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In the characterization of elastic properties of tissue using dynamic optical coherence elasto-
graphy, shear/surface waves are propagated and tracked in order to estimate speed and Young's
modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted
during propagation, diminishing the e®ectiveness of peak tracking approaches, and leading to
biased estimates of wave speed. Further, plane wave propagation is sometimes assumed, which
contributes to estimation errors. Therefore, we invert a wave propagation model that incorpo-
rates propagation, decay, and distortion of pulses in a dispersive media in order to accurately
estimate its elastic and viscous components. The model uses a general ¯rst-order approximation
of dispersion, avoiding the use of any particular rheological model of tissue. Experiments are
conducted in elastic and viscoelastic tissue-mimicking phantoms by producing a Gaussian push
using acoustic radiation force excitation and measuring the wave propagation using a Fourier
domain optical coherence tomography system. Results con¯rmed the e®ectiveness of the inversion
method in estimating viscoelastic parameters in both the viscoelastic and elastic phantoms when
compared to mechanical measurements. Finally, the viscoelastic characterization of a fresh
porcine cornea was conducted. Preliminary results validate this approach when compared to
other methods.
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1. Introduction

Determining mechanical properties of tissue such as
elasticity and viscosity is fundamental for better
understanding and diagnosing pathological and
physiological processes.1,2 In this regard, optical
coherence tomography-based elastography (OCE)
o®ers the possibility of a noninvasive, high-resolu-
tion, and high-contrast measurement of tissue bio-
mechanical properties.3,4 For example, previous
studies demonstrate the potential of OCE in asses-
sing mechanical properties of di®erent tissues such as
cornea,5,6 skin,7 breast,8 and liver.9 In particular, a
subset of dynamic OCE techniques uses short-dura-
tion pulses produced by a selected excitation source
in order to produce mechanical wave propagation in
the tissue being studied.10 Excitation sources include
acoustic radiation force (ARF), air-pu® excitation,
laser-based thermal expansion, and needles con-
nected to piezoelectric vibrators, to name just a few.11

By tracking the propagating wave, Young's modulus
and other biomechanical parameters can be calcu-
lated based on the estimation of the wave speed and
the selection of the correct wave propagation model
dictated by the boundary conditions of the sample.11

Unfortunately, in many dispersive lossy tissues,
propagation of shear or surface waves will be rap-
idly damped and distorted, complicating the
attempts of estimating wave speed by using typical
methodologies such as peak tracking.12 Moreover,
the estimation of viscous parameters in addition to
the classic elastic modulus is of great interest since it
can provide of useful information in the diagnosis of
diseases such as the discrimination between malig-
nant and benignant liver tumors13 and the charac-
terization of glioblastomas in human brain.14 In
optical coherence tomography (OCT), some work
has been done for the viscoelastic measurement of
tissue assuming a rheological model.15–18 Most of
them utilize frequency-dependent wave speed mea-
surements to ¯t with theoretical models of disper-
sion (rheological models), disregarding valuable
information given by the wave attenuation process.
Therefore, the use of model-independent approa-
ches for the viscoelastic characterization of tissue is
an important trending topic in elastography since it
can provide an accurate intrinsic information
without assumptions of the tissue mechanical be-
havior, which is in many cases unknown.

Few model-independent approaches have been
proposed in ultrasound elastography,12,19–22 and in

OCE.23 In ultrasound, Schmitt et al.19 proposed a
method for the calculation of the complex shear
modulus by the estimation of shear wave dispersion
and attenuation of a sinusoidal continuous plane
wave. Nenadic et al.20 proposed a 2D Fourier ap-
proach for the analysis of a cylindrically spreading
continuous waves and the estimation of speed dis-
persion and attenuation. Kazemirad et al.21 esti-
mated the complex shear modulus by ¯tting an
analytical model of a continuous cylindrical shear
wave with a shear pulse generated using ARF ex-
citation. In OCE, Leartprapun et al.23 proposed a
model-independent method for the reconstruction
of complex shear modulus from measurements of
continuous hemi-spherical surface waves produce by
ARF excitation in viscoelastic media. While these
approaches calculate viscoelastic properties of tissue
without using a rheological model, some assump-
tions made may produce biased results. For in-
stance, in Ref. 19, the plane wave assumption can
be di±cult to satisfy for most of the excitation
methods. Also, Refs. 20, 21, and 23, assume that
waves will be observed in the asymptotic range far
from the excitation source which may not be pos-
sible if the wave is highly attenuated by dispersive
lossy media. Finally, Parker and Baddour12 inves-
tigated the propagation of a cylindrical axisym-
metric Gaussian shear wave in a viscoelastic media
by proposing a full analytical model-independent
solution that takes a ¯rst-order approach to
dispersion.

