
The nonlinear ultrasound needle pulse

P. Ted Christopher
71 Azalea Road, Rochester, New York 14620, USA

Kevin J. Parkera)

Departments of Electrical & Computer and of Biomedical Engineering, University of Rochester, Rochester,
New York 14627, USA

(Received 8 February 2018; revised 25 June 2018; accepted 26 July 2018; published online 21
August 2018)

Recent work has established an analytical formulation of broadband fields which extend in the axial

direction and converge to a narrow concentrated line. Those unique (needle) fields have their ori-

gins in an angular spectrum configuration in which the forward propagating wavenumber of the

field (kz) is constant across any z plane for all of the propagated frequencies. A 3 MHz-based, finite

amplitude distorted simulation of such a field is considered here in a water path scenario relevant to

medical imaging. That nonlinear simulation had its focal features compared to those of a compara-

ble Gaussian beam. The results suggest that the unique convergence of the needle pulse to a narrow

but extended axial line in linear propagation is also inherited by higher harmonics in nonlinear

propagation. Furthermore, the linear needle field’s relatively short duration focal pulses, and the

asymptotic declines of its radial profiles, also hold for the associated higher harmonics.

Comparisons with the Gaussian field highlight some unique and potentially productive features of

needle fields. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5050519

[YJ] Pages: 861–871

I. INTRODUCTION

A new class of propagation invariant fields has been for-

mulated based on the principle of a wideband source excita-

tion configured through the angular spectrum such that all

components propagate with equal phase in the forward prop-

agating direction (Parker and Alonso, 2016). Analytic solu-

tions were obtained for a one-dimensional (1D) source, then

for an axial symmetric source, and for a pulsed version of

the field. The free space solution has some unusual proper-

ties including vanishing group velocity and a convergence of

all energy to a narrow central line as a spatial and temporal

peak, or crescendo; hence the appellation “needle pulse.”

Dynamic visualizations are given online in links found in

Parker and Alonso (2016); these demonstrate the conver-

gence of the waveform to the crescendo and subsequent

divergence. In the needle pulse there is no focusing in the

conventional sense and the excitation of a source that is

composed of 1D or two-dimensional (2D) array elements

can be realized by sampling bounded input waveforms that

are expressed in analytical form. The needle pulse can be

considered to fall within a class of nearly propagation-

invariant beams (Hefner and Marston, 1999; Hern�andez-

Figueroa et al., 2008; Brunet et al., 2009; Baresch et al.,
2016).

In this paper, we provide an introduction to the nonlin-

ear acoustic characteristics of the needle pulse fields and

their implementation in radial symmetric ultrasound trans-

ducers. The needle pulse field is compared against more con-

ventional Gaussian beams which have been studied in optics

and acoustics (Du and Breazeale, 1985, 1986, 1987; Wen

and Breazeale, 1988; Lu et al., 1994; Hamilton and

Blackstock, 1998b; Ding and Liu, 1999; Huang and

Breazeale, 2006; Marston, 2011; Parker et al., 2017).

Our investigations employ numerical techniques. As a

background, we summarize some of the main approaches.

For cases of sound beams propagating predominantly in one

direction, the Westervelt equation (Westervelt, 1963) can be

reduced to the Khokhlov-Zabolotskaya-Kuznetzov (KZK)

equation (Zabolotskaya and Khokhlov, 1969; Hamilton and

Blackstock, 1998a), which has also been described as an

augmentation of the Burgers’ equation (Hamilton and

Blackstock, 1998a) and been shown to agree well with

experimental results (Canney et al., 2010).

