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ABSTRACT -

Accurate computation of the thickness of articular cartilage in 3D is crucial in diagnosis of joint diseases. The
purpose of this research project is to develop an unsupervised method to produce three-dimensional (3D) thickness
map of articular cartilage with magnetic resonance imaging (MRI). The method consists of two main parts, cartilage
extraction and thickness map computation. The initial segmentation for cartilage extraction is achieved using a
recently proposed algorithm which depends on region-growing. The regions produced during this process are labeled
as cartilage or non-cartilage using a voting procedure which essentially depends on local 2-class clustering and makes
use of prior knowledge about cartilage regions. Following cartilage extraction, femoral and tibial cartilages are
separated by detecting the interface between them using a deformable model. After the separation, the cartilage
surfaces are reconstructed as a triangular mesh and divided into two plates according to the relation between surface
normal at each vertex and principal axes of the structure. For surface reconstruction, we propose an algorithm
which incorporates a simple MR imaging model which allows surface representations with sub-voxel accuracy. Our
thickness computation algorithm treats each plate separately as a deformable model while considering the other
plate as the target surface towards which it is deformed. At the end of deformation, the thickness values at each
vertex is defined as the distance between the locations at pre and post-deformation instances. The performance
of the cartilage segmentation is compared to manual tracing. Also, the performance evaluation of the thickness
computation algorithm on phantoms resulted in RMS errors on the order of 1%.
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1. INTRODUCTION

One of the most common diseases that causes disability is Osteoarthritis (OA). OA results in thinning of cartilage.
Thus, one needs methods to accurately obtain the thickness map of cartilage to diagnose and monitor the progression
of the disease. Until this date, ample attempts have been made to achieve this goal using MRI which provides the
capability of visualizing cartilage with good contrast.

The task of the computation of cartilage thickness is accomplished in two main steps. First, the cartilage is
segmented from the 3D volume. Then, the thickness map of the cartilage, which is a 3D object, is constructed.
Solloway et al. ! use active shape models? to segment the cartilage. They compute the cartilage thickness by
defining it as the distance between the points at which the line perpendicular to cartilage medial axis intersects the
cartilage. However, both their segmentation and thickness computation is essentially 2D techniques. Especially, the
computation of the thickness of a 3D object using a 2D technique is prone to generating significant errors since the
latter does not take the orientation of cartilage into account. Eckstein et al. uses a region growing method to segment
the cartilage.®> Their method is a seeded region-growing approach in which the low contrast cartilage boundaries
are manually marked to prevent misclassification. This is also a 2D method in which each slice of the volume is
processed independently. Stammberger et al. employs B-spline snakes to each slice of the 3D volume The energy
formulation of the snake they use has a coupling term, which depends on the shape of the segmented cartilage in
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the slice that is processed one step before. Thus, the 2D segmentations in each slice are not independent each other.
They are correlated to the slice that is processed prior to them.

The last two techniques use the thickness computation algorithm proposed by Stammberger et al. .5 It transforms

the binary volume, which is constructed by cartilage segmentation, into a distance map using Eucledian Distance
Transform (EDT). It also avoids using normal vectors defined on discrete surfaces.

The common problem of the segmentation techniques mentioned above is that they require user intervention
either in the form of manual initialization or delineation of cartilage borders. The thickness computation algorithms
have the drawback of working on the discrete grid. This fact makes it possible to come up with certain values only.
This turns out to be especially important for a thin object such as cartilage. Our aim in this study to develop

methods for automatic cartilage segmentation and thickness computation which will prol/jde results with sub-pixel
accuracy.

