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The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, 
and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak 
spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between 
backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh 
scattering k2 power law, when the inhomogeneity had a material composition that conformed to a 
Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are 
plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In 
this case the inhomogeneous material property conforms to a piecewise continuous constant function. 
We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in 
this case can be stated simply by considering moments of the inhomogeneous function and its spatial 
transform. This development opens an additional path for construction of, and use of scatterers with 
unique power law behavior.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The phenomenon of Rayleigh scattering in optics and acoustics 
has provided many familiar examples of long wavelength scattered 
amplitude proportional to k2 where k is the wavenumber. Recently, 
Parker [14] demonstrated that a new class of weak spherically 
symmetric scatterers, designated as Hermite scatterers, could pro-
duce long wavelength backscatter amplitude proportional to k4, k6, 
and higher even powers of wavelength. The material properties of 
the inhomogeneity are required to conform to a modified Gaussian 
weighted Hermite polynomial function of odd order, producing the 
pure power law limit for scattering. Parker also demonstrated that 
a common integral kernel exists across acoustic and electromag-
netic scattering theories in the Born approximation, and so the 
formulation of Hermite scatterers is valid for optical and acoustical 
material properties. With advances in nanotechnology manufactur-
ing techniques, it is possible to construct spherical nanoparticles 
that have variable material properties as a function of radius, and 
so the use of unique orders of Hermite scatterers as contrast agents 
or dye indicators is plausible.

However, one disadvantage of formulating Hermite Scatterers is 
that the material properties must conform to a smooth, contin-
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uously varying spatial function, at least to a radius that extends 
three or four standard deviations of the Gaussian weighting func-
tion. In some cases it may be easier to manufacture a spherical 
core of one material with discrete outer layers of different mate-
rials, each one possessing a unique property: index of refraction 
or bulk compressibility. In this case the spherical inhomogeneity 
would have a piecewise continuous function from radius r = 0
to some maximum value representing the outer diameter of the 
outermost layer. This paper considers the mathematics of the lay-
ered scatterer and derives some simple requirements involving the 
moments of the scattering integral, such that supra-Rayleigh long 
wavelength power laws can be achieved.

2. Theory

To derive the equation for backscattered pressure Pbs from an 
acoustic inhomogeneity, we follow the classical approach described 
in Chapter 8 of Morse and Ingard [11]. Under the Born approxima-
tion (weak scatterers) with an incident plane wave of amplitude 
A and frequency ω traveling in the x-direction; k = ω/c is the 
wavenumber and c is the speed of sound:

Pbs (k, x) ∼= A

(
eikx

x

)
φs (k) , (1)

where
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φs (k) =
(

k2

4π

)˚
κ (r)ei2k̂•r̂dV ol, (2)

and where κ (r) is the (small) fractional change in compressibility 
within the scatterer, assumed to vary only in the radial dimension, 
the 2k̂ term in the complex exponential comes from the 180◦ di-
rection of backscatter, and the integration is over the scattering 
volume. In summary, the backscatter formula can be written as:

Pbs (k, x) = A

(
e jkx

x

)(
k2

4π

)˚
κ (r)e j2k̂·r̂dV ol. (3)

Note that a similar integral kernel applies to scattering from weak 
electromagnetic inhomogeneities [14], as well.

Now let

K (k) =
˚

κ (r)e j2k̂·r̂dV ol (4)

denote the (radial) inverse three dimensional transform of κ (r). 
The long-wavelength behavior of Pbs (k, x) is determined by the 
long-wavelength behavior of K (k) which, in turn, is determined by 
the Taylor expansion

K (k) = K (0) + K′ (0)k + K′′ (0)k2

2
+ · · · (5)

However, since K (k) = K 
(∥∥∥k̂

∥∥∥)
has radial symmetry the odd terms 

in the above expansion are 0, and therefore:

K (k) = K (0) + K′′ (0)k2

2
+ K(iv) (0)k4

4! · · · (6)

This expansion indicates that

Pbs (k, x) will have k2 long-wavelength
(classical Rayleigh) scattering if K (0) �= 0;

Pbs (k, x) will have k4 long-wavelength
behavior if K (0) = 0, K′′ (0) �= 0;

Pbs (k, x) will have k6 long-wavelength
behavior if K (0) = 0, K′′ (0) = 0, K(iv) (0) �= 0, etc.