In this paper, we invert a general wave propa-
gation model following the approach of Parker and
Baddour12 that incorporates space-time propaga-
tion, decay, and distortion of pulses in a dispersive
medium in order to accurately estimate the elastic
and viscous components of such a medium. The
model contemplates the initial shape of ARF push
in space and time and uses a general ¯rst-order
approximation of dispersion, avoiding the use of any
particular rheological model of tissue. Experiments
will be conducted in elastic and viscoelastic tissue-
mimicking phantoms by producing a Gaussian push
using ARF excitation, and measuring the surface
wave propagation using a Fourier domain optical
coherence tomography (FD-OCT) system. Results
found in the inversion method will be compared to
mechanical measurements (MM) for validation.
Finally, we will conduct a preliminary experiment in
a fresh porcine cornea in order con¯rm the validity
of our approach in real viscoelastic tissue.
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2. Theory

2.1. Shear wave pulse in an in¯nite

media

An ultrasound (US)-based ARF excitation beam
with a Gaussian intensity axisymmetric pro¯le in
cylindrical coordinates ðr; �; zÞ is given by

Iðr; �; zÞ ¼ 1

2�2

� �
e�r 2=4� 2 ð1Þ

in the r-direction, and extending uniformly in the
axial (z) direction, where �2 ¼ half variance of the
pulse, r ¼ ðx2 þ y2Þ1=2, � ¼ atanðy=xÞ as shown in
Fig. 1. Particle velocity and displacement are set to
be zero everywhere as initial conditions in an in¯-
nite and homogeneous dispersive medium. We
assume that, given the ARF direction and extent,
the displacements are polarized in the z-direction,
and the derivatives with respect to � and z are zero.
Then, Eq. (1) can be written as IðrÞ, and using the
notation of Gra®,24 we can de¯ne the governing
equation in a viscoelastic medium as

r2uzðr; tÞ �
1

c2
@ 2uzðr; tÞ

@t2
¼ �FzðrÞT ðtÞ; ð2Þ

where uz is the displacement of the shear wave in
the z-direction; c is the velocity of the shear wave;
FzðrÞ is the applied body force proportional to

the ARF beam IðrÞ; and T ðtÞ is the temporal ap-
plication, which we will take as a rectangular

function of duration a delayed a=2, rectð ta � 1
2Þ.

The Laplacian operator in cylindrical coordinates

reduces to r2 ¼ @ 2

@r 2 þ 1
r

@
@r. Applying the Hankel

transform H in the space, and the nonunitary an-
gular frequency Fourier transform J in time to
Eq. (2) in cylindrical coordinates yields

�"2Ûð"; !Þ þ !2

c2
Ûð"; !Þ ¼ �F̂ ð"ÞT̂ ð!Þ; ð3Þ

where Ûð"; !Þ ¼ JfHfuzðr; tÞgð"; tÞgð"; !Þ, " is the
spatial frequency, ! is the temporal frequency,

F̂ ð"Þ ¼HfFzðrÞgð"Þ, and T̂ ð!Þ ¼JfT ðtÞgð!Þ. Then,
Eq. (3) can be written as

Ûð";!Þ ¼ F̂ ð"ÞT̂ ð!Þ
"2� k2

; ð4Þ

where k is the wavenumber. In a dispersive medium,
the wavenumber is treated as a complex number
k ¼ !

c � i�, where � is the absorption coe±cient.

Then, we apply the inverse Hankel transform to
Eq. (4) as follows

ûðr; !Þ ¼
Z 1

0

F̂ ð"ÞT̂ ð!Þ
"2 � k2

J0ð"rÞ"d": ð5Þ

where J0 is the Bessel function of the ¯rst kind.
Then, by applying Baddour's theorem25 and
selecting the appropriate solution according to the
Sommer¯eld radiation condition we obtain

ûðr; !Þ ¼ � �i

2
H

ð2Þ
0 ðkrÞF̂ ðkÞT̂ ð!Þ; ð6Þ

where H
ð2Þ
0 ðxÞ is a Hankel function of the second

kind. The form of Eq. (6) when the temporal ap-
plication of the force FzðrÞ is instantaneous
(T ðtÞ ¼ �ðtÞ) can be found in Parker and
Baddour.12 Here, we seek a form when the force
FzðrÞ with a Gaussian beam pattern (Eq. (1)) is
applied for a transient time a in the media. Let

FzðrÞT ðtÞ

¼ A0

1

2�2

� �
e�r 2=4� 2

� �
rect

t

a
� 1

2

� �� �
; ð7Þ

where A0 is the force amplitude, and � is related to
the curve width. Then, applying the spatial Hankel
and temporal Fourier transforms to Eq. (7), we

Fig. 1. Schematic of a Gaussian-shaped pulse produced in a
dispersive medium by an ultrasound ARF transducer. The
center of the pulse is the origin for the Cartesian and cylindrical
coordinate system.
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have

F̂ ðkÞT̂ ð!Þ ¼ ½A0e
��2k 2 � e� i!a

2 sinc
!a

2�

� �h i
; ð8Þ

where sincðxÞ ¼ sinð�xÞ
�x . We are interested in ¯nding

the analytic solution of Eq. (6) for particle velocity
v̂ðr; !Þ ¼ i!ûðr; !Þ. Then, using Eqs. (6) and (8), we
have

v̂ðr; !Þ ¼ A0

�!