2. CARTILAGE SEGMENTATION
2.1. Initial Segmentation

The proposed method for cartilage segmentation is a region-based one in which the regions created in initial segmen-
tation stage are assigned to two classes, cartilage or non-cartilage in the subsequent steps. Hence, it is crucial that
the initial segmentation step provides a tessellation in which the regions consist of one class. The method can cope
with over-segmentation but not under-segmentation due to its region-based nature. Because of these reasons, we
utilized the segmentation algorithm proposed by Pena for initial segmentation stage.® The algorithm is based mainly
on a region-growing scheme refined by region-splitting, region-merging and relaxation. It has been experimentally
shown that, the algorithm provides good segmentation results for 3D MRI data.

The voting procedure, which will be covered in Section 2.2, uses the prior anatomical knowledge which states
that the cartilage and bone tissues should be close to each other. In order to quantify this observation, we have to
know which regions correspond to bone tissue. Specifically, we attempt to determine the regions that cover tibia
and femur. This purpose is achieved by detecting the largest regions of tibia and femur using x? statistic since the
intensity profiles of both regions that are sought should bear a certain degree of similarity. Then the bone regions

are completed by using a growing approach in which the local standard deviation profiles of bone regions are kept
approximately unchanged.

2.2. Voting Procedure

The regions are labeled as cartilage or non-cartilage using the voting procedure proposed in Pakin et al. for segmen-
tation of bone and soft tissue in digital radiographic images.” The voting procedure is essentially a 2-class local
clustering of regions where the neighborhood system of each region is clustered into two classes using average intensity
as feature (The neighborhood system of a region is defined as the region itself and the ones that are adjacent to it).
It overcomes the difficulties which stem from the intensity inhomogeneities in medical images and the nonuniform

intensity profiles of tissues to be segmented. The volume is also divided into sub-volumes using overlapping blocks
to ensure local analysis.

Note that, clustering every neighborhood system implicitly assumes that both classes exist in every neighborhood
system. This is clearly an invalid assumption. Let us call a neighborhood system ambiguous if it is a collection of
regions which belong to one class. These systems have to be detected prior to clustering since some of the regions
that belong to them will inevitably acquire incorrect votes as a result of clustering. The detection is based on the
following assumption. If a neighborhood system is ambiguous then the regions belong to it are non-cartilage regions.
This assumption is governed by the fact that the cartilage is a thin and highly localized tissue. Due to this reason, it
is highly unlikely to have a cartilage region whose all adjacent regions are also cartilage. In this application, we used
two different features to determine whether a neighborhood system contains at least one cartilage region or not.

The first measure used for this purpose, d4, quantifies the closeness of a region, 4, to the bones. It satisfies the
following equation.

Ha(ds) = 0.9N,4. (1)

H (d) is the cumulative distribution function of distances of voxels that belong to region A, to bone regions. Hence,
HA(0)=0 and Hs(d)=Na for d > da maz; da,maz i the distance between bone and the point of region A that is
farthest away from bone. It is clear that computation of d4, for all A, requires the knowledge of the distance between
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bone region and each point in the volume that does not belong to bone. This is the definition of the Eucledian Distance
Transformation (EDT) of the volume assuming the bone and the rest of the volume are background and foreground,
respectively.® . For the computation of EDT, we chose to implement the technique proposed by Cuisenaire et al.
which uses ordered propagation by bucket sorting.” Another issue regarding distance computation is the usage the
physical distances as opposed to distances computed on the 3D grid. In 3D volumes, inter-slice resolution is usually
greater than intra-slice resolution. Distance computation on the 3D grid without taking into account the inequality
of inter and intra-slice resolutions introduces artifacts which adversely affects the performance of the algorithm. Due
this fact, the distance between voxels ¢, and j, d(, j), is defined as:

. . . . . . . yay1/2

d(i,j) = (7'2(11: - .71:)2 + TZ(Zy - Jy)2 + Tz(’z - ]z)z) : (2)
-

where r,, T, and r. are the resolutions in z, y, and z directions, respectively. The second measure used for the

detection of ambiguous neighborhood systems is related to the contrast at the region boundaries and similar to

the peripheral contrast concept proposed by Hojjetoleslami et al..!® We define ¢4 prq as the median value of

the local standard deviation values along the border of region A. In other words, 04 4r¢ = Med{Sa sra}, Where

Sapra = {o(@)|i € A7 st j& A,j € N;,Vi}. N; and o(i) stands for the neighborhood of and the local standard
deviation at voxel i, respectively.