(7)

Next note that even derivatives of K at zero may be expressed 
in terms of multiple Laplacian operators applied to K 

(∥∥∥k̂
∥∥∥)

. (See 
a proof of this assertion in the appendix.) In the simplest case,

K′′ (0) = 1

3

[
�K

(∥∥∥k̂
∥∥∥)]

k̂=0
, (8)

and, hence, K′′ (0) will vanish if and only if

0 =
[˚

r2κ (r)e j2k̂·r̂dV ol

]
k̂=0

=
ˆ

r4κ (r)dr. (9)

In other words, the long-wavelength behavior of the backscattered 
response is determined by how many even moments (excluding 
the 0-th moment) of κ (r) vanish. The modified Hermite functions 
described in [14] satisfy the appropriate moment conditions pro-
vided that the limits of integration extend over all space. In that 
case we let

κm (r) = GHm (r/R)

r
(10)

designate a “Hermite scatterer,” where m ∈ odd integer ≥ 1; R is 
a reference radius or scale factor, GHm (r/R) = e−(r/R)2

Hm (r/R), 
and Hm is the mth order Hermite polynomial formed through the 
mth differentiation of a Gaussian function [1,17]. The odd orders 
are chosen as they approach zero as r → 0, however the quotient 
GHm (r/R) /r reaches a finite maximum at r = 0 by L’Hopital’s rule. 
In this case, substituting eqn (10) into eqn (4) and converting to 
spherical coordinates results in

K (k) =
∞̂

r=0

π̂

θ=0

2πˆ

φ=0

r · GHm

( r

R

)
· ei2kr cos θ sin θdrdθdφ

= 2π

k

∞̂

r=0

GHm

( r

R

)
· sin 2krdr.

(11)

In the form of eqn (2):

φs (k) =
(

k2

4π

)
K (k) = −√

π2(m−2) · e−(kR)2 ·
(
−k2 R2

)m+1
2

. (12)

For example, if κm(r/R) = κ7(r/R) = GH7(r/R)/r, then φs(k)|m=7 =
−√

π32e−(kR)2
(kR)8. Thus, the leading non-zero power law expan-

sion in k for the continuous Hermite scatterer of odd order m is 
always of order m + 1.

However, piece-wise continuous functions of finite extent with 
vanishing moments are also easily generated. For example, a scat-
terer consisting of a homogeneous sphere encased in a spherical 
shell of a different material is specified by four parameters (the 
inner and outer radii and the κ values of the inner and outer ma-
terials). These parameters can be selected so that the second and 
fourth moments of κ (r) vanish.

For example, consider a two material sphere of inner core κ1

for 0 < r < r1, and κ2 for r1 < r < r2. Setting K (0) to zero requires:

0 = K (0) =
r1ˆ

0

r2κ1dr +
r2ˆ

r1

r2κ2dr, or

κ2 = −
(

r3
1

r3
2 − r3

1

)
κ1.

(13)

This condition is necessary for supra-Rayleigh scattering. In prac-
tical terms, if κ1 = 1, r1 = 1, and r2 = 2 units, then κ2 = −1/7. 
Fig. 1 demonstrates a comparison between the continuous Her-
mite scatterer of order 3 and the concentric core, with an outer 
layer described in eqn (13).

3. Discussion

Generalizing these requirements to additional layers and higher 
moments, we note that a homogeneous sphere encased in two 
spherical shells of different materials provides enough parame-
ters to null the second and fourth moments of κ (r) and that the 
material parameters for the three components can be found for 
any choice of three increasing radii. To verify this, let the radii 
0 < r1 < r2 < r3 be chosen arbitrarily, let κ1, κ2, and κ3 be the 
material parameters of the three shells, and let Mnm denote the 
2n-th moment (n = 1, 2) of a sphere with radius rm that has mate-
rial parameter κ = 1 (hence Mnm = ´ rm

0 r2ndV ol = 4π
´ rm

0 r2n+2dr =
4πr2n+3

m / (2n + 3)). Then the second and fourth moments M1, M2

of the 3-component scatterer are given by:

M1 = M11κ1 + (M12 − M11) κ2 + (M13 − M12) κ3

M2 = M21κ1 + (M22 − M21) κ2 + (M23 − M22) κ3.
(14)

