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Attenuation measurements can be derived from the decay of backscattered signal with depth in 
an inhomogeneous material. In cases such as liver tissue, where many small inhomogeneities 
are likely to be included in sample volumes defined by pulse and beam widths, Rayleigh 
statistics describe the random nature of the magnitude of backscattered pressure. The statistics 
of speckle underlie the uncertainties in estimates of attenuation at discrete frequencies, and of 
the magnitude and frequency dependence of attenuation over a bandwidth. This paper derives 
expressions for the standard deviations of attenuation magnitude and frequency dependence in 
terms of parameters such as the dimensions of the region of interest, and the bandwidth of the 
ultrasonic system. Practical examples are given using published data, and comparisons to other 
techniques which measure "attenuation slope" are made. The analysis yields insights into 
trade-offs among variables such as the dimensions and shape of regions of interest, and the 
segmenting of data in time and frequency domain. 

PACS numbers: 43.80.Cs, 43.80. Ev 

INTRODUCTION 

Ultrasonic attenuation measurements of tissue samples 
have demonstrated the potential for discriminating normal 
from diseased tissues. Changes in the attenuation coeffi- 
cients as a function of time have been documented for a var- 

iety of tissues in pathological states. Some examples are dog 
myocardial tissue following infarction 1 and rat liver tissue 
during the evolution of carbon tetrachloride damage. 2 The 
measurement of attenuation in vivo using clinical B-scan in- 
strumentation has received much attention, 3-8 but the diffi- 
culties in this case are generally greater than for laboratory 
measurements on excised samples. For example, phase-in- 
sensitive transmission measurements can be made on isolat- 

ed samples, but clinical measurements of attenuation must 
rely on backscattered signals which pass through overlying 
tissue. 

Nonetheless, many time domain and frequency domain 
strategies exist for attenuation measurements derived from 
backscattered echoes, 8 and various sources of error compli- 
cate the estimation process. 3'9'1ø This paper considers only 
one measurement technique and one source of "error." Spe- 
cifically, we consider the measurement of the absolute (or 
true) magnitude of attenuation at independent, discrete fre- 
quencies using the decay of ensemble averaged back- 
scattered pressure versus depth. This technique is different 
from the widely considered class of"attenuation slope" mea- 
surements, 5'8 and has the advantages of enabling measure- 
ment of the magnitude and frequency dependence of attenu- 
ation within a medium, without recourse to a priori 
assumptions concerning the material's frequency depen- 
dence of attenuation, the spectral shape of a propagating 
pulse, and others required for some "attenuation slope" 
strategies. The source of uncertainty in attenuation esti- 
mates considered in this analysis is the underlying random 
inhomogeneous nature of tissue which results in speckle pat- 
tern images. Since the attenuation measurements are based 

on backscattered echoes, the statistics of speckle directly in- 
fluence the statistics of, or uncertainty in, the estimation of 
attenuation. Thus our analysis begins with first-order 
speckle statistics and we ignore other possible sources of er- 
ror such as uncompensated beam diffraction effects, quanti- 
zation errors, and others which may introduce bias or uncer- 
tainty. 8-• The theory is developed from a simple model of 
weak scattering from randomly positioned inhomogeneities, 
and results are compared with measurements of speckle sta- 
tistics and attenuation results from human livers. 4 

An important practical question to be addressed is the 
minimum volume of tissue required to obtain accurate esti- 
mates of the magnitude and frequency dependence of attenu- 
ation. This determines possibilities for quantitative tissue 
characterization in small organs, and the feasibility of true 
attenuation images with useful resolution. 

I. THEORY 

In many tissues and phantoms, many small random in- 
homogeneities (reflectors) are likely to be included in sam- 
ple volumes interrogated by an ultrasonic pulse, and the 
backscattered pressure envelope is found to fluctuate in a 
manner described by Rayleigh statistics. 12-]4 On B-scan im- 
ages, this random process results in the speckle patterns 
commonly seen in tissues such as the liver, and this variabil- 
ity is the root of estimation uncertainties in attenuation mea- 
surements. 

To demonstrate why the Rayleigh statistics might be 
observed, we begin with a simple expression for the complex 
cw backscattered pressure Pbs measured at a point located 
distance r from a sample volume in a nonattenuating medi- 
um with small inhomogeneities. 