The motivations behind these two features are obvious. The first feature is originated from the fact that the
cartilage tissue is always close to bone tissue . Second feature is governed by a more qualitative observation which
states that cartilage regions not only has high intensity but also boundaries along which there is good contrast,
thus high local standard deviation. Hence, we argue that a cartilage region should possess relatively small d4 and
large o4 5rq¢ values. According to these definitions and observations, we state that a neighborhood system, Nik, is
ambiguous if dr;, > vz and or,,, brd < Yo, VRjik-

3

The algorithm of the voting procedure is as follows:

ALGORITHM : VOTING PROCEDURE

For each By
For each R;;
Compute the average intensities of {R ;i }.
If 3Rk such that dr;, <v4 AND or;, brd > Yo
Cluster {R;ix} using k-means algorithm with 2 clusters.
For each R
If £;ix is cartilage, increment V(C) of corresponding R,,.
If £;ix is non-cartilage, increment V(NC) of corresponding R,.

end
Else
For each R
Increment V(NC) of corresponding R.,,.
end
end
end
For each R,,
If Vo (C) > V,u(NC), R,, is a cartilage region.
If Vi (C) < Vi (NC), Ry is NOT a cartilage region.
end

Rum is the m!? region; By is the k** block; R, is the i region in the k' block; Ny is the neighborhood system
of R, which is composed of R;; and the regions that are adjacent to it; R, is the 7" region in NMy; Ljix is the
label of R as the result of clustering of the regions in A; V,,(C) is the votes for cartilage label acquired by the
mth region; V,,(NC) is the votes for non-cartilage label acquired by the mt* region.
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3. COMPUTATION OF CARTILAGE THICKNESS USING DEFORMABLE MODELS

The deformable model we employ for separation of tibial and femoral cartilages and thickness computation is a 3D
model which consists of a triangular mesh. The formulation of 3D deformable models is an extension of classical
formulation of snakes provided by Kaas et al. !! and it is provided by Cohen et al. .12

The deformable model formulation we use in this study is similar to the work of Eviatar et al. .13 Qur
deformable model consists of a surface mesh with triangular patches. We treat the deformable model as a collection
of masses which are located at the node positions of the surface mesh. The nodes of the surface mesh are connected
to each other with imaginary springs. The following notation will be kept throughout the sections which covers
methods with deformable models:

N : Number of nodes in the mesh.

n; : it node in the mesh, i =1---N.

Pi = [Pzi Pyi Pi]T ¢ The coordinates of the i*" node in 3D continuous space.
The energy of the deformable model which is denoted as M is equal to:

E(M) = Eezt(M) + Eint (M) (3)

where the internal energy E;p; (M) is definad as:

N
1
Eint(M) = 5 Z Z kij ((|Pzi ~ Djl — 2045)° + (1Pyi ~ Pyi| — v0.45)° + (Ip=i — Pl — zo,ij)2) . (4)
i=1 jeN;

In this formulation, A; denotes the set of nodes that are adjacent to p,;. It can alternatively be defined as \V; =
{J13T s.t. p; € T,p; € T}, where T is a triangle in the surface mesh which is defined as the ordered list of its three
vertices, T = (px, P, Pm).!®> Also,

T 0 _ .0 |0 0o _.onT
Po.ij = [0,ij Y0,i5 2045]" = [IP2i — Pajl Ipys — Pyl 1p2i — p2;1) : (5)
where p? = [p, p%; p%]T is the initial location of the i** node prior to the deformation.