Several algorithms have been developed to solve the

KZK equation (Aanonsen et al., 1984; Lee and Hamilton,

1995; Cleveland et al., 1996; Pishchal’Nikov et al., 1996;

Varslot and Taraldsen, 2005; Jing and Cleveland, 2007;

Dagrau et al., 2011; Tripathi et al., 2018). According to

Qiao et al. (2016): “In order to capture full diffraction a

number of approaches have been reported. One approach is

to relax the parabolic approximation either in the frequency

domain (Christopher and Parker, 1991a) or the time domain

(Tavakkoli et al., 1998). A second is to solve the Westervelt

equation directly (Hallaj and Cleveland, 1999). A third

approach is to solve the underlying nonlinear hydrodynamic

equations, for example, with high order finite-difference

time domain methods (Ginter et al., 2002) or a k-space

approach (Treeby et al., 2012). Full diffraction models typi-

cally have very high computational costs but modeling some

nonlinear ultrasound problems can be tractable with the help

of parallel and cluster computing (Yuldashev and

Khokhlova, 2011; Kenji et al., 2012). Finite element meth-

ods (FEMs) have also been adopted to simulate nonlineara)Electronic mail: kevin.parker@rochester.edu
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wave propagation and they are well suited to handling com-

plex geometries such as occur in the body (Wojcik et al.,
1995; Hoffelner et al., 2001).” The commercial FEM soft-

ware PZFLEX (Weidlinger Associates, Inc., Mountain

View, CA) is now available for these cases (Qiao et al.,
2016). In this research the propagation substep approach is

taken as described in Sec. II. That approach has successfully

modeled a variety of continuous and pulses sources, includ-

ing in high intensity scenarios (Christopher and Parker,

1991a; Christopher, 1994, 1997, 2005).

II. THEORY

The linear solution for the needle pulse pressure p in 2D

(radial symmetry) using a Gaussian spectral width d is:

p r; z; tð Þ ¼ c0

exp �kL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c2

0 t� iqð Þ2
q� �

exp ikLz½ �

kL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c2

0 t� iqð Þ2
q

� exp � d2

2
zþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � c2

0 t� iqð Þ2
q� �2

" #
;

(1)

where r ¼ ðx2 þ y2Þ1=2
, x and y are the transverse coordi-

nates, z is the axial coordinate, kL is the lowest (minimum)

wavenumber propagated, c0 is the speed of sound, and t is

time. These solutions have a full width of approximately

2ðc2
0t2 þ q2Þ1=2

, the parameter q regulates how spatially

localized these solutions are at t ¼ 0 (Parker et al., 2017).

Note that t ¼ 0 does not correspond to the initial time

but to the time at which the field is most concentrated spa-

tially. In theory, the excitation must exist for all negative

times. The parameter q determines the bandwidth of the

spectrum used and, therefore, how narrow the field becomes

at t ¼ 0.

To generate this field, the simplest approach is to apply

the broadband source distribution at plane z ¼ 0 as simply

the real part of Eq. (1) with z ¼ 0, starting at a large negative

time and working through and including t ¼ 0, when the cre-

scendo occurs. However, since the solution is derived from

plane to plane angular spectra, source excitation can be

implemented at any plane z < 0. For arrays in ultrasound

applications, spatial samples of Eq. (1) would constitute the

source excitation signals (Parker et al., 2017).

The needle pulse has some interesting properties. Its

factorization of the dependence in z as a simple exponential

means that the pulse has vanishing group velocity. The pres-

sure field as it develops toward the “crescendo” at t ¼ 0

exhibits spherical curvature over an extended axial range,

then a convergence followed by a reverse spherical curva-

ture. For visualizations, see the online movies of reference

(Parker and Alonso, 2016).

A. The linear diffractive substep

The linear effects of diffraction, attenuation, refraction,

and reflection are extensively covered in an earlier paper

(Christopher and Parker, 1991b); the model’s linear substep

derived from that presentation—along with an updated pro-

cedure—will be summarized here. A multiharmonic, acous-

tic normal velocity (or pressure) field in a plane can be

diffracted Dz forward by convolving each of the constituent

harmonic fields with an appropriate point spread function,

hn Dz; rð Þ ¼ � 1

2p
Dz

d2
jnk � 1

d

� �
ejnkd; (2)

where r is the radial coordinate, n represents the harmonic

index, and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ Dz2
p

. Direct sampling of the hnðDz; rÞ
functions results in a correct implementation of the (Fourier)

convolution theorem. Alternatively, convolution can be com-

puted using direct sampling of the analytical Hankel trans-

form of hn,

HnðDz;RÞ¼
exp j2pDz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnf=cÞ2�R2

q� �
; jRj�nf=c;

exp �2pDz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ðnf=cÞ2

q� �
; jRj>nf=c:

8>>><
>>>:

(3)

In the earlier presentation an efficient scheme involving

dynamic limits placed on the inclusion of the HnðDz;RÞ sam-

ples (and thus multiplications) was discussed. Those limits

involved the propagation geometry-given spatial frequency

content of those HnðDz;RÞ samples. In an update beyond

that approach, it has been found that utilizing a full direct

sampling of HnðDz;RÞ values is more accurate and computa-

tionally simpler. This current approach generously allows

for Hn terms up to and including some evanescent samples

jRj > nf=c. This scheme accurately describes each Dz linear

advancement and then a periodic spatial (cosine) windowing

of the edges of the propagating harmonic fields limits convo-

lutional artifacts. This still results in reduced multiplications

since these operations can be terminated after a few evanes-

cent jRj > nf=c terms.

On a general note, if non-axis symmetric sources must

be propagated, this substep (in either a nonlinear or linear

computation) can be generalized to accommodate them by

exchanging the current Hankel transform (and radial grid

structure) for a 2D fast Fourier transform (FFT) (and a

square grid). Frequency-dependent attenuation can be

included in the diffractive substep by combining a power

law multiplicative factor with the point spread function hn.

Alternatively, the plane wave-oriented propagation of the

Hn (or angular spectrum) approach can be supplemented

with a power law-based multiplicative (plane wave) attenu-

ation factor (Christopher and Parker, 1991b). In either case

the multiplicative factor looks like e�af bd, where f is fre-

quency, d is distance, and a and b describe the power law

relationship.

B. The nonlinear substep

In general, the acoustic normal velocity field at a point

ri in a plane given by zi can be represented by a multi-

harmonic waveform. If this normal velocity waveform repre-

sented a plane wave traveling in the z direction, then the
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effect of nonlinearity on the waveform in traveling over a

distance Dz could be computed using the frequency domain

solution to Burgers’ equation (FDSBE). The attenuation

term of the FDSBE is not considered here as attenuation is

computed in the linear diffractive substep. In this way, the

model accounts for the nonlinear effect by supplementing

each Dz linear substep with a Dz nonlinear plane wave dis-

placement of the field. The order of the substeps is revers-

ible, but the results here utilized the linear substep first,

followed by the nonlinear substep.

The nonlinear plane wave substep then consists of

applying the FDSBE (minus the attenuation term) to each

multi-harmonic radial field sample that has been output by

the most recent linear substep. The ith iteration of the

FDSBE algorithm can be written

un zþ Dz; ið Þ ¼ u0n zþDz; ið Þ

þ j
bpfDz

2c2

Xn�1

k¼1

ku0ku0n�k þ
XN

k¼n

ku0ku0�n�k

 !
;

n ¼ 1;2;…N;

(4)

where b is the nonlinear parameter 1þ ðB=2AÞ, f is the fun-

damental frequency, and unðzþ Dz; iÞ denotes the nth term

in an N term complex Fourier series describing the temporal

normal velocity waveform at the ith radial field sample in

the plane zþ Dz. Note that the output of the linear substep

u0nðzþ Dz; iÞ has been abbreviated within the bracketed sum-

mations by dropping the zþ Dz; i specification. This compu-

tation is repeated for each of the N radial samples

(i ¼ 0; 1;…;N � 1). The first summation within the large

parentheses represents the accretion of the nth harmonic by

nonlinear combination of other harmonics that have a sum

frequency of nf . The second summation, with conjugation,

can be interpreted as a depletion of the nth harmonic to other

harmonics with a difference of frequency nf .