Setting M1 = M2 = 0 results in a degenerate system of two equa-
tions in the three unknowns κ1, κ2, κ3, which always has non-zero 
solutions. Omitting the outer shell, though, results in the equa-
tions:
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Fig. 1. Comparison of continuous Hermite material properties vs. discrete layers. In (a), the inhomogeneity parameter κ is depicted as related to a third-order Gaussian 
weighted Hermite function (smooth curve) or else as a piecewise continuous function representing an inner core and an outer layer, with the properties following the 
necessary requirement of eqn (13). In (b), a log–log plot shows the backscattered amplitude proportional to wavenumber to the fourth power, a supra-Rayleigh dependence. 
The continuous and the discrete layered scatterers are nearly indistinguishable in backscatter throughout the long wavelength regime.
M1 = M11κ1 + (M12 − M11) κ2

M2 = M21κ1 + (M22 − M21) κ2,
(15)

which only has the solution κ1 = κ2 = 0 because the way that Mm
are defined insures that eqn (15) is non-degenerate. A straightfor-
ward extension of this argument shows that a (N + 1)-component 
radial scatterer can be designed to zero the first N even moments.

The role of nanoparticles and core-and-shell formulations is 
well established in optics and bio-optics [8,10,5]. A range of 
materials have been employed, including silica [3,24,4,13], gold 
[9,8], and other compounds [7,6] with core radii often in the 
10 nm–200 nm range but shell layers as small as 4 nm have been 
produced [18].

Core-and-shell formulations are also well utilized in biomedical 
ultrasound for contrast enhancement [12,16] and sizes are typically 
below 8 μm in diameter for passage through capillaries. However, 
many ultrasound contrast agents employ perfluorocarbons [19] for 
high impedance mismatch with the blood. The associated nonlin-
ear effects and strong scattering would complicate the simple weak 
scattering (Born approximation) formulation used in the analysis. 
However, other materials including proteins, lipids, polymers, and 
gold are also utilized as biocompatible materials [16].

As for size and thickness requirements, let us take kR2 = 1 as 
the approximate upper limit of supra-Rayleigh scattering, where 
R2 is the outer shell radius of the example in eqn (13) and Fig. 1. 
This places an upper bound on R2 as R2 < λ/2π and for UVA 
(λ ≈ 400 nm) this limit is 63 nm. For bio-ultrasound at 10 MHz 
(λ = 0.15 mm), the requirement would be R2 < 24 μm. In both 
cases, the size and thickness requirements are well within cur-
rently achievable shell dimensions. The next important issue would 
be achieving the ratio of material properties κ2/κ1 prescribed by 
eqn (13), including the requirement for one material to have a 
higher index of refraction (or acoustic impedance) than the ref-
erence medium, and the other material to have a lower index of 
refraction (or acoustic impedance). In many biomedical applica-
tions, the reference medium is aqueous, and so concentric scatterer 
materials would be assessed with respect to the material proper-
ties of water or saline. For optical scatterers this requires candidate 
materials above and below the reference index of refraction of 1.33 
for water. Lower index of refraction (range 1.05 to 1.3) materials 
already used in optical tracers include aerogels, perfluorocarbons, 
and emulsions of gold nanoparticles [8,21,19,23,2]. Higher values 
(range 1.35 to above 2.0) are achieved with many materials in-
cluding glycerol, collagens, proteins, oils, organometallic, and silica 
compounds [22].

For bioacoustics, the compressibility of water (2.2 GPa bulk 
modulus; the inverse of compressibility) represents a key property 
of the reference medium. Commonly employed contrast materi-
als with higher compressibility include perfluorocarbons, aerogels, 
and oils. Lower compressibility materials include some collagens 
and polymers, along with organometallic compounds [20]. Addi-
tionally, in a full treatment of acoustic backscatter, the density of 
the scatterers also contributes [11]. Some x-ray contrast materials 
containing iodine have much higher density than water, for exam-
ple solid iodipamide ethyl ester microparticles have a density of 
2.4 g/ml [15,12], whereas many oils and fats have lower densities 
[20].

4. Conclusion

Supra-Rayleigh scattering may be useful in a variety of appli-
cations such as tracers and contrast agents. We now have two 
approaches to the mathematical requirements of the inhomoge-
neous material properties (index of refraction in the case of optics, 
or else compressibility or density in the case of acoustics) so as to 
produce supra-Rayleigh scattering behavior in the long wavelength 
regime. In the case where the properties can conform to a contin-
uous function of radius, the modified Gaussian weighted Hermite 
polynomials of odd orders specify higher power law scattering. In 
the case where the material properties are constructed from an in-
ner spherical core with one or more layers, the scattering power 
laws can be prescribed by considering the necessary conditions of 
zero moments. In practical terms, these require a choice of inho-
mogeneities that have both positive and negative values (in weak 
scattering this corresponds to material properties that are slightly 
higher than and slightly lower than those of the reference medium, 
respectively) and that can be formulated with a high degree of pre-
cision in the material properties and the spatial arrangement of the 
layers.
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Appendix