The internal energy term tries to keep the distances between nodes as close to their initial values as possible. It
is clear from the Eqn 4 is that any deviation from the initial distances between two adjacent nodes in any direction
increases the overall internal energy. Another characteristic of the deformable model formulation is that the internal
energy depends only on the scalar distance. In‘other words, The factor that is contributed to overall internal energy
by the i** and j** nodes remains unchanged unless the distance between them changes regardless of the direction
of the vector p; — p;. This means that the formulation does not attempt to prevent bending of the deformable
model even though it is possible to do so by incorporating second order neighbors to the energy expression. However,
we believe that the performance gain for the applications in which we are interested will be minimal compared to
the complexity of formulation and computation introduced by such an addition. The formulation of the model is
concluded by the specification of the external energy, E,,¢(M). The external energy formulation will be provided in
the incoming sections which covers separation of tibial and femoral cartilages and thickness computation since they
require slightly altered external energy terms and different energy minimization methods.

3.1. Surface Mesh Generation

This section presents the algorithm used for the cartilage surface extraction. The algorithm incorporates a simple
MR. imaging model which allows surface representations with sub-voxel accuracy.

Although Marching-cubes type algorithms!® can be used to extract the iso-surfaces from the raw data, they assume
a simple sampling of a continuous distribution of the intensity profile. This continuity and sampling assumptions
make marching-cubes unsuitable for the extraction of surfaces from MR data. F irst, human anatomy is a set of
tissues with different MR properties; therefore, there are intensity discontinuities between tissues. Second, the MR
imaging formation is an integration of the magnetic resonance properties, which makes signal intensity formation at
boundaries dependent of the sampling point location..1”

To overcome the difficulties associated with marching-cubes algorithms, we divided the problem of surface extrac-
tion it two steps: Raw surface extraction and surface correction. The raw surface extraction creates a simple surface
representation of the tissue. The simple representation allows the correction of the surface nodes to the location that
will recreate the raw data assuming simple MR formation model. Next, we describe in detail the two step approach.
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Figure 1. a)Single slice representation of the voxel classification into two different tissues. b)Surface generation
from the voxel’s faces at boundries ¢)Surface nodes and normal extracted from the face boundaries. d)Surface nodes
and normals from the raw surface extraction e)Surface nodes and surface normals afer the node correction.

3.1.1. Raw surface extraction

At this point we assume that all the voxels in the volume have been classified as cartilage and non-cartilage tissue
with high accuracy. We use a simple cube representation of each voxel in the image. Then the raw-surface is the set of
every single square face that lies at the border between tissues. At each node point, p, of the surface representation,

the normal, n, is also computed. The normal computation is done by averaging the normal of each face, v, attached
to that point.

np = CZ n,, (6)
veC
where C is the set of faces associated to the point p, n, is the normal at face v, and ¢ is the normalization constant.

Figure 1 shows the raw surface extraction process. This extraction process is very simple and yields simple surfaces
composed by the set of square polygons.

3.1.2. Surface correction

The type of surfaces generated by the raw extraction algorithm are not adequate for estimation of cartilage thickness.
The nodes of each surface are not in the right location. The next step is to place the surface nodes at the positions
that will create the most accurate 3D reconstruction of the object.

We assume that the signal f at each voxel is the integration of the MR properties of the imaging volume:
f6i0= [ i), ™
z,y,2€R

where f(i,j,k) is the observed value at discrete point (i,j, k), t(z,y,z) is a piece-wise representation of the MR
properties from the subject, and R is a spherical region around point (z,y, 2).