2
H

ð2Þ
0 ðkrÞe�� 2k2

e�
i!a
2 sinc

!a

2�

� �
; ð9Þ

which is a closed-form analytical solution in the
r� ! space that describes the cylindrical spreading
of the pulsed wave, attenuation, and dispersion
when it propagates through a viscoelastic medium.

2.2. Viscoelastic modeling of the

medium

As discussed by Carstensen,26 a variety of loss
mechanisms with their own frequency-dependent
solutions exist in viscoelastic materials, such as
Kelvin–Voigt, Kelvin–Voigt fractional derivative,
standard linear solid, and relaxation and hysteresis
models. Given the uncertainties in appropriate
choice of rheological model, we seek a general solu-
tion that is mechanism-independent. Therefore, we
solely assume a limited shear wave frequency
bandwidth of the excitation in which a Taylor series
expansion can be used to express the frequency-
dependent behavior of the medium. Then, we in-
troduce a ¯rst-order Taylor approximation of the
frequency-dependent phase speed c and attenuation
� of the wave such that

c � c0 þ c1 � j!j and � � �0 þ �1 � j!j; ð10Þ
where c0 � c1!. As described by the most conven-
tional loss mechanisms,27 as ! ! 0, c ! c0 and
� ! 0. Then, we can consider �0 ¼ 0 for a con-
ventional dispersive medium. Therefore, the com-
plex frequency-dependent wavenumber will be
described as

kð!Þ ¼ !

c0 þ c1j!j
� i�1j!j; ð11Þ

and this form is used in Eq. (9) for k. For further
notation simpli¯cation, we call k 0ð!Þ ¼ !

c0þc1j!j, and
k 00ð!Þ ¼ �1j!j. In a linear and isotropic viscoelastic
material, the complex shear modulus G�ð!Þ ¼
G 0ð!Þ þ iG 00ð!Þ, where G 0ð!Þ is the shear storage,

and G 00ð!Þ is the loss moduli, can be obtained using
the real and imaginary parts of the wavenumber in
Eq. (11)21 as

G 0ð!Þ ¼ �!2 k 0ð!Þ2 � k 00ð!Þ2
ðk 0ð!Þ2 þ k 00ð!Þ2Þ2 ; ð12aÞ

G 00ð!Þ ¼ 2�!2 k 0ð!Þk 00ð!Þ
ðk 0ð!Þ2 þ k 00ð!Þ2Þ2 ; ð12bÞ

where � is the density of the material. In Figs. 2(a)
and 2(c), the magnitude of Eq. (9) is plotted in the
r� ! space for the viscoelastic (c0 6¼ 0; c1 6¼ 0,
�1 6¼ 0), and pure elastic (c0 6¼ 0; c1 ¼ 0; �1 ¼ 0)
cases, respectively. Estimates in r ¼ 0 were dis-

regarded since H
ð2Þ
0 ðkrÞ has a singularity at the

origin. Moreover, particle velocity pro¯les versus
r-axis, v̂ðr; t0Þ ¼ J�1fv̂ðr; !Þgðt0Þ, at di®erent
instants t0 for both cases are shown in Figs. 2(b)
and 2(d). In the pure elastic case, the rapid decease
in amplitude follows the asymptotic cylindrical

spreading 1=
ffiffiffiffiffi
kr

p
; while in the viscoelastic case, the

low-pass smoothing of the particle velocity wave-
forms is evident, which diminishes the e®ectiveness
of peak tracking approaches.

2.3. Shear to surface acoustic wave

relationship

Surface acoustic waves (SAW) are produced when
a vibration is generated at a solid–vacuum or
solid–°uid interface.28,29 This work is intended for
optical coherence elastography (OCE) applications.
Therefore, we use an OCT system to acquire motion
frames. Since the penetration depth of this system is
typically some millimeters from the interface, SAW
are more likely to be scanned than shear waves. If
we consider a semi-in¯nite solid medium, the pre-
dominant SAW propagating in the solid-vacuum
interface are Rayleigh waves.28 The relationship
between shear wave and Rayleigh wave phase speed
in a linear isotropic medium for a Poisson's ratio
� � 0:5 is given by29

c � 1:05 � cRayleigh: ð13Þ
Moreover, Rayleigh waves from a point source fol-

low cylindrical spreading 1=
ffiffiffiffiffi
kr

p
as described in

Ref. 29, which is consistent with the asymptotic

form of the Hankel term in Eq. (9), jH ð2Þ
0 ðkrÞj ffiffiffiffiffiffiffi

2
�kr

q
, for complex values of k.30 Therefore, making
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the adjustment for phase speed as described in
Eq. (13), the shear wave model of Eq. (9) is suitable
for describing the Rayleigh wave propagation at a
given depth z0.