Designating ko as the average material wavenumber and 
y(r') as the zero-mean fluctuations in impedance as a func- 
tion of position r' within the sample .volume, it can be 
shown 3']5 that as a farfield approximation 
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pbs(r) A f• =• e r'y(r')dv', (1) 
/. , 

where A is a complex factor dependent on frequency, medi- 
um density, and amplitude of the incident wave; v' represents 
the sample volume of integration; and n is a unit vector 
pointing in the direction of the incident sound propagation. 

A simple argument shows that the magnitude of back- 
scattered pressure, LPb, l, is Rayleigh distributed. Within the 
sample volume v', let the inhomogeneities be K uncorrelated 
point discontinuities in acoustic impedance. Then, 

K 

r(r') = • Z,,•(r' - r, ), ( • ) 
i=1 

where the magnitudes Zi have some zero-mean probability 
density function (pdf). Placing this expression into the 
backscatter formulation, Eq. ( 1 ) becomes 

Pbs (F) A J2kon . r' r' = • e • Zi6( - ri )dv' (3) 
•' ' i--1 

K 

=,4 E Zie•2•cøn'ri' (4) 
/' i--1 

The last expression reveals that the backscattered pressure is 
comprised of the sum of independent and identically distrib- 
uted random variables, where the Z• are real zero-mean am- 
plitudes, and the exponential terms contribute random 
phase. Specifically, assuming K is large ( > 5, say) and ap- 
plying the central limit theorem, the backscattered pressure 
must approach a Gaussian, or normal, distribution. Thus the 
real and imaginary parts ofp•, are zero-mean, jointly Gaus- 
sian random variables. This immediately determines the pdf 
for the magnitude ofp•, as Rayleigh distributed, • where the 
probability f• (po) that p takes on a particular value Po is 
given by 

fp (Po) ---- (Po/a2) e --P•/2a= po>O, (5) 
and the pdf peak occurs at Po = a. In the backscatter case, 
the governing parameter a is related to the strength Zi of the 
inhomogeneities, and is therefore proportional to the square 
root of the backscatter coefficient of the material, a quantity 
itself useful in tissue characterization. A convenient proper- 
ty of the Rayleigh distribution is that the signal-to-noise ra- 
tio is independent of the parameter a' 

- ( ,r/2 P = '2--•/2! -- 1.91. (6) 
This constant of proportionality is the root of the uncertain- 
ties in attenuation estimates, as will be shown below. 

In the case of B-scan examination of attenuating tissue 
separated from the transducer by a nonattenuating water 
delay line of length ro, the backscattered pressure from depth 
d in the tissue can be derived 3 from Eq. ( 1 ) as 

'•0 -- 2atd •v el2køn ' e r'y(r')dv', (7) Pbs (d) ---- (ro + d) 
where a is the' pressure attenuation coefficient of the medi- 
um. To obtain Eq. (9), it is necessary to assume weak attenu- 
ation such that 

ko•,a, and e -ae•- 1 
3 15 

within the sample volume of integration.' Using this 

expression to evaluate the magnitude of backscattered pres- 
sure from the ith independent scan line through the tissue, 
we have 

]Pb• (d)]i = [Aoe-2"d/(ro + d)] Pi, d , (8) 
where the backscattered pressure amplitude from the ith 
waveform and d th depth segment in the absence of attenu- 
ation Pi, d are independent, identically distributed Rayleigh 
random variables, assuming uniform transmission into the 
medium, use of nonoverlapping depth segments, and sta- 
tionary scattering statistics. Thus the problem reduces to the 
estimation of the unknown exponential decay in the presence 
of the "noisy" coefficients. The pressure magnitudes can be 
written in terms of their mean and a random term, 

Pi, d = • -4- ei, d =.•(1 --/-_ eid ff ) , (9) 

where E{e} = 0, and by virtue of the Rayleigh distribution 
and Eq. (6), 

tr•/• = 0.524. (10) 