The spherical region and the piece-wise model allows the implementation of a simple method for correcting the
surface node locations. If we assume a two tissue model then the signal mixture at the boundary point p can go
from 0% to 100%

fo=atl +(1-a)t, (8)
where « is the mixture of tissue signal inside the object, t?, and (1 — @) is the amount of mixture from the tissue
outside the object, t,. The mixture, «, can be easily found if the local t& and t® values are known. These values

P
are unknown; but local estimations can be obtain by using all the local non-boundary voxels. The signal estimation

from the tissue inside the object is:

1 1
2 =¢, Z Z Zf(i-l—.z+n§,j+y+n§,k+z+n’:’)s(i+r+n’;,j+y+n§,k+z+n’z’), (9)

r=—1ly=—-12=-1
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where (nf,nf, n?) are the components of the normal np, associated to the boundary node p, whose original location

is at the point(7, j, k), ¢; is the normalization constant, and s(i, j, k) is the tissue classification map. Once tg and t’r’,
are known, then from 8:
(fo — tb)
O = mb—) (10)
P P
The signal value f, is undefined because the point is at the voxel boundary. We select two possible values, one
Jjust next inside the tissue f5, and the other just outside the tissue ff,. The signal value which is closest to the tissue

value #2 or t is assumed to be a pure signal from that tissue. The other value is assumed to be a mixture. The
mixture value is the one used in equation 10.

‘This mixture value is then used to adjust the node point coordinates along its normak’ The amount of correction
will depend on the assumptions made on the tissue boundary location. To simplify the equations, we approximate
the tissue boundary as a simple plane. The plane assumption and a simple imaging volume model can be used to
estimate the amount of correction. If the highest value difference is given by f3 the correction is:

P"={p. — (1 —a)nZ,p, — (1 - a)n?,p. — (1 — a)n®} (11)

On the other hand, if the highest value difference is given by f"; then the correction is:
P" = {p: +an?,p, + an’,p, + an?} (12)

This simple correction scheme will adjust the boundary points p to it new value p+ according to the signal
mixture very accurate in most low curvature regions. The correction will have some errors at high curvature points
and points where three or more tissue are presents. This cases are not very common in most cartilage images.
Therefore, the reconstructed surfaces from the corrected points are quite accurate.

3.2. Separation of Tibial and Femoral Cartilage and Segmentation Improvement

Following the cartilage segmentation, tibial and femoral cartilages have to be separated from each other in order to
proceed with the computation of their thickness. We utilize two deformable models for this purpose. The initial
locations of deformable models are femur-cartilage and tibia-cartilage interfaces. They are denoted as M fm and My,
respectively. Both meshes are deformed towards their respective target surfaces which are the sources of external

energy. For My, and My, the target surfaces are the cartilage boundary except femur-cartilage and tibia-cartilage
interfaces, respectively.

The external energy term in this framework depends on the distance between the nodes and the target surface.
First, the EDT assuming the target surface and the rest of the volume as foreground and background, respectively,
is computed. The value of the external energy at the location of node n; is equal to the square of the distance of n;
to the target surface which is computed by bilinear interpolation and denoted by d(p;). (Recall that, the distances
on the volume grid are already computed by EDT.) Thus the external energy of the deformable model is equal to

N
Eert(M) = > d?(py) (13)

i=1

The direct minimization of the total energy of the deformable surface is a difficult and computationally burdensome
task. Thus, a greedy algorithm is applied to solve the minimization problem by opting for a suboptimal solution. The
concept of the greedy algorithm we use is similar to the algorithm proposed by Williams et al. .18 The algorithm
finds the minimum of the energy term that is contributed to the total energy of the deformable

mesh by each node
assuming the other node locations are constant. The energy term contributed by the node n;

can be written as

B = (00 + 3 by ((pai = esl = 2025)" + Upys = pysl = v0.5)" + (pss = posl = 205))  (14)
JEN;

We used Powell’s method for solving the minimization problem p; = argming, {F(n;)}.'® The algorithm makes
the implicit assumption that the thickness of femoral cartilage does not show abrupt changes. Forcing the deformable
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surface to keep its surface area close to its initial value along with this assumption enables us to correctly detect the
interface between femoral and tibial cartilages.