3. Materials and Methods

3.1. Sample preparation and

measurement

Two tissue-mimicking phantoms where used in
experiments. A cylindrically-shaped custom shear
wave viscoelastic phantom (model No. 16410001,
CIRS, Virginia, USA) was used as the dispersive
medium (5.4 cm in diameter 	 2.2 cm in height).

A cylindrically-shaped aqueous elastic phantom
(Aqua°ex US del pad, Parker Laboratories INC.,
New Jersey, USA) was selected as the elastic me-
dium (9 cm in diameter 	 2 cm in height). The
frequency-dependent Young's modulus of each
phantom was measured using a stress–relaxation by
compression test. The measurement was conducted
using a MTS Q-Test/5 Universal Testing Machine
(MTS, Eden Prairie, Minnesota, USA) with a 5 N
load cell using a compression rate of 0.5mm/s, a
strain value of 5%, and total measurement time of
600 s. The stress-time plots obtained by the machine
were ¯tted to a three-parameter Kelvin–Voigt
fractional derivative (KVFD) model31 for the cal-
culation of frequency-dependent complex Young's

(a) (b)

(c) (d)

Fig. 2. Theoretical plots jv̂ðr; !Þj (left col.) and v̂ðr; t0Þ ¼ J�1fv̂ðr; !Þgðt0Þ (right col.) for a viscoelastic (a,b) and elastic (c,d)
media. ! ¼ 2�f, and f ¼ frequency. For all cases, the input force is a Gaussian pulse as described in Eq. (7), with � ¼ 0:1mm, and
a ¼ 1ms. The material properties are selected as c0 ¼ 4m/s, and c1 ¼ 1 � 10�11 m

s =Hz. �1 ¼ 0:15 Np
m =Hz, and �1 ¼ 0:0015 Np

m =Hz for
the viscoelastic and elastic cases, respectively. Particle velocity units are shown in radians referring to OCT Doppler phase-shift and
can be transformed to m/s using Eq. (16).
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modulus given as

E �ð!Þ ¼ E0 þ � cos
�	

2

� �
!	

h i

þ i � sin
�	

2

� �
!	

h i
; ð14Þ

where E0 is the relaxed elastic constant, � is the
viscous parameter, and 	 is the order of fractional
derivative. Measurements were conducted in three
samples of each phantom type in order to calculate
the mean and standard deviation (error) for each
predicted frequency-dependent result. Figure 3
shows the real and imaginary parts of Eq. (14)
versus frequency for both phantoms. Then, for a
nearly incompressible (Poisson's ratio close to 0.5),
homogeneous, and isotropic medium, the complex
phase velocity of the shear wave for each phantom
with a material density of � can be calculated1

as c� ¼ ffiffiffiffiffiffiffiffiffiffiffi
G�=�

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E �=ð3�Þp

, and the complex

wavenumber of Eq. (11) can be expressed as

kð!Þ ¼ !

c�
¼ !ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð3�Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE �j þ E 0

p
jE �j

" #

� i
!ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð3�Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE �j � E 0

p
jE �j

" #
; ð15Þ

where E 0 ¼ RealfE �g. For both phantoms, � ¼ 1 g/
cm3. The three estimated parameters of the KVFD
model are detailed in Table 1. We also included
results of a compression test on the same phantoms
in order to estimate the quasi-static Young's mod-
ulus Eð! � 0Þ, and the equivalent shear wave speed
cð! � 0Þ. The equivalent frequency for the quasi-
static compression test rate was found to be 0.25 Hz
which is very low compared to the peak frequency
band of the ARF shear waves. Predictions of the
real part of the Young's modulus given by the
KVFD model at f � 0:25Hz (¯rst frequency sample
in Fig. 3) are similar to results found in the quasi-
static compression test which partially supports the
validity of the model.

Mechanical testing results in phantoms are fun-
damental for the validation of our proposed
approach. Therefore, the selection of the correct
rheological model which describes the relationship
between the frequency-dependent prediction and
the stress–relaxation test is required. Both elastic
and viscoelastic phantoms were well-characterized
using the KVFD model since a higher r-square
¯tting quality (0.999) was found as compared to
other rheological models: Voigt, Kelvin–Voigt,
Zener, Standard Linear Solid, and Standard Linear
Solid Fractional Derivative models.

For the biological tissue test, we selected a por-
cine cornea. A fresh porcine eyeball was obtained
from an abattoir (Joe's Meat Market, Ontario, NY,
USA) with all experiments being performed within
12 h of their collection. For the scanning of the

Fig. 3. Log–log of frequency-dependent complex Young's
modulus for the elastic and viscoelastic phantoms obtained
from mechanical measurements (MM) using a stress relaxation
by compression test. ! ¼ 2�f, and f ¼ frequency. Frequency-
dependent results are predictions of the Kelvin–Voigt fractional
derivative model and do not represent independent measure-
ments over the frequency range.

