB main memory. The machine runs Linux 2.6.18
kernel. We examine three applications in our test: 1) the
Apache web server running the static request portion of the
SPECweb99 benchmark; 2) MCF from SPEC CPU2000
— a memory-intensive vehicle scheduling program for
mass transportation; and 3) compilation and linking of the
Linux 2.6.18 kernel. The first is a typical server workload
while the other two are representative workstation work-
loads.

We set the periodic memory touching intervalD ac-
cording to a desired application slowdown bound. An
accurate setting requires the knowledge of the page fault



I/O throughput. Here we use a simple estimation of I/O
throughput as half the peak sequential disk access through-
put (around 57 MB/s for our disk). Therefore a periodic
memory touching intervalD=30.48minutes is needed for
achieving 2% application slowdown bound. Our program
was able to recruit 376.70MB, 619.24MB and 722.77MB
on average (out of the total 1 GB) when it runs with
Apache, MCF, and Linux compilation respectively. At
the same time, the slowdown is 0.52%, 0.26%, and 1.20%
for the three applications respectively. The slowdown for

Apache is calculated as “1 −
new throughput

original throughput
” while

the slowdown for the other two applications is calculated

as “1 −
original runtime

new runtime
”. The monitoring-induced slow-

down can be reduced by increasing the periodic memory
touching intervalD. Such adjustment may at the same
time reduce the amount of recruited memory.

2.3 Error Discovery in Accelerated Tests

To validate the effectiveness of our measurement ap-
proaches and resulted implementation, we carried out a
set of accelerated tests with guaranteed error occurrences.
To generate soft errors, we heated the memory chip us-
ing a heat gun. The machine under test contains 1 GB
DDR2 memory with ECC and the memory controller is
Intel E7525 with ECC. The ECC feature has a large effect
on our two approaches — the controller direct checking re-
quires ECC memory while the user-level monitoring works
best with non-ECC memory. To consider both scenarios,
we provide results for two tests — one with the ECC hard-
ware enabled and the other with ECC disabled. The results
on error discovery are shown in Table 1.

Overall, results suggest that both controller direct prob-
ing and user-level monitoring can discover soft errors at re-
spective targeted environments. With ECC enabled, all the
single-bit errors are automatically corrected by the ECC
hardware and thus the user-level monitoring cannot ob-
serve them. We also noticed that when ECC was enabled,
the user-level monitoring found less multi-bit errors than
the controller direct checking did. This is because the user-
level approach was only able to monitor part of the physi-
cal memory space (approximately 830 MB out of 1 GB).

3 Deployed Measurements and Preliminary
Results

We have deployed our measurement in three distinct
production system environments: a rack-mounted server
farm, a set of office desktop computers, and a geographi-
cally distributed network testbed. We believe these mea-
surement targets represent many of today’s production
computer system environments.

Test with ECC enabled
Approach Single-bit Multi-bit

errors errors
Controller checking 2472 139

User-level monitoring N/A 106

Test with ECC disabled
Approach Single-bit Multi-bit

errors errors
User-level monitoring 15 0

Table 1: Errors found in heat-induced accelerated tests. The
ECC-disabled test was done at much lower heat intensity com-
pared to the ECC-enabled one. We did this because without the
shielding from ECC, all single-bit errors may manifest at the soft-
ware level, and thus high heat intensity is very likely to crash the
OS and disrupt the test.

• Ask.com servers:These rack-mounted servers are
equipped with high-end ECC memory modules and
we have administrative control over these machines.
We use the memory controller direct checking ap-
proach in this measurement. We monitored 212
servers for approximately three months. On average,
we were monitoring 3.92 GB memory on each ma-
chine.

• UR desktop computers:We conducted measurement
on a number of desktop computers at the University of
Rochester. These machines are provided on the con-
dition of no change to the system and no impact to the
running application performance. Therefore we em-
ploy the user-level monitoring approach in this mea-
surement. Since this approach works best with non-
ECC memory, we identified a set of machines with
non-ECC memory by checking vendor-provided ma-
chine specification. This measurement has been de-
ployed on 20 desktop (each with 512 MB RAM) com-
puters for around 7 months. On average we recruited
104.23MB from each machine.