Note that the above formulation is consistent with the

original one, but for the computations here pressure p was

used to represent the focusing fields. In that case

ðbpf DzÞ=ð2c2Þ is replaced by ðbpfDzÞ=ð2c3qÞ.

III. METHODS

The original single harmonic source formulation had to

be extended to allow for multi-harmonic pulses. This was

done by replacing the algorithm’s single harmonic input

with the multi-harmonic, FFT-based description of the

desired ultrasonic source pulses.

Another subtle aspect of the original algorithm had to be

updated for the current work. That aspect involved the com-

putation of the local directivity of the field [Eq. (4) in

Christopher and Parker (1991a)]. That computation was

motivated by the recognition that the field at some radial

position is not in general propagating normally to its planar

grid representation. Without a correction for this offset direc-

tivity, the nonlinear (plane wave-oriented) substep would

inaccurately represent the distance over which finite ampli-

tude distortion accrued. It could also misrepresent the true

amplitude of a radial sample’s harmonics in the case of a

normal velocity representation ðunÞ of the field. In that case

actual amplitude associated with normal velocity propagat-

ing through a grid point is junj= cos ðhÞ and the pending

propagation distance is Dz= cos ðhÞ, where h is the angular

offset (or directionality) of the local wavefront relative to the

norm of the planar grid. In the trivial case of h ¼ 0 radians,

the local wavefront is parallel to the propagation grid and

there is no need for a correction.

Our original treatment of this complication involved the

utilization of the fundamental harmonic’s phase change in

the radial dimension. That radial phase change was in turn

used to compute the directionality of the local ultrasonic

field and thus better estimate the corresponding propagation

distance associated with the pending Dz nonlinear advance-

ment of the field, and also to modify the harmonic ampli-

tudes input into the FDSBE for the case of a normal velocity

representation.

An update to this directivity computation was necessi-

tated by the broadband nature of the needle source. The asso-

ciated field’s requirement of a constant phase change

between planes imposes a rise in center frequency with

increasing off-axis distance within the needle’s focusing

field. That radial transition to higher center frequencies in

turn means that any single frequency can only accurately

represent the direction of the field over a limited radial

extent. To accommodate the demands of this broadband

field, the updated algorithm allows for the specification of a

sequence of constituent harmonics. Then, at any given radial

field sample, the constituent harmonic with the largest

amplitude is identified. Next, the remaining specified har-

monics which have amplitudes of at least 1/60th of that max-

imum amplitude were selected. Each of those significant

harmonics (as output by the linear substep) has its rate of

radial phase change S calculated along the propagation

radius, depicted here for the nth harmonic,

S u0n z; ið Þ
� �

¼ d

dr
tan�1

Im u0n z; rð Þ
� �

Re u0n z; rð Þ
� �

 !" #
: (5)

The S quantity physically represents the spatial frequency

associated with a plane wave of the nth harmonic intercept-

ing the grid at a particular angle h [this geometric idea was

considered at some length in Christopher and Parker

(1991b)]. Then each of these S values was converted into a

desired angular quantity h½u0nðz; iÞ� by

sin ðh u0nðz; iÞ
� �

Þ ¼ S u0nðz; iÞ
� �

=maxðSnÞ; (6)

where maxðSnÞ equals the maximum spatial frequency asso-

ciated with the nth harmonic intercepting the grid. This

occurs when that harmonic travels parallel to the grid and

it equals fn=cn, where fn and cn are the frequency and

sound speed of the nth harmonic. Finally, the specified sig-

nificant harmonics have their sin ðhÞ values combined into a

simple linear amplitude-weighted summation. That result-

ing sin ðhÞ summation value is converted to a cos ðhÞ value

which was used to correct for directivity in the FDSBE
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substep. Unlike any single harmonic-based estimate, the

resulting summation-based directivity estimate appeared to

offer stable and accurate directivity values for the focusing

needle field.