Table 1. Mechanical testing results in elastic and viscoelastic phantoms. Kelvin–Voigt fractional derivative parameters (left col.)
and compression test results (right col.) are shown for both media. Quasi-static shear wave speed was calculated using cð! � 0Þ ¼
Realf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E �=ð3�Þp g for � ¼ 1 g/cm3 and assuming incompressibility. All experiments were performed at room temperature (25
C).

Stress relaxation test: Kelvin–Voigt
fractional derivate model parameters

Quasi-static compression test: Young's
modulus and shear speed

E0 (kPa) � (kPa s�Þ 	 Eð! � 0Þ cð! � 0Þ

Viscoelastic phantom 0.711 � 0.481 5.203 � 0.852 0.178 � 0.028 4.98 � 0.24 1.29 � 0.02
Elastic phantom 9.969 � 9.661 24.928 � 12.217 0.086 � 0.025 34.51 � 0.85 3.39 � 0.04
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cornea, the eyeball was immersed in a tank with
saline solution at 25
C leaving the corneal tissue in
contact with the air. The intra-ocular pressure
(IOP) of the eyeball was measured during the ex-
periment using a digital pressure gage (model
DPGWB-04, Dwyer Instruments Inc., Michigan
City, Indiana, USA). The average IOP reported
during experiments was 9.3mmHg.

3.2. Experimental setup

The experimental setup is shown in Fig. 4(a). A
5MHz confocal ultrasonic transducer (PIM7550-
2inchFL, Dakota Ultrasonics, California, USA)
with 5.01 cm of focal length was excited with a 1ms
sinusoidal tone of 5 MHz provided by a function
generator (AFG320, Tektronix, USA). The gener-
ator was connected to a RF power ampli¯er
(25A250, Ampli¯er Research, Souderton, PA, USA)
in order to produce an approximate Gaussian, ra-
dially symmetric (� ¼ 0:338mm) focused ARF push
within the sample at the air–solid surface interface
of the sample. The ultrasonic transducer was cou-
pled to the sample with saline water as shown in
Fig. 4(b). A phase-sensitive optical coherence to-
mography (PhS-OCT) system implemented with a
swept source laser (HSL-2100-WR, Santec, Aichi,
Japan) of a center wavelength of 1318 nm was used
to acquire 3D motion frames of the sample within
a region of interest (ROI) of 10 	 10mm in the
xy-plane, and a maximum depth of 2.5mm in the

z-plane. The OCT acquisition and the excitation of
the 5MHz transducer were triggered by the com-
puter controlling the entire process.

The ARF push was focused at a certain (x0; y0)
position in the sample's surface [Fig. 4(b)], and
it produced a localized out-of-plane vertical dis-
placement which generated a cylindrically-shaped
Rayleigh wave propagating within the ROI. The
ARF vibration amplitude in the sample was ad-
justed to less than the maximum displacement
(uz;max) that can be detected by the OCT system
without unwrapping the Doppler phase signal. For
all cases, we used Eq. (12) to convert Rayleigh wave
speed to shear wave speed.

The PhS-OCT characteristics include a full-width
half-maximum (FWHM) bandwidth of 125 nm, and
a light source frequency sweep rate of 20 kHz. The
source power that entered the OCT interferometer
was split by a 10/90 ¯ber coupler into the reference
and sample arms, respectively. In the reference arm,
a custom Fourier domain optical delay line was used
for dispersion compensation. In the sample arm, a
collimated light beam diameter of 6.7mm at 1/e2

was directed onto a test phantom by a focusing im-
aging lens (LSM05, Thorlabs Inc., NJ, USA), cou-
pled with a galvanometer scanning mirror placed at
the front focal plane of the imaging lens to achieve
telecentric scanning. The back-scattered light from
the sample was recombined with the light re°ected
from the reference mirror with a 50/50 ¯ber coupler.
The time-encoded spectral interference signal was

(a) (b)

Fig. 4. Experimental setup. (a) PhS-OCT system implemented with a swept-source laser for motion detection. (b) Placement of
the sample in a water tank, ARF US-transducer, and region of interest (ROI). Motion is produced in the surface of the sample.
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detected by a balanced photo-detector (1817-FC,
New Focus, CA, USA), and then digitized with a
500 Msamples/s, 12-bit-resolution analog-to-digital
converter (ATS9350, AlazarTech, QC, CA). The
maximum sensitivity of the system was measured to
be 112 dB.32 The imaging depth of the system was
measured to be 5mm in air (-10 dB sensitive fall-o®).
The optical lateral resolution was approximately
30
m, and the FWHM of the axial point spread
function after dispersion compensation was 10
m.
The synchronized control of the galvanometer
and the OCT data acquisition was conducted
through a LabVIEW platform (National Instru-
ments, Austin, TX, USA) connected to a worksta-
tion. The phase stability of the system was
calculated as the standard deviation of the temporal
°uctuations of the Doppler phase-shift (��err) while
imaging a static structure.33 Results show ��err ¼
4:6 mrad when using Loupas' algorithm.34 The dis-
placement sensitivity is measured as the minimum
detectable axial particle displacement (uz;minÞ. We
found uz;min ¼ 0:358 nm. Finally, the maximum
axial displacement supported by the system without
unwrapping the phase-shift signal (��max ¼ �) is
uz;max ¼ 0:24
m.