An improved signal-to-noise ratio is obtained by averaging 
results of N independent scan lines through the tissue, 

p(d) =Pd e - 2•d, ( 11 ) 
where 

N 

1 •P•,d ß (12) 
Assuming large N ( > 5, for example) and again invoking 
the central limit theorem, the mean pressure magnitude 
from depth d, Pa, is approximated as normal or Gaussian 
distributed random variable and can also be written in terms 

of a mean value and fluctuating term, 

Pa =P( 1 q- •/•), (13) 
where 

o,•/p=o.524A/-•. (14) 
The exponential decay ofp(d) is then used to estimate 

attenuation. The natural log of Eq. ( 11 ) yields a linear rela- 
tion (now using x as the depth variable): 

ln[p(x) ] = - 2ax + ln[Px ] (15) 

or 

y = bx + a . (16) 

The error in estimating b ( = - 2a) is directly related to the 
variation in In [fix ]. A simplification of the log transformed 
variable results if we write using Eqs. (16) and (13 ): 

a = ln[px ] = ln[.•(1 q- •/•)]. (17) 
Using the approximation 

ln[l+z]•z for z•l, (18) 

then from the last two expressions 

a•ln.• q- •/• . (19) 

Using the result with Eq. (14) yields 

O'y = O' a = 0.524/x/-ff. (20) 
The last expression bears examination. First, the parameter 
N, which is the number of independent scan lines averaged, 
is required to be large in order to validate the use of the small 
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noise-to-signal log expansion, enabling continued use of 
analysis based on normally distributed variables. Further- 
more, the last expression shows that the variability in back- 
scattered pressure, originally proportional to the mean back- 
scattered pressure, is transformed to a constant in the log 
variable domain. This concept is illustrated in Fig. 1 (a) and 
(b). 

The variance of a least-squares estimate for the slope b 
can now be written as 17*is 

where there are M independent sample volume depths for 
which data are obtained. Assuming the sample volumes are 
successively deeper in the medium and are separated by uni- 
form distance AX, then an empirically derived substitution, 
valid for M< 30, is 

E (Xj X)2•2•X 2 M 1 5/2 -- , (22) 
j=l 

I I I I I I I I I I I I I I I I I I I • 

Depth, d 

(b) 

,,, 

I I I I I I I I I I I I I I I I I I I • 

Depth, d 

(c) 

ß 

] I I I 1 I I I I I I I I I I ! I I I • 
Frequency, f 

FIG. 1. The propagation of uncertainties. Solid lines are expected values; 
error bars represent standard deviations of sampled values. Average back- 
scattered pressure versus depth is shown in (a). The standard deviations are 
proportional to mean values as a result of underlying Rayleigh statistics, but 
are minimized by averaging over independent scan lines through a medium. 
Thus in (b) the error bars of the log transformed variables will be symmet- 
ric and constant. Resulting attenuation estimates at discrete frequencies, 
shown in (c), will have a constant standard deviation which is related to the 
underlying Rayleigh statistics and size of the region of interest employed. 
As frequency increases, the magnitude of attenuation increases, and thus 
the fractional errors decrease. 

which depends only on the number of sample depths and 
their spacing, not their absolute location within the medium. 

Combining Eqs. (22), (21 ), and (20) produces the de- 
sired result: 

0.44 

tr• = AX(N•/•) (M-- 1) 5/4 ' (23) 
which shows that the expected variability or error in attenu- 
ation measurement is a constant which depends on the num- 
ber aa•d spacing of the sample volumes, not on the material 
backscatter coefficient (the mean value a of the Rayleigh 
statistics) or the magnitude of attenuation. Thus the frac- 
tional error in attenuation tra/a decreases with increasing 
frequency, as shown in Fig. 1 (c). 

When the value of attenuation is measured at Findepen- 
dent discrete frequencies separated by Af MHz increments, 
then the frequency dependence of attenuation may be deter- 
mined. Using a power law assumption, the attenuation esti- 
mates a (f) may be fit: 

a( f) = aof", (24) 

where ao and n characterize the magnitude of attenuation 
(at 1 MHz given fin MHz) and the frequency dependence, 
respectively. Again, a log transformation can be employed to 
derive a least-square error fit: 

ln[a(f) ] = In ao -t- n In[f] (25) 
or 

y' = a' + b 'x'. (26) 

From the previous analysis, the variability in the attenu- 
ation estimates a(f) is a known constant. Therefore, the 
variance of the least-squares estimates ofa' and b' (ln ao and 
n) can be determined given the following assumptions. The 
attenuation estimates are written in terms of a correct value 