The algorithms utilized for cartilage segmentation up to this point were region-based techniques. Despite their
advantages, when the regions are grouped under labels, they might cause tessellations with non-smooth boundaries.
In order to create cartilage regions with smooth boundaries, the algorithm used for separation of tibial and femoral
cartilages is utilized for improvement of cartilage segmentation. The underlying idea is to use the shape preserving
property of deformable models for creating smooth cartilage borders. Since there are no other tissues between carti-
lage and bones (femur and tibia), the acquisition of smooth bone-cartilage interface results are more straightforward
than the interface between cartilage and non-bone regions. The cartilage-non-bone interface is more prone to errors.
The modification of cartilage segmentation and separation of tibial and femoral cartilages are achieved simultane-
ously by using two deformable models which are located at femur-cartilge and tibm-cartilage interfaces initially. The
following notation is introduced to state the algorithm: Mgy ¢ The surface mesh at the femur-cartilage interface

My The surface mesh at the tibia-cartilage interface

Nfm,i® it* node of M ¢m whose location is Psmi = [Pfm,zi Pfm.yi pfm,zi]T

ngp,i ¢ i*" node of My, whose location is pu.; = [Pes.zi Pib.yi Dtb,zi)

di.gm(x) : EDT of the volume assuming the target surface and the rest of the volume as foreground and back-
ground, respectively. Target surface is the boundary of the cartilage region except the femur-cartilage interface.

dits(x) : EDT of the volume assuming the target surface and the rest of the volume as foreground and back-
ground, respectively. Target surface is the boundary of the cartilage region except the tibia-cartilage interface.

Prm : The center of mass of femur region.

Pts © The center of mass of tibia region.

Ttm.,j : The j** triangular patch of the surface mesh M,

Tes,; - The gth triangular patch of the surface mesh My,

The algorithm can be stated as follows:

1. Construct My, and My,.
2. Compute di, rm (x) and dy (x).
3. Deform My, and My, using the algorithm for defermation of surface mesh and appropriate target surfaces

4. Label the cartilage voxels as follows:
Compute Py, Pes
forvVieC
Construct |pmpc,il, [PiPc.il
Case 1 : If 3T}, ; such that |psmpe | intersects Ty, j AND
if ATis,; such that |pspe i] intersects T
i € Cyp
Case 2 : If 3Ty, ; such that |ppc ;| intersects T;p ; AND
, if ATjm ; such that |psmpe ;| intersects Ty,
1€ Cfm
Case 3 : If BTpm,; such that |psmpc.i| intersects T, ; AND
if AT ; such that |pgype ;| intersects Tgp 5
1 €Crm
Case 4 : If T}y, ; such that |psmpc.i| intersects Tfm j AND
if 3Ttp,; such that |pype ;| intersects Tip.
igC

end

The algorithm can be seen as an extended version of the algorithm for cartilage voxel labeling stated earlier. Two
deformable models are used for better separation performance. For a cartilage voxel, i, to be classified as femoral
(tibial) cartilage, My (M) has to be between tibia (femur) and i, and i has to between Mpm (M) and femur
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(tibia). As a matter of fact, in the pseudo-code provided above, case 1 (2) correspond to this situation. Since the
deformations of My, and My, are accomplished independently, they might intersect each other at the end. In such
a situation, the labels of cartilage voxels that are swept by both deformable models are determined using M. Case
3 is the implementation of this method. The improvement of cartilage segmentation is achieved by excluding the
cartilage voxels, which are not swept by neither deformable models, from C. This modification (which corresponds to
case 4) effectively approximates the tibial and femoral cartilage boundaries (except bone interfaces) with the shape
of the surface mesh after deformation.

3.3. Thickness Computation

The thickness computation algorithm we propose evaluates the thickness values at every node of the surface mesh
of cartilage. It is a 3D method which is independent of the orientation of the scan. The'steps of the algorithm can
be itemized as follows.

1. Construct the surface mesh of the cartilage, M.
2. Separate M into two parts, top and bottom surfaces, M; and M,, respectively.