3.3. Acquisition and processing

approach

Due to speed limitations of the OCT acquisition
system, a complete phase front of a single ARF ex-
citation cannot be instantly acquired within a
ROI. Therefore, a repeated excitation/acquisition
triggered at any single spatial location within the
ROI is conducted. This method is also called theM-B
mode acquisition protocol, as described in Ref. 10.
Methodologically, in a medium with refractive index
n, the phase di®erence ��ðzÞ ¼ �ðz; t1Þ � �ðz; t0Þ at

two consecutive instants t0 and t1 (t0 < t1), for a
given (xo, yo) position, is related to the particle
velocity in the axial direction by

vzðzÞ ¼ ��ðzÞ �0

4�n�M

; ð16Þ

where � is the phase of the A-line signal acquired
with the OCT system, n is the refractive index of the
medium, �0 is the center wavelength of the laser, and
�M is the time sampling resolution. We select the
Loupas' algorithm34 for the accurate estimation of
��ðzÞ which increased the signal-to-noise ratio
compared to other approaches as demonstrated by
Zvietcovich et al.10

The repeated acquisition and ARF excitation is
possible since they are synchronized with the same
cyclic trigger signal of 7ms periodicity. The ARF
tone is formed by 5000 cycles of a 5-MHz harmonic
wave equivalent to 1 ms excitation. The M-B mode
approach is used for generating x-axis space-time
representations of particle velocity vzðzÞ at a given
z0 and y0 position. In this study, we constrained the
analysis to the surface of the sample so that z0
corresponds to the axial position of surface for any
(x0, y0) location. Each M-B acquisition spans 200
locations in the x-axis (10mm), and M ¼ 100 time
samples (5ms) as shown in Fig. 5. Then, we repeat
this process at each location y0 in the y-axis for 200
positions (10mm).

In total, we acquired a 3D matrix volume of
200	 200	 100 measurements of vzðz0Þ in the x, y,
and time axes, respectively, using the described
protocol in order to cover the ROI of 10 	 10mm at
z0, and 5ms in the time frame. Each pro¯le cut of
the 3D matrix in the xy-plane corresponds to a
motion frame at a frame rate of 20 kHz (time reso-
lution �M ¼ 50
s). The total acquisition time was
4.6min.

Fig. 5. M-B mode for acquisition protocol of motion signals using a PhS-OCT system.
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3.4. Inversion approach

In Sec. 3.3, a 3D matrix representing particle ve-
locity at the surface of the sample was acquired
using the OCT system. Without loss of generality,
we can call that data matrix vz0ðx; y; tÞ, where x
and y represent spatial coordinates on the surface,
and t is the time domain. We want to ¯t the ana-
lytical model of Eq. (9) — v̂ðr; !Þ — to the data
in vz0ðx; y; tÞ, however, v̂ðr; !Þ is de¯ned in the
cylindrical r-axis. Therefore, taking a pro¯le cut of
vz0ðx; y; tÞ along the xy-plane containing the center
of the ARF excitation, and cropping the data to
achieve a one-sided propagation matrix, we obtain
vz0ðr; tÞ.

Taking v̂z0ðr; !Þ ¼ Jfvz0ðr; tÞg, and deriving A0

in Eq. (9) by normalizing the data with the model
for the maximum peak value, we can solve

fc�0; c�1; ��
1g ¼ arcmin

c0;c1;�1

jjjv̂ðr; !Þj � jv̂z0ðr; !Þjjj22
ð17Þ

for the unknown parameters c0, c1, and �1. Equa-
tion (17) is a nonlinear least squares problem and
we employ the Levenberg–Marquardt method35 for
generating a solution. We solved Eq. (17) in four
pro¯le cuts of vz0ðx; y; tÞ at angles ½0; �=4;
�=2; 3�=4� rad for the posterior calculation of aver-
age and standard deviation (error) of the estimated
predictions.

4. Results and Discussion

4.1. Phantom experiments

Figure 6 shows particle velocity frames vz0ðx; y; ft0;
t1; t2gÞ for three di®erent time instants extracted at
the surface of each phantom as described in Sec. 3.3.
We de¯ned the initial time t ¼ 0 s at the falling edge
of the ARF pulse. The ARF push location is found
to be approximately at the center of the ROI. The
cylindrical spreading of the wave when traveling out
of the source is evident in both cases as shown in
Fig. 6(e). The attenuation of the peak is more pro-
nounced in the viscoelastic case when compared to
the elastic case, as expected.