•(f) plus a noise term, 
a(f) =•(f) +E' =•(f)[1 + E'/•(f)], (27) 

where c•, is identical to ca and is given by Eq. (23). Given a 
small fractional error of the attenuation estimate, 

le'--•-I <1 or ,O'a <1, (28) 

then applying the log approximation of Eq. (18), the trans- 
formed attenuation estimate can be rewritten as 

y' = ln[a(f) ] •ln •(f) + (/•(f). (29) 
Thus 

•, = •/•(f). (30) 
The standard deviation of y' is equal to the fractional 

error of the attenuation estimate and is not constant over any 
finite bandwidth, nor is it simply proportional to the expect- 
ed value of the data. However, simplified expressions which 
can be generalized in closed form can only be written for the 
case of constant error. Thus we assume that the data are 

obtained over a finite bandwidth for which a representative 
constant value of •ry, may be obtained' 

•ry, = •7a/•, (31) 
where • is some average value of attenuation coefficient 
within the bandwidth of interest. Given this coarse but use- 
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ful approximation we have from least-squares error analy- 
sis17,18 

o•,----cr•y, [ •ln2(f•) } (32) FE [l•i• -- •n(f) 12 ' 
where the summation is over discrete frequencies i = 1 to F. 
Using the small error approximation of Eq. (1 $ ) to revert 
from the log transformed variable a' to the parameter of 
interest ao we find that the fractional error in estimating the 
magnitude is given by 

tr'•ø -•--I •ln 2(f/) }1/2 •=•r a, = . (33) 
ao • [F•[ln(f/)- In(f) 

A 

If an estimation is made of the magnitude of attenuation • at 
some frequency fnear the center of the bandwidth, then by 
an axis shift to In (f) = 0, the sum of squares terms in Eq. 
(33) approaches unity, and the uncertainty reduces to 

= a/x/Y, (34 
which is merely the fractional error in any single estimate of 
attenuation, divided by the square root of the number of 
independent frequencies for which estimates were obtained. 

The last parameter to be examined is the frequency de- 
pendence, or slope n. From Bevington, 18 the standard devi- 
ation in this estimate is 

(z• = (zy,/X/J;[ln(f•}- ln(f)]2. (35} 
Since the discrete frequencies f,. are, in general, equally 
spaced, the log variables will have unequal spacing: 

A ln(f• ) -- ln(f/q- Af) -- ln(f• ) 

= ln(1 q- Af/f•)•Af/f•, (36) 

in the last step assuming Af/f,< 1. We further assume that the 
log frequency increment can be represented over a finite 
bandwidth by some mean quantity Af/f Then Eq. (35) be- 
comes, using Eq. (22)' 

1.68 f •ry, 1.68 fa• O'g t • (F-- 1)5/4 Af (F-- 1)5/4Af-• (37) 
The significance of these expressions is discussed in the fol- 
lowing section. 

II. RESULTS AND DISCUSSION 

A. The acoustic model 

A number of simplifications were made in arguments 
for underlying Rayleigh statistics. Scatterers were assumed 
to be small, weak, and randomly distributed in space and 
impedance. In practice, Rayleigh statistics are often noted in 
speckle image regions of tissue or phantoms. 12-14 Figure 2 
shows a histogram of magnitude ofbackscattered pressure at 
2.58 MHz obtained from the Fourier transform of time-gat- 
ed echoes received at constant depth from 100 scan lines 
laterally spaced by 0.4 mm in an adult human liver. Each 
sample volume was 0.75 cm in depth and 0.4 cm transverse, 
based on the data windowing and beamwidth, respectively. 
The data are compared with a theoretical Rayleigh distribu- 
tion which is scaled to the mean of the experimental data. 
These measurements, and all others presented in this sec- 
tion, were obtained from an Octoson B-scan instrument 19 

Magnitude of Pressure 

FIG. 2. A histogram of the magnitude of backscattered pressure at 2.:5 
MHz, obtained from over 100 sample volumes in a speckle region of normal 
liver. Smooth line is a Rayleigh distribution which was scaled the mean of 
the experimental data. 