The computations below derive the relationship K(2n) (0) =
1

2n+1

[
�nK

(∥∥∥k̂
∥∥∥)]

k̂=0
between the even derivatives of K at the 

origin and the even moments of κ (r) that was asserted to exist in 
the discussion above. Note that �K 

(∥∥∥k̂
∥∥∥)

=
(

d2

2 + 2 d
)

K (k) and 

dk k dk
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hence �nK 
(∥∥∥k̂

∥∥∥)
=

(
d2

dk2 + 2
k

d
dk

)n
K (k). The value of [�nK(‖k̂‖)]k̂=0

can then be evaluated by expanding the operator ( d2

dk2 + 2
k

d
dk )n , ap-

plying the expansion to K (k), and evaluating the result at k = 0. 
The operator expansion is obtained by means of the recursion for-
mula:(

d2

dk2
+ 2

k

d

dk

)(
d2n−2

dk2n−2
+ 2n − 2

k

d2n−3

dk2n−3

)

=
(

d2n

dk2n
+ 2

k

d2n−1

dk2n−1

)
(16)

that is shown by the expansion:(
d2

dk2
+ 2

k

d

dk

)(
d2n−2

dk2n−2
+ 2n − 2

k

d2n−3

dk2n−3

)

= d2n

dk2n
+ d2

dk2

(
2n − 2

k

d2n−3

dk2n−3

)

+ 2

k

d2n−1

dk2n−1
+ 2 (2n − 2)

k2

d2n−2

dk2n−2
− 4 (2n − 2)

k3

d2n−3

dk2n−3

= d2n

dk2n
+ d

dk

(
2n − 2

k

d2n−2

dk2n−2
− 2 (2n − 2)

k2

d2n−3

dk2n−3

)

+ 2

k

d2n−1

dk2n−1
+ 2 (2n − 2)

k2

d2n−2

dk2n−2
− 4 (2n − 2)

k3

d2n−3

dk2n−3

= d2n

dk2n
+

(
2n − 2

k

d2n−1

dk2n−1
− 2 (2n − 2)

k2

d2n−2

dk2n−2

+ 4 (2n − 2)

k3

d2n−3

dk2n−3

)

+ 2

k

d2n−1

dk2n−1
+ 2 (2n − 2)

k2

d2n−2

dk2n−2
− 4 (2n − 2)

k3

d2n−3

dk2n−3

= d2n

dk2n
+ 2n

k

d2n−1

dk2n−1
. (17)

A simple induction argument then gives:(
d2

dk2
+ 2

k

d

dk

)n

=
(

d2n

dk2n
+ 2n

k

d2n−1

dk2n−1

)
. (18)

This result gives:

�nK
(∥∥∥k̂

∥∥∥)
=

(
d2

dk2
+ 2

k

d

dk

)n

K (k)

=
(

d2n

dk2n
+ 2n

k

d2n−1

dk2n−1

)
K (k)

= K(2n) (k) + 2n
K(2n−1) (k)

k
. (19)

Finally, note that L’Hopital’s rule can be used to evaluate the sec-
ond term on the right at k = 0 (since both the numerator and 
denominator vanish at k = 0), yielding the final result[
�nK

(∥∥∥k̂
∥∥∥)]

k̂=0
= (2n + 1)K(2n) (0) . (20)
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Preparation and properties of optically transparent aqueous dispersions of 
monodisperse fluorinated colloids, Langmuir 17 (2001) 6086–6093.

[8] T.M. Lee, A.L. Oldenburg, S. Sitafalwalla, D.L. Marks, W. Luo, F.J. Toublan, 
K.S. Suslick, S.A. Boppart, Engineered microsphere contrast agents for optical 
coherence tomography, Opt. Lett. 28 (2003) 1546–1548.

[9] L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica 
core-shell particles, Langmuir 12 (1996) 4329–4335.

[10] C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek, 
Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. 
Cancer Res. Treat. 3 (2004) 33–40.

[11] P.M.C. Morse, K.U. Ingard, Theoretical Acoustics, Princeton University Press, 
Princeton, 1968.

[12] J. Ophir, K.J. Parker, Contrast agents in diagnostic ultrasound, Ultrasound Med. 
Biol. 15 (1989) 319–333.