A. Respective fields

The two focal pressure sources had radial extents of

3 cm and also focal lengths of 3 cm. The specified media

parameters were those of water which included c ¼ 0:15 cm/

ls, q ¼ 1 g/cm3, a ¼ 0:00025 Np/cm, b ¼ 2, and nonlinear

constant b ¼ 3:5. The needle source was obtained by utiliz-

ing Eq. (7) in Parker et al. (2017) with the parameters

z ¼ �3 cm, q ¼ 0:2, s ¼ 0:3, and had an on-axis center fre-

quency of 3 MHz. The corresponding Gaussian source was

specified using a Gaussian apodized 3 MHz cosine pulse.

The Gaussian apodization parameter rG ¼ 0:48 ls was

selected to match the on-axis specifics of the needle pulse.

That 3 MHz Gaussian pulse was in turn Fourier-transformed

and then had its constituent harmonics spread out and

spherically-focused along the source plane radius. That

Gaussian source harmonic description was then spatially

apodized with a Gaussian constant rG ¼ 0:58 cm applied, to

match the form of the needle source’s amplitude profile.

Note that because the comparison began with the output

of the needle field equation, the resulting source description

FIG. 1. Axially-symmetric, needle and Gaussian source plane (z ¼ �3:0
cm) pressure spectra. The Gaussian source was defined with a center fre-

quency of 3 MHz, an on-axis RMS intensity of 1 W/cm2, and temporal and

spatial apodization r values of 0.48 ls and 0.58 cm, respectively. The needle

source was defined using Eq. (1) with a center frequency of 3 MHz, s ¼ 0:3,

and q ¼ 0:2. The radial extent of both sources was 3 cm, the temporal extent

of their pulse representations was 30 ls, and the medium was water. Spectra

are shown for the r ¼ 0:0, r ¼ 1:5; and r ¼ 3:0 cm positions.

FIG. 2. The near source, z ¼ �2:95 cm, peak pressure profiles propagated

by the needle and Gaussian sources. The needle source was scaled to pro-

duce the same linearly propagated, focal ðz ¼ 0:0; r ¼ 0:0Þ pressure value

as the Gaussian source.

FIG. 3. The near source, z ¼ �2:95 cm, pressure amplitude profiles for the

needle sources’ harmonics 90, 95, 100, 105, 110, 115, and 120 from the

pulse’s frequency domain representation. These harmonics correspond to

frequency values of 3.000, 3.167, 3.333, 3.500, 3.667, 3.833, and

4.000 MHz. The phase changes in these profiles were collectively used to

estimate the directionality in order to accurately estimate the effects of finite

amplitude distortion within the focused needle field.

FIG. 4. The directivity-based nonlinear scaling factor 1= cos h for the near

source, z ¼ �2:95 cm, needle pressure field. The solid curve was based on a

weighted sum of the directivity angles associated with 7 harmonics (or frequen-

cies) in the propagating field. The next three dashed curves represent single fre-

quency (3.000, 3.33, and 3.67 MHz) based estimates. The final dashed curve

represents a spherically focused or theoretical based estimate. Near the edge of

the focusing field—and outwards of the edge—there is irregular phasing as the

edge of the focal field transitions to a diverging field. A ceiling was added to the

directivity algorithm in part to limit these irregular values.

864 J. Acoust. Soc. Am. 144 (2), August 2018 P. Ted Christopher and Kevin J. Parker



was a pressure description of finite extent. That pressure

description in turn had to be scaled up in order to produce

meaningful amplitudes for the desired finite amplitude com-

parison. The way this was accomplished was to take a linear

propagation of the Gaussian source, which was anchored to

an on-axis root-mean-square (RMS) intensity of 1 W/cm2,

out to the z ¼ 0:0 cm focus and then identify the peak pulse

amplitude there. The needle source radial representation was

then scaled so that its linear peak focal amplitude matched

that of the Gaussian source. In this way two roughly equiva-

lent sources were obtained and could then be utilized for a

finite amplitude comparison.