(2.5-MHz center frequency, 1-MHz usable bandwidth) us- 
ing signal processing described previously. TM The magnitude 
ofbackscattered pressure from liver, obtained using this sys- 
tem, consistently yielded Rayleigh first-order statistics simi- 
lar to those shown in Fig. 2, when care was taken to eliminate 
sample volumes which included obvious deviations from the 
model, such as specular reflections from larger vessels or 
liver boundaries. Other first-order statistics such as a Rician 

pdf may be found under special conditions. 14 In the particu- 
lar case of Rician statistics, the signal-to-noise ratio in- 
creases, compared to the Rayleigh case, and therefore the 
estimation precision would improve proportionally, assum- 
ing stationary statistics within the region of interest. 

B. Parameter uncertainties 

The expression for the standard deviations in estimates 
of attenuation at any single frequency a and then the power 
law parameters ao and n over a bandwidth deserve addi- 
tional comment. 

First, the uncertainty in estimating attenuation given by 
Eq. (23) has the intuitively reasonable result: The variability 
is proportional to a constant which is directly related to the 
underlying speckle statistics, and can be reduced as a func- 
tion of the number M and spacing of AX independent sample 
volumes along the axis of insonation, and also the number N 
of independent scan lines which are averaged. The difference 
in powers ofNand M demonstrate the relative importance of 
data along the axis of insonation. Put another way, Eq. (23) 
demonstrates that estimates of attenuation from isovolu- 

metric regions will not, in general, yield equal results. In Fig. 
3 (a) and (b), two regions are shown with equal volume, 
v = (MAx)(NAy)(Az), where Az is assumed to be on the 
order of a beamwidth, and Ay a half beamwidth, the mini- 
mum distance required to ensure independent scan lines. 12,13 
In Fig. 3(a),M= 10andN = 5, butin Fig. 3(b),M= 5and 
N = 10. Using Eq. (23), the ratio of s.d. of attenuation mea- 
surements will be 

O'Ol[) I (10) 1/2(5)5/4 
O'ao: (5)1/2(10)5/4 __0.6. (38) 

This demonstrates the relative advantages of adding in- 
creased depth segments as opposed to lateral averaging. 

As a practical example of measurement uncertainty, we 
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FIG. 3. Isovolumetric regions of interest segmented into independent scan 
lines (Ay = one-half beamwidth), and depth segments (floe = axial length 
chosen by proper windowing of digitized rf echo). In (a), greater depth 
information is available, whereas in Fig. 5 (b), increased lateral averaging is 
available. The uncertainty in estimation of attenuation at any frequency is 
lower by 60% in case 5 (a) compared to 5(b) because a least-squares error 
estimation strongly favors the added depth information. 

consider the early results of liver attenuation obtained from 
the Rochester system, 3'4 where an approximate 4-X 5-cm 
region of tissue was analyzed. In this case, time domain 
Blackman windows were spaced with a distance of 
AX = 0.375 cm; there were M = 14 independent depths and 
N = 12 independent scan lines per region of interest. Thus 
from Eq. (23) the s.d. of the measurements was 

(0.44) 
•r• = = 0.014 Np/cm. (39) 

(0.375) (12) •/2(13) 5/4 
Using a typical value of a = 0.15 Np/cm for 3 MHz, 4 the 
fractional error for these measurements expressed in percent 
is 

Ora/tS•3MHz • "[- 9%. (40) 

Thus, with this system operating in a frequency band of 2-3 
MHz, an approximately 4-X 5-cm region was required to 
obtain less than 10% fractional error on any single measure- 
ment of attenuation. 

In deriving the magnitude and frequency dependence of 
attenuation over a bandwidth, the standard deviations in ao 
and n were linked directly to the uncertainty in attenuation 
at any individual frequency •ra. Also, the standard deviation 

A 

in estimate of attenuation • near the center frequency is 
shown by Eq. (34) to be less than •ra by a factor of 1/x•-, 
where F is the number of discrete, independent frequencies 
at which attenuation estimates were obtained. The correct 

A 

interpretation is that • is merely the group average of F at- 
tenuation estimates over the bandwidth. If the bandwidth 

does not include 1 MHz, then the value of ao is a projection 
out of the range of data, and Eq. (33 ) is used. Again, refer- 
ring to the Rochester system, 3'4 attenuation estimates were 
obtained at F-- 15 discrete frequencies between 2 and 3 
MHz. Assuming a 10% average fractional error for individ- 
ual attenuation estimates, then using Eq. (34), 

•r•/• = 10%/xff• = 2.6% at 2.5 MHz. (41) 

Whereas projecting to 1 MHz to find ao, using Eq. (33), 

ø•ø-- 10%( •ln2(f•) .)=17%, (42) ao x•- •;[ln(f,.)- ln(f) ]2 
a larger erro• than obtained for the 2.5-MHz group estimate. 