Pro¯le cuts in the x-direction centered to contain
the ARF excitation origin were obtained from
vz0ðx; y; tÞ in the viscoelastic and elastic cases as
shown in Figs. 7(a) and 7(b), respectively. A
Gaussian bell shape is initially observed at the ¯rst
instant as described in Sec. 2.1. We ¯t FzðrÞ from
Eq. (7) to this curve in order to estimate �, which is
necessary for solving Eq. (17). Results are shown in
Table 2. In addition, parameter a in the rectangular
function of Eq. (7) is set to be a ¼ 1ms as described
in Sec. 3.3. Figures 7(c) and 7(d) show jv̂z0ðr; !Þj
plots for the viscoelastic and elastic cases, respec-
tively. The appearance of the sinc function in the
frequency axis con¯rms the validity of T̂ ð!Þ in
Eq. (8). Moreover, the attenuation of the main lobe
in jv̂z0ðr; !Þj for the viscoelastic case tends to move

(a) (b)

Fig. 6. Wave propagation of a Gaussian-shaped pulse in phantoms. (a), (b) Snapshots of pulse propagation in the surface of the
viscoelastic and elastic phantoms, respectively. Supplemental videos are available online. (c), (d) Motion snapshots of cylindrical
wave propagation at di®erent instants for both cases. Color bar scale is in radians related to the OCT Doppler phase-shift caused by
particle motion in phantoms (Eq. (16)). (e) Cross-sectional motion pro¯le (xz-plane) centered at the excitation epicenter in the
viscoelastic (left) and elastic (right) phantom. Scale bar: 1mm.
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the peak toward smaller values of frequency when r
increases, which makes evident the presence of a
frequency-dependent attenuation attributed to �1.
In contrast, this behavior is not strong for the
elastic case as expected.

The Levenberg–Marquardt method was applied
to Eq. (17) for di®erent initial values of fc0; c1; �1g,
and we found convergent solutions for the visco-
elastic and elastic cases, as reported in Table 2.
Equation (9) is mesh plotted in the f � r space

using the optimized parameters fc�0; c�1; ��
1g in

Figs. 7(c) and 7(d) for the viscoelastic and elastic
cases, respectively. We also included in Figs. 7(e)
and 7(f), the pro¯le plots extracted at four di®erent
r0 positions from plots in Figs. 7(c) and 7(d), re-
spectively, for a better comparison of the experi-
mental data and model predictions.

Given the results of mechanical testing in
Table 1, we plotted the real and imaginary parts of
the wavenumber as a function of frequency using

(c)

(d)

(e)

Fig. 6. (Continued)
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Experimental plots of vz0ðx; y; tÞ (left col.), and jv̂z0ðr; !Þj (right col.) for a viscoelastic (a), (c) and elastic (b), (d) media.
! ¼ 2�f, and f ¼ frequency. For all cases, the input force has an approximate Gaussian shape as described in Eq. (7), and a ¼ 1ms.
Black mesh in (c), (d) shows jv̂ðr; !Þj for the optimized parameters fc�0; c�1; ��

1g using the Levenberg–Marquardt inversion method.
Pro¯le plots extracted at four di®erent r0 positions in plots (c) and (d) are shown in (e) and (f), respectively for a better comparison
of the experimental data and model prediction. Particle velocity units are shown in radians referring to OCT Doppler phase-shift
and can be transformed to m/s using Eq. (16).
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Eq. (15) in Fig. 8, and we compared them with the
components of the complex wavenumber obtained
using results in Table 2 and Eq. (11). We found a
good agreement of our model within the boundaries
of the mechanical testing results for the viscoelastic
and elastic cases. It is also evident that ��

1 for the
viscoelastic case is half an order of magnitude higher
compared to the elastic one, which was expected.

4.2. Cornea experiment

Figure 9 shows particle velocity frames vz0ðx; y; ft0;
t1; t2gÞ for three di®erent time instants extracted at
the surface of a fresh porcine cornea. The ARF push
location is found to be approximately at the center
of the ROI. Figure 10(a) shows vz0ðr; tÞ obtained
from a cropped pro¯le cut in the x-direction
centered to contain the ARF excitation origin.
We compensated r values for the curvature of the
cornea. After applying the Fourier transform,
jv̂z0ðr; !Þj is shown in Fig. 10(b). A solution of

Table 2. Estimation of optimized parameters fc�0; c�1; ��
1g using the Levenberg–Marquardt

inversion method for solving Eq. (16) in experiments with phantoms and porcine cornea tissue.

c�0 (m/s) c�1 (m/s/Hz) ��
1 (NP/mm/kHz)

Viscoelastic phantom 2.88 � 0.03 9.75	 10�7 � 0.87	 10�7 0.049 � 0.001

Elastic phantom 4.61 � 0.02 2.58	 10�7 � 0.14	 10�7 0.0098 � 0.0005

Porcine cornea 2.11 � 0.04 2.42	 10�6 � 0.24	 10�6 0.055 � 0.002

Fig. 8. Frequency-dependent wavenumber comparison be-
tween mechanical measurements (MM) results using the
KVFD model and the application of our general propagation
model (using optimized parameters fc�0; c�1; ��

1gÞ. ! ¼ 2�f, and
f ¼ frequency. The real and imaginary parts of wavenumber is
plotted as a function of frequency for the viscoelastic and elastic
phantoms. Frequency-dependent results are the predictions of
the KVFD model and our general propagation model, and they
do not represent independent measurements over the frequency
range.