• PlanetLab machines:We chose PlanetLab because of
its geographically distributed set of machines. Ge-
ographic locations (and elevation in particular) may
affect soft error occurrence rate. Since we do not have
administrative control for these machines, we employ
the user-level monitoring approach in this measure-
ment. Again, we search for a set of machines with
non-ECC memory to maximize the effect of our mea-
surement. Since we do not know the exact models of
most PlanetLab machines, we cannot directly check
the vendor-provided machine specification. Our ap-
proach is to collect memory controller device ID from
the/proc file system and then look up its ECC ca-
pability. This measurement has been deployed on
70 PlanetLab machines for around 7 months. Since
most PlanetLab machines are intensively used and
free memory is scarce, we were only able to recruit



Measurement Ask.com Ask.com (excluding 9 UR Desktops PlanetLab
environment servers with hard errors)
Time-memory 76,456 GB×day 73,571 GB×day 428 GB×day 23 GB×day
extent
Measurement 8288 errors, most of which are 2 errors, suspected to be no error no error
result believed to be hard errors soft errors

Table 2:Results of deployed measurements.

approximately 1.54 MB from each machine.

Aside from the respective pre-deployment test periods,
we received no complaint on application slowdown for all
three measurement environments.

So far we detected no errors on UR desktop comput-
ers and PlanetLab machines. At the same time, our mea-
surements on Ask.com servers logged 8288 memory errors
concentrating on 11 (out of 212) servers. These errors on
the Ask.com servers warrant more explanations:

• Not all logged errors are soft errors. In particular,
some are due to permanent (hard) chip faults. One
way to distinguish soft and hard errors is that hard
errors tend to repeat on the same memory addresses
since they are not correctable. On the other hand, soft
errors rarely repeat on the same memory addresses
with the assumption that soft errors occur on memory
addresses in a uniformly random fashion. Using this
criterion, we find 9 out of these 11 severs contain hard
chip faults.

• We assume that soft errors and hard errors occur in-
dependently on host machines. We believe the as-
sumption is reasonable because soft errors are typi-
cally due to external environmental factors (e.g., par-
ticle strikes) while hard errors are largely due to inter-
nal chip properties. With this assumption, we can ex-
clude the 9 machines with known hard errors from our
Ask.com measurement pool without affecting the rep-
resentativeness of soft error statistics on the remain-
ing machines.

• After excluding the 9 servers with known hard errors,
there are 2 machines each with a suspected memory
soft error.

• Most detected errors on the 11 Ask.com servers are
single-bit errors correctable by the ECC, and thus
pose no impact on running software. However, the
logged memory controller information suggests that
at least one machine contains some multi-bit errors
that are not correctable.

In Table 2, we list the overalltime-memory extent(de-
fined as the product of time and the average amount of
considered memory over time) and discovered errors for
all deployed measurement environments.

Result Analysis Based on the measurement results, be-
low we calculate a probabilistic upper-bound on the
Failure-In-Time rate. We assume that the occurrence of
soft errors follows a Poisson process. Therefore within a
time-memory extentT , the probability thatk errors happen
is:

Prλ,T [N = k] =
e−λT (λT )k

k!
(1)

whereλ is the average error rate (i.e., the error occursλ

times on average for every unit of time-memory extent).
And particularly the probability for no error occurrence (k

= 0) during a measurement over time-memory extentT is:

Prλ,T [no error] = e−λT (2)

For a givenT and the number of error occurrencesk, let
us callΛ a p-probability upper-bound of the average error
occurrence rate if:

∀λ > Λ : Prλ,T [N = k] < 1 − p

In other words, if a computing environment has an average
error occurrence rate that is more than thep-probability
upper-bound, then the chance fork error occurrence during
a measurement of time-memory extentT is always less
than1 − p.

We apply the above analysis and metric definition on
the error measurement results of our deployed measure-
ments. We first look at UR desktop measurement in
which no error is reported. According to Equation (2),
we know that 1

T
ln 1

1−p
is ap-probability upper-bound of

the average error occurrence rate. Consequently, since
T = 428 GB× day for the UR desktop measurement, we
can calculate that 54.73 FIT per Mbit is a 99%-probability
upper-bound of the average error occurrence rate for this
environment.

We then examine the Ask.com environment excluding
9 servers with hard errors. In this environment, 2 (or
fewer) soft errors overT = 73, 571 GB × day yields a
99%-probability upper-bound of the average error occur-
rence rate at 0.56 FIT per Mbit. This is much lower than
previously-reported error rate (200–5000FIT per Mbit)
that we summarized in Section 1.

4 Conclusion and Discussions

Our preliminary result suggests that the memory soft er-
ror rate in two real production systems (a rack-mounted



server environment and a desktop PC environment) is
much lower than what the previous studies concluded. Par-
ticularly in the server environment, with high probability,
the soft error rate is at least two orders of magnitude lower
than those reported previously. We discuss several poten-
tial causes for this result.

• Hardware layout: In the IBM Blue Spruce experi-
ment, O’Gorman et al. [12] suggested that the main
source of cosmic ray comes from straight above. The
Ask.com machines are arranged in a way such that
memory DIMMs are plugged perpendicular to the
horizontal plane. This could significantly reduce the
area facing the particle bombardment.