3. Treat each surface as a deformable model and minimize their energy. For M; (M), M, (M,) generates the
external energy (target surface).

4. The thickness at node n; is defined as the distance between pre and post deformation locations of ;.

The separation of tibial cartilage surface mesh into top and bottom surfaces is achieved by considering the fact
that a relatively flat object in 3D has a scattering matrix whose one of eigenvalues is considerably smaller than the
other two. The plane of two principal axes which correspond to two greater eigenvalues approximates the flat object
well. Thus, the normals of the opposed surfaces of the flat object point to different sides of that plane. These facts
lead to a quite simple algorithm which investigates the angle between the normal and principal axis corresponding
to smallest eigenvalue to decide the surface on which a particular node is located.

The separation of femoral cartilage is slightly more complicated than that of tibial cartilage due to the curved
shape it possesses. However, femoral cartilage retains the properties of being flat and thin, locally. Hence, we
separated it into top and bottom surfaces by dividing the bounding box of femoral cartilage into subvolumes in
which the patches of femoral cartilage will be flat and thin and applying the above algorithm directly.

The energy definition of the deformable model we use for thickness computation purpose is identical to Eqns 3, 4, 13.

However, the definition of d(p;) is different from previous section. Since both the deformable surface and the target
surface are defined on 3D continuous space, d(p;) for n; € M, is defined as follows:

d(p;) = n'.’éi/&,, {lipi — p;lI} (15)

We again use a greedy algorithm to to solve the minimization problem. The formulation of the energy term con-
tributed by the node n; is identical to Eqn 14. Recall that, the problem of minimizing E(n;) was solved using Powell’s
method in the previous section. However, the higher computational cost of evaluating d(p;) in this framework makes
utilization of Powell’s method inefficient. We find the solution of Eqn 15 using brute force search which is significantly
burdensome than bilinear interpolation. Due to this reason, we utilized the well-known Newton-Raphson method,
a more direct approach than Powell’s method, for solving the minimization problem.!® 1t is solved iteratively as
follows:

pit! =pf —H'VE(®n,)|p (16)

where k stands for the iteration number. VE(n;) is the gradient of E(n;), and H is the Hessian matrix of E(n;)
which is equal to

’

d?(d(ps))

provided that pe; # pzj, pyi # Pyj, and p.; # Pzj, Vj. Tis a 3 x 3 identity matrix. With these definitions, thickness
computation algorithm can be stated as follows:
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Figure 2. The final segmentation result of tibial and femoral cartilages. The tibial and femoral cartilages are
shaded with white and black, respectively. (a), (b), (c), (d) are the 17t*, 20tk 42t% and 47t* slices of the 3D volume,
respectively.

ALGORITHM : THICKNESS COMPUTATION

=1
do
forVn; e My, i=1---N
Solve p} = argmin,, {E'(n;)} using Newton-Raphson method
end
Compute E'(M;)
Increment [
while |El(Mt) - El_l(Mt)| < Ytol,thk
for Vn; e M;,i=1---N
t(n:) = lo - p?||

The superscript ! denotes the iteration number. The thickness value at it* node of My is denoted as t(n;). It is
equal to the distance between points p? dnd p{ which are the locations of the i** node prior to and after deformation
of M, respectively. Note that, the algorithm above computes the thickness values at the nodes of top surface only.
For the nodes of bottom surface, same algorithm is used by changing M; to M,.

4. RESULTS
4.1. Cartilage Segmentation

An MRI scan of the knee whose size is 60 x 175 x 170 is used to demonstrate the performance of the algorithm. The
results of cartilage segmentation and separation of tibial and femoral cartilages can be seen in Figure 2 in which
the 17th, 20th, 42th and 47" slices are displayed. Furthermore, the 3D surface reconstruction of tibial and femoral
cartilages are displayed in Figure 3. The cartilage surface is combined with three saggital, coronal, and axial slices
from the MRI scan. We have compared the result of our cartilage segmentation algorithm with the manual tracing
results performed by a radiologist. The comparison yielded accuracy, sensitivity, and specificity results, 98.87%,
66.22%, and 99.56%, respectively, considering the voxel labeling process as a binary hypothesis problem.