(a)

Fig. 9. Wave propagation of a Gaussian-shaped pulse in porcine cornea tissue. (a) Snapshot of pulse propagation in the surface of a
fresh porcine cornea. Supplementary videos are provided online. (b) Particle velocity snapshots of wave propagation at di®erent
instants. Color bar scale is in radians related to the OCTDoppler phase-shift caused by particle motion in phantoms (Equation (16)).

F. Zvietcovich, J. P. Rolland & K. J. Parker

1742008-12

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
7.

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
R

O
C

H
E

ST
E

R
 o

n 
01

/0
4/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



(b)

Fig. 9. (Continued)

(a) (b)

(c)

Fig. 10. Experimental plots of vz0ðx; y; tÞ (a), and jv̂z0ðr; !Þj (b) for porcine corneal tissue. The input force has an approx. Gaussian
shape as described in Eq. (7), and a ¼ 1ms. Black mesh in (b) shows jv̂ðr; !Þj for the optimized parameters fc�0; c�1; ��

1g using the
Levenberg–Marquardt inversion method. ! ¼ 2�f, and f ¼ frequency. Pro¯le plots extracted at four di®erent r0 positions in plots
(b) are shown in (c), for a better comparison of the experimental data and model prediction. Particle velocity units are shown in
radians referring to OCT Doppler phase-shift and can be transformed to m/s using Eq. (16).
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Eq. (17) was obtained similarly as in the phantom
cases in order to ¯nd fc�0; c�1; ��

1g. Optimized para-
meters are reported in Table 2.

Corneal phase speed c�0 is found to be consistent
with other studies developed in porcine cornea.5,15

Attenuation parameter ��
1 trends similarly to the

viscoelastic case when compared to phantom
results, which plays an important role in the pulse
distortion and damping during wave propagation as
demonstrated in Fig. 10. For further viscous pa-
rameter comparison with other corneal studies, a
rheological model needs to be carefully selected,
which will be a matter of future work. In this study,
we are not taking into consideration the speci¯c
boundary conditions of the cornea and, therefore,
the presence of Lamb waves. Thus, speed results in
the cornea reported here are solely valid for higher
frequencies, when Lamb waves behave similarly to
Rayleigh waves as described by Nenadic et al.36

Concerning attenuation behavior, Lamb waves are
spread and damped as described in Sec. 2 according
to Schubert et al.37 Therefore, attenuation results
for corneal tissue shown in Table 2 are valid for the
frequency-analyzed bandwidth.

Our current model is limited to the study of semi-
in¯nite isotropic media which restricts its direct
application to thin layers such as the cornea.
However, this limitation can be resolved by
extending the current general model for Lamb wave
propagation in cylindrical coordinates and this will
be the objective of future work. The acquisition
time reported in this study is large and limits its
application to ex vivo studies. The purpose of this
research was to validate our method for the visco-
elastic characterization of tissue. After validation, a
faster and more stable OCT acquisition approach
can be implemented for in vivo applications, as
demonstrated by Singh et al.38 and Song et al.39 In
addition, holographic techniques40,41 demonstrated
the fast acquisition of surface wave propagation in
tissue, which o®ers an alternative to implement
OCE methods in real time.

5. Conclusion

The application of an analytical general cylindrical
wave propagation model for the viscoelastic
characterization of dispersive media has been dem-
onstrated. Experimental results in elastic and vis-
coelastic phantoms support the e®ectiveness of the
approach when compared to mechanical testing

results. Our proposed model of propagation takes
into account (1) the initial force shape of the exci-
tation pulse in the space-time ¯eld, (2) wave speed
dispersion, (3) wave attenuation caused by material
properties of the sample, (4) wave spreading caused
by the outward cylindrical propagation of the
wavefronts, and (5) the rheological-independent
estimation of the dispersive medium. The model is
versatile enough to be tuned with any type of input
push-force produced by the desired excitation
method. Moreover, in contrast to the majority of
approaches that use only the frequency-dependent
wave speed data for the calculation of viscoelastic
parameters using a rheological model, our approach
utilizes the wave attenuation data, which is funda-
mental for the accurate viscoelastic characterization
of the sample without assuming any rheological
model. This last advantage is signi¯cant for the
study of tissue with unknown mechanical behavior.
Finally, wave propagation in porcine cornea was
analyzed and compensated for cylindrical spreading
using this approach. Viscoelastic parameters of this
tissue were calculated and reported. Future work
will extend this research to a general Lamb wave
model using di®erent rheological models of tissue for
the accurate estimation of viscous parameters in
porcine and human cornea, and their relationship
with ocular diseases and treatments.
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