[13] H. Ow, D.R. Larson, M. Srivastava, B.A. Baird, W.W. Webb, U. Wiesner, Bright 
and stable core-shell fluorescent silica nanoparticles, Nano Lett. 5 (2005) 
113–117.

[14] K.J. Parker, Hermite scatterers in an ultraviolet sky, Phys. Lett. A 381 (2017) 
3845–3848.

[15] K.J. Parker, T.A. Tuthill, R.M. Lerner, M.R. Violante, A particulate contrast agent 
with potential for ultrasound imaging of liver, Ultrasound Med. Biol. 13 (1987) 
555–566.

[16] R.H. Perera, C. Hernandez, H. Zhou, P. Kota, A. Burke, A.A. Exner, Ultrasound 
imaging beyond the vasculature with new generation contrast agents, Wiley 
Interdiscip. Rev. Nanomed. Nanobiotechnol. 7 (2015) 593–608.

[17] A.D. Poularikas, Transforms and Applications Handbook, CRC Press, Boca Raton, 
Fla, 2010.

[18] E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the 
plasmon response of complex nanostructures, Science 302 (2003) 419–422.

[19] E.G. Schutt, D.H. Klein, R.M. Mattrey, J.G. Riess, Injectable microbubbles as 
contrast agents for diagnostic ultrasound imaging: the Key role of perfluoro-
chemicals, Angew. Chem., Int. Ed. Engl. 42 (2003) 3218–3235.

[20] A.R. Selfridge, Approximate material properties in isotropic materials, IEEE 
Trans. Sonics Ultrason. 32 (1985) 381–394.

[21] B.E. Smart, Fluorine substituent effects (on bioactivity), J. Fluorine Chem. 109 
(2001) 3–11.

[22] J.G. Speight, N.A. Lange, Lange’s Handbook of Chemistry, McGraw–Hill, New 
York, 2005.

[23] M. Tabata, I. Adachi, T. Fukushima, H. Kawai, H. Kishimoto, A. Kuratani, 
H. Nakayama, S. Nishida, T. Noguchi, K. Okudaira, Y. Tajima, H. Yano, H. Yoko-
gawa, H. Yoshida, Development of silica aerogel with any density, in: IEEE 
Nuclear Science Symposium Conference Record, 2005, 2005, pp. 816–818.

[24] K.P. Velikov, A. van Blaaderen, Synthesis and characterization of monodisperse 
core-shell colloidal spheres of zinc sulfide and silica, Langmuir 17 (2001) 
4779–4786.

http://refhub.elsevier.com/S0375-9601(18)30316-5/bib41627253746531393634s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib41627253746531393634s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4368656574616C32303038s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4368656574616C32303038s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4772616574616C31393939s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4772616574616C31393939s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4772616574616C31393939s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4772616574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4772616574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4861686574616C32303131s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4861686574616C32303131s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4861686574616C32303131s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4A6F6E4C796F32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4A6F6E4C796F32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4A6F6E4C796F32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4B6F656574616C32303031s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4B6F656574616C32303031s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4B6F656574616C32303031s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C65656574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C65656574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C65656574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C697A2D4D61726574616C31393936s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C697A2D4D61726574616C31393936s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C6F6F6574616C32303034s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C6F6F6574616C32303034s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4C6F6F6574616C32303034s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4D6F72496E6731393638s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4D6F72496E6731393638s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4F706850617231393839s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4F706850617231393839s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4F776574616C32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4F776574616C32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib4F776574616C32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib50617232303137s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib50617232303137s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5061726574616C31393837s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5061726574616C31393837s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5061726574616C31393837s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5065726574616C32303135s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5065726574616C32303135s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5065726574616C32303135s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib506F7532303130s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib506F7532303130s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib50726F6574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib50726F6574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5363686574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5363686574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5363686574616C32303033s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib53656C31393835s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib53656C31393835s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib536D6132303031s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib536D6132303031s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5370654C616E32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5370654C616E32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5461626574616C32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5461626574616C32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5461626574616C32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib5461626574616C32303035s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib56656C76616E426C6132303031s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib56656C76616E426C6132303031s1
http://refhub.elsevier.com/S0375-9601(18)30316-5/bib56656C76616E426C6132303031s1

	Concentric layered Hermite scatterers
	1 Introduction
	2 Theory
	3 Discussion
	4 Conclusion
	Acknowledgements
	References