Turning to the estimation of the frequency dependence 
n, Eq. (37) shows that the s.d. is proportional to the frac- 
tional error in attenuation measurements, and inversely pro- 
portional to the number of and spacing between frequency 
points. For the Rochester data, 3'4 withf-• 2.5 MHz, Af = 5/ 
64 MHz, and using a single scan with fractional error of 
attenuation estimates of 10%, then Eq. (37) yields 

1.68(2.5)(64)10% 
Orn = •20%. (43) 

(14)5/4(5) 
For the clinical data reported by Parker et al., 4 at least 

two parallel scans separated by 10 mm were used for final 
estimates of ao and n, thereby reducing the per-scan uncer- 
tainties reported above by an additional factor of at least 
1/x/•. 

C. Relation between estimates of ao and n 

In practice, the estimated values of ao and n do not dis- 
tribute evenly or normally about the correct values for any 
given tissue or phantom. Instead, the values of ao and n esti- 
mated from small regions of interest tend to take on a quasi- 
reciprocal relation whereby if the estimate of ao is above the 
correct value, then the estimate for n tends to be low, such 
that the result yields an accurate magnitude of attenuation at 
the mean frequency (or more accurately, the mean log fre- 
quency, although for small bandwidths the distinction is not 
great). Understanding of this phenomenon is crucial in in- 
terpreting results. The effect can be explained with the aid of 
Fig. 4, where a log-log plot of attenuation versus frequency 
is shown for an attenuating medium which may be charac- 
terized by the two power law parameters ao and n. We then 
assume that attenuation estimates are obtained over a band- 

width off2 -f] MHz. Error bars are drawn to represent the 
uncertainty •r• atf• and f2, whereas the smaller error at mean 
frequency represents the more accurate group average esti- 
mate of attenuation at the mean frequency, given by Eq. 
(34). (The smaller error bar can alternatively be thought of 
as a constraint that the power law fit will be unbiased at the 
center frequency. ) There exists a family of curves which lie 
within all error bars. Thus In ao (the intercept) and n (the 
slope) are seen on the dotted lines ofFiõ. 4 to vary inversely. 

To quantify this effect, the slope and intercept can be 
found for the two dotted lines of Fig. 4 which represent the 
extreme members of the family of lines lying within all error 
bars. The high and low intercept lines, labeled lines 1 and 2, 
respectively, pass through the log of the points: 

1' (a• q- O'a, A); (a 2 -- O'a,f2), (44) 
2: (a• -- a•,f•); (O• 2 q- O'a,f2). 

Taking the log transform of these points, and applying the 
small error approximation to separate error terms from the 
log variables, the slope b and intercept a can be obtained for 
line 1' 

b• = n -- 2e•/ln(f2/f•), (45) 
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FIG. 4. A power law fit of attenuation versus frequency, using log variables. 
If attenuation estimates are available at discrete frequencies betweenf• and 
•, then estimates of the power law parameters are most likely to fall within 
the "bow tie" region shown between lines # 1 and #2, centered about the 
correct values of ao and n which describe the attenuating medium. 

In(f: .f•) (46) al = ln(ao) + e• ln(f:/f•) ' 
where % = (7• / •, some average fractional error of individ- 
ual attenuation estimates. For line 2, the signs on the error 
terms of Eqs. (45) and (46) are reversed. 

As a practical example, let ao = 0.05 Np/cm-MHz and 
n = 1 represent values for normal liver. 4 Furthermore, let 
f• = 2 MHz, f2 = 3 MHz, and •r,/a = 0.03. Then the ex- 
treme estimates of a power law fit are either: 

ao• = 0.044; n• = 1.15, 
o• 

ao• =0.057; n2 =0.85. 