• Chip size reduction: Given the continuous scaling of
the VLSI technology, the size of a memory cell has re-
duced dramatically over the years. As a result, for an
equal-capacity comparison, the probability of a parti-
cle hitting any cell in today’s memory is much lower
than that of a decade ago. We believe that this prob-
ability reduction outweighs the increased vulnerabil-
ity of each cell due to the reduction in device critical
charge.

• DRAM vs. SRAM: Measurements described in this pa-
per only target the main memory, which is usually
DRAM. Previous studies [7, 17] show that DRAM
is less sensitive to cosmic rays than SRAM (typically
used for fast-access cache today).

An understanding on the memory soft error rate demys-
tifies an important part of whole-system reliability in to-
day’s production computer systems. It also provides the
basis for evaluating whether software-level countermea-
sures against memory soft errors are urgently needed. Our
results are still preliminary and our measurements are on-
going. We hope to be able to draw more complete conclu-
sions from future measurement results. Additionally, soft
errors can occur on components other than memory, which
may affect system reliability in different ways. In the fu-
ture, we also plan to devise methodologies to measure soft
errors in other computer system components such as CPU
register, SRAM cache, and system bus.

Acknowledgments We would like to thank the two
dozen or so people at the University of Rochester CS De-
partment who donated their desktops for our memory er-
ror monitoring. We are also grateful to Tao Yang and Alex
Wong at Ask.com who helped us in acquiring administra-
tive access to Ask.com Internet servers. Finally, we would
also like to thank the USENIX anonymous reviewers for
their helpful comments that improved this paper.

References

[1] A. Acharya and S. Setia. Availability and utility of idle
memory in workstation clusters. InSIGMETRICS, pages
35–46, 1999.

[2] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infor-
mation and control in gray-box systems. InSOSP, pages
43–56, 2001.

[3] EDAC project. http://bluesmoke.sourceforge.net.

[4] J. Cipar, M. D. Corner, and E. D. Berger. Transparent con-
tribution of memory. InUSENIX, 2006.

[5] C. da Lu and D. A. Reed. Assessing fault sensitivity in MPI
applications. InSupercomputing, 2004.

[6] J. Douceur and W. Bolosky. Progress-based Regulation of
Low-importance Processes. InSOSP, pages 247–260, Ki-
awah Island, SC, Dec. 1999.

[7] A. H. Johnston. Scaling and technology issues for soft error
rates. In4th Annual Research Conf. on Reliability, 2000.

[8] H. Kobayashi, K. Shiraishi, H. Tsuchiya, H. Usuki, Y. Na-
gai, and K. Takahisa. Evaluation of LSI soft errors induced
by terrestrial cosmic rays and alpha particles. Technical re-
port, Sony Corporation and RCNP Osaka University, 2001.

[9] T. C. May and M. H. Woods. Alpha-particle-included soft
errors in dynamic memories.IEEE Trans. on Electron De-
vices, 26(1):2–9, 1979.

[10] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic,
D. J. F. Lie, D. Mannaru, A. Riska, and D. S. Milojicic. Sus-
ceptibility of commodity systems and software to memory
soft errors.IEEE Trans. on Computers, 53(12):1557–1568,
2004.

[11] E. Normand. Single event upset at ground level.IEEE
Trans. on Nuclear Science, 43(6):2742–2750, 1996.

[12] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P.
Muhlfeld, C. J. Montrose, H. W. Curtis, and J. L. Walsh.
Field testing for cosmic ray soft errors in semiconductor
memories.IBM J. of Research and Development, 40(1):41–
50, 1996.

[13] Tezzaron Semiconductor. Soft errors in electronic mem-
ory. White paper, 2004. http://www.tezzaron.com/about
/papers/papers.html.

[14] J. F. Ziegler. Terrestrial cosmic rays.IBM J. of Research
and Development, 40(1):19–39, 1996.

[15] J. F. Ziegler et al. IBM experiments in soft fails in computer
electronics (1978–1994).IBM J. of Research and Develop-
ment, 40(1):3–18, 1996.

[16] J. F. Ziegler, H. P. Muhlfeld, C. J. Montrose, H. W. Curtis,
T. J. O’Gorman, and J. M. Ross. Accelerated testing for cos-
mic soft-error rate.IBM J. of Research and Development,
40(1):51–72, 1996.

[17] J. F. Ziegler, M. E. Nelson, J. D. Shell, R. J. Peterson, C. J.
Gelderloos, H. P. Muhlfeld, and C. J. Montrose. Cosmic ray
soft error rates of 16-Mb DRAM memory chips.IEEE J. of
Solid-State Circuits, 33(2), 1998.