4.2. Thickness Computation

The performance of the thickness computation algorithm is analyzed on synthetic phantoms. We constructed two
synthetic 3D objects whose surfaces are analytical functions. Thus, the exact thickness values of the objects are
known. The bottom surfaces of both objects are flat at z = f(z,y) = 0. The top surface of the first phantom is a
sinusoidal function whose formulation is given as: '

fi(z,y) = 5sin(0.1(z — 50)) sin(0.1(y — 50)) + 30 (18)
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Figure 3. The surface reconstruction result of cartilage along with 13th 109th, 25" saggital, coronal, and axial
slices, respectively.

The top surface of the second phantom is basically a 2D Gaussian modulated with the sinusoidal function in fi(z,y).
It is given as:

folz,y) = 5 (exp(=r2/262))""*) sin(0.1(z — 50)) sin(0.1(y — 50)) + 30 (19)
where 72 = (z — 125)% + (y — 125)? and o = 13.

The cross-sections and the gray-scale maps of thickness distributions of both phantoms are depicted in Figure 4.
We computed the thickness values at the nodes that belong to top or bottom surfaces. In Table 1, the performance
of the algorithm is displayed by comparing its results to the analytical values. Note that, the top surfaces of the
phantoms are essentially sinusoidals with 10 peak-to-peak units and a DC value of 30 units. The error values provided
in Table 1 should be compared to the peak-to-peak value of the top surface without considering the DC value.
According to this, the algorithm results in 1.9% and 0.8% RMS errors for first and second phantoms, respectively.

Phantom 1 Phantom 2
Analytical | Experimental || Analytical | Experimental

mean 20.99 29.93 29.89 29.89
max 35.00 34.91 34.99 34.84
min 25.00 25.14 25.34 25.44

max. error 0.98 0.54

avg. error 0.12 0.04

RMS error 0.19 0.08

Table 1. The results of the thickness computation experiments using theoretical 3D objects.

The thickness computation results of tibial and femoral cartilages are displayed at Figure 5 by mapping the
thickness values to gray-scale. Furthermore the number of nodes in surface mesh, minimum, maximum, mean,
median, and standard deviation of thickness values of both tibial and femoral cartilages are presented in Table 2.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed unsupervised techniques for segmentation, surface reconstruction, and thickness
computation of articular cartilage. The segmentation method is a mixture of region-growing, labeling and deformable
models-type algorithms. The surface reconstruction provides sub-voxel accuracy by taking the MR imaging model
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Figure 4. (a),(b) The cross-sections of the synthetic phantoms used for validation of thickness computation algo-
rithm. (c), (d) The thickness values of the phantoms are mapped to gray-scale where white and black correspond to
largest and smallest values, respectively. Phantom with top surface f,(z,y) and phantom with top surface fo(z,y)
are displayed in c, and d, respectively.

Num. of nodes | min | maz | mean | median | sid
Femoral Cart. 28504 0.18 1 2.90 | 1.43 1.44 0.49
!‘ Tibial Cart. 14070 014 | 4.11 | 1.44 1.30 0.75

Table 2. The results of tibial and femoral cartilage thickness computation (mm).

into account. The thickness computation :;,lgorithm we propose results in thickness values that are independent of
scan orientation and displayed in the form of a grayscale map.

The future work on this subject consists of the validation study which is already an ongoing effort. Specifically,
the thickness maps of 10 rabbit cartilages which include 5 healthy and 5 arthritis cases will be constructed. The
validity of the algorithms will be investigated by comparing the results to the histology studies.
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