Despite the apparent difference between these sets of values, 
both yield the same magnitude of attenuation, 0.126 Np/cm, 
near the center frequency 2.5 MHz. These parameter values 
plotted on ao vs n space are shown in Fig. 5. Extreme values 
are also shown for other fractional errors, and the result 
demonstrates that estimated values of ao and n, which yield 

O. lO - 

(:[:o 
0.05 - = io% 

,.b ' •b 
n 

FIG. 5. Errors in estimations of power law parameters ao and n are linked in 
a quasireciprocal relationship. Uncertainties in these parameters can be 
drawn in ao versus n space as a locus of points which yield the same value of 
attenuation at the center frequency; ao (7)" = constant. (This is in contrast 
to the common representation of independent uncertainties of two vari- 
ables, which would typically be drawn as a point with both horizontal and 
vertical error bars drawn.) As the standard deviation of the individual at- 
tenuation estimates increases, the spread of power law estimates increases. 

identical attenuation magnitudes near the mean frequency, 
tend to cluster along a reciprocal or hyperbolic shaped 
curve. Thus, when comparing attenuation results from dif- 
ferent individuals, a strong claim for differentiation of re- 
sults can be made only when estimates fall on mutually ex- 
clusive reciprocal curves in ao vs n space. 

Figure 6 depicts the scatter of estimates of ao and n 
obtained from independent regions of interest within two 
human livers. The values are seen to cluster around the locus 
of points which yield constant attenuation at 2.5 MHz. 

D. Strategies to minimize volume requirements 
The system discussed in Sec. IIB obtained 10% frac- 

tional error for individual attenuation estimates and close to 
20% for the group estimate of power law parameters, utiliz- 
ing a 4- X 5-cm region of tissue and 1-MHz bandwidth. This 
region of interest is too large for application to focal diseases 
or small tumors, or for use on smaller organs such as the 
kidney, which would require further subdivision of medulla 
and cortex echoes in order to maintain the stationary back- 
scatter statistics required for attenuation analysis. 

If attenuation imaging is to be based on a single param- 
eter, t,.hen the most accurate is the group estimate of attenu- 
ation • at the center frequency, obtained by either evaluating 
the power law fit at the center frequency, or equivalently 
taking the mean of the log transformed individual estimates 
of attenuation. The standard deviation of this parameter is 
from Eqs. (23) and (34), 

0.44 

Or• -- )5/4 •/2 ' (47) (AX) (M -- 1 (N- F) 

Assuming a tissue dimension of L cm is available along the 
axis of insonation, with a system bandwidth of B Hz, the 
problem is to segment echoes optimally into sample vol- 
umes, given that resolution in the frequency domain is in- 
versely proportional to resolution in the time domain. As- 
suming a time domain window of At = 2AX/C, where C/2 is 
the round-trip speed of sound in the medium, then the reso- 
lution in the frequency domain Afis given by the inverse of 
the time window: 

0.1( 

•l• o 

0.05 

N CASE I 

\ 

,b ' zlo 
n 

FIG. 6. The scatter of pairs of (ao, n ) estimates obtained from multiple inde- 
pendent regions of interest within the livers of two individuals. The power 
law estimates tend to fall on the locus of (ao, n) points which yield a con- 
stant value of attenuation at 2.5 MHz, the center frequency of the system 
used to collect data. 

732 J. Acoust. Soc. Am., Vol. 80, No. 3, September 1986 Kevin J. Parker: Attenuation measurement uncertainties 732 



Af_• 1/At = C/2AX. (48) 

Segmenting the available length L and bandwidth B, we have 
the relations: 

AX=L/M and Af=B/F. (49) 

Substituting these into the error expression of Eq. (47) 
to eliminate AX and F yields: 

0.44(C/2) 1/2 
0'• •- L 3/22¾1/2B I/2[(M-- 1)5/4/M 3/2] ' (50) 

In the above expression, the term in square brackets is insen- 
sitive to variations in M. Conveniently, the quantity 
(M-1)5/4/M 3/2 is very close to 0.44 over a range of 
3<M<30. This implies that the least-squares error estimate 
of attenuation depends strongly on the overall dimensions of 
the medium and the bandwidth employed, but is nearly inde- 
pendent of how the time (sample volume depth) and fre- 
quency domains are segmented. 

Substituting the constant 0.44 for the function of M in 
square brackets of Eq. (50) produces the desired result: 

( C /2 .) •/2. (51) 
To illustrate this result, let us calculate the error bounds 

A 

on • using data from a 1- X 1-cm region of tissue. Assume the 
use of a hypothetical 6.3-MHz bandwidth, 6.3-MHz center 
frequency, f/10, scanning instrument. (For comparison 
purposes, these are the same system parameters employed by 
Kuc in calculations of the variance in measurement of at- 

tenuation slope. •ø) The diffraction limited beamwidth near 
the focus will be approximately 2.8 mm, thus using half- 
beamwidth overlap; N = 7 independent scan lines may be 
obtained within the 1-cm lateral dimension. Given C/2 

= 750 m/s, Eq. (51 ) yields: 

O'• = ,13 ' 7.6.3X106] =0.04 Np/cm. (52) 
This produces an 11% fractional error in attenuation at the 
center frequency, using a normal liver value of attenuation 
equal to 0.38 Np/cm, at 6.3 MHz. This result is significant 
since it demonstrates that attenuation maps or images of 1- 
cm • resolution, with approximately 10% accuracy, could be 
obtained using a 6.3-MHz B-scan system. If compound scan- 
ning is possible (as is routinely the case in abdominal imag- 
ing using the Ottoson), then either the dimensions or the 
error bounds can be further reduced. 

In contrast, Kuc applies the same system parameters to 
the estimate of attenuation slope ]•. For the 6.3-MHz, f/10 
case, a 1-cm: region ofinterest yields a standard deviation in 
]• of 0.1 dB/cm-MHz, using either the log spectral difference 
or Gaussian spectral shift approaches. :ø Comparisons 
between these approaches and those outlined in this paper 
and others 3'4 can only be made for the special case of a medi- 
um where attenuation increases linearly with frequency. Un- 
der these conditions: 

a=•f and tza =tzo .f (53) 
Converting the units of/? gives 

tzo = 0.1 dB/cm-MHz = 0.0115 Np/cm-MHz, (54) 

whereas our group estimate at the center frequency, using 

the results of Eq. (52), yields: 

a•/6.3 MHz = 0.0063 Np/cm-MHz, (55) 

or a 55 % drop in error bounds as compared to the/? estima- 
tors. 

The improved precision in our approach may be attrib- 
utable to the fact that the • estimators are applied as pair- 
wise comparisons of signals from different depths, whereas 
our approach uses all depth information for least-squares 
error curve fit. The latter approach is a more efficient use of 
data. 

III. CONCLUSION 

The magnitude of attenuation may be estimated at dis- 
crete, independent frequencies by measuring the decay of 
ensemble averaged backscatter pressure magnitude as a 
function of depth. The fluctuation introduced by random, 
multiple, small scatterers is well described by Rayleigh sta- 
tistics, which form the basis for calculations of uncertainties 
in estimates of the magnitude and frequency dependence of 
attenuation within a region of interest. A number of impor- 
tant concepts emerge from the analysis. 

( 1 ) Square regions of interest are not the optimal shape 
for measuring attenuation. The least-squares estimation pro- 
cess reveals that parameter uncertainties are reduced more 
by extending depth or range than by increasing lateral aver- 
aging. 

(2) Assuming the attenuation coefficients obtained 
over a finite bandwidth can be well described by a power law 
fit, then each tissue or region of interest can be characterized 
by two parameters, the magnitude ao and frequency depen- 
dence n of attenuation. Alternatively, a single parameter can 
be derived from the power law fit, the magnitude of attenu- 
ation at the center frequency •. This group estimate is more 
precise than either the estimates of ao and n, or any single 
estimate of attenuation at a discrete frequency within the 
bandwidth. 

(3) Two-parameter classification of tissue by ao and n 
may be useful in detecting specific changes in tissue; how- 
ever, the errors in ao and n involve a quasireciprocal relation. 
Estimates of ao and n from different regions of interest with- 
in the same medium will tend to cluster on a curve of con- 

stant attenuation at the center frequency. Claims for differ- 
entiation of tissue types can be made only when the estimates 
lie on mutually exclusive curves in ao vs n space. 

(4) The 1-cm 2 region of interest will permit estimates of 
•, with approximately 10% error, given a 6.3-MHz (center 
frequency and bandwidth ) ,f/10 ultrasonic imaging system. 
The use of alternative methods for estimating attenuation 
slope produces nearly twice the uncertainty given the same 
system parameters. Attenuation imaging of smaller regions 
of interest will require the use of increased bandwidths and/ 
or compound scanning. 
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