The specifics of the propagation grid was that it uti-

lized 3000 samples across a radial extent of 12 cm. The

corresponding sampling rate was 250 samples per cm and

that corresponded to the Nyquist frequency of an 18.75

MHz wave propagating in water. The z increment used was

0.01 cm for the first 2 cm and then a smaller increment of

0.005 cm for the next 2 cm. This smaller step size was

motivated by the larger finite amplitude effects expected in

the focal region. The temporal grid used to represent

the pulses was 1024 samples across 30 ls, providing incre-

mental frequency coverage from 0:0�3 up to 17:0�6 MHz

(the latter being below the Nyquist-given limit of the grid

representation). The 7 harmonics specified for the directiv-

ity calculation were harmonics 90, 95, 100, 105, 110, 115,

and 120. These harmonics corresponded to 3, 3:1�6; 3:3�3;
3.5, 3:6�6; 3:8�3, and 4 MHz, respectively.

Figures 1 and 2 depict some relevant source plane spe-

cifics. Figure 1 shows the corresponding source spectra for

the two sources at the inner and outer positions of r ¼ 0:0,

r ¼ 1:5; and r ¼ 3:0 cm. Of note here is the shift of the outer

needle spectrum to a center frequency of over 4 MHz as well

as the broadening of that spectrum. The needle equation

implicitly defines not only increasing center frequencies off-

axis, but also a shortening of those pulses.

The Gaussian source on the other hand simply reduces

their amplitudes and—not shown here—shifts the phases in

order to maintain a spherical focus. In Fig. 2, the correspond-

ing source radii pulse peak amplitudes are shown. Since the

needle source utilizes additional high frequency content—

minimally affected by water’s minimal absorption—it offers

a little more efficient focusing here. The Gaussian source

thus is almost 10% higher in its source amplitude profile.

Figure 3 shows the radial profiles from z ¼ �2:95 cm of

the seven harmonics chosen for the directivity algorithm.

(a)

(c)

(b)

FIG. 5. The focal needle and Gaussian pulses. Note the shorter duration of the needle pulses. (a) Pulses constructed using all 512 harmonics from the nonlinear

propagation. (b) Focal needle pulses constructed using all of the harmonics, those associated with the fundamental harmonic bandwidth (harmonics or frequencies

79–162), and those associated with the second harmonic bandwidth (harmonics 165–264). (c) The needle and Gaussian second harmonic bandwidth focal pulses.
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(a) (b)

FIG. 6. The focal needle and Gaussian spectra from linear and nonlinear computations. (a) Overlay of the linearly propagated fundamental bandwidth and the

corresponding nonlinearly propagated result. Note the minimal losses in the nonlinear result. (b) A log-scaled overlay of the needle and Gaussian focal nonlin-

ear spectra. Note the broadband nature of the needle source’s harmonic bands.

(a)

(c)

(b)

FIG. 7. The axial peak-pulse curves for the needle and Gaussian sources. (a) Results from the linear and nonlinear computations. Both utilized all of the

propagating harmonics. (b) The corresponding nonlinear results from the fundamental and second harmonic bands. (c) Focal nonlinear needle pulses at

z ¼ �0:035, z ¼ �0:015, and z ¼ 0:015 cm. The first and last of these were separated by 0.05 cm, which equals the wavelength of 3 MHz in water. They

were thus similar.
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Note that each has its own relatively narrow radial band of

significant amplitudes. These seven harmonics were chosen

since those amplitude bands extend across the r ¼ 0 to r ¼ 3

cm radii. That coverage in turn offered good estimates across

the face of this broadband converging field. The Gaussian

field, on the other hand, was everywhere centered on 3 MHz

frequency content, and thus the corresponding single har-

monic provided the desired directivity estimates.

Figure 4 depicts the directivity-based nonlinear factor

1= cos ðhÞ for the near source, z ¼ �2:95 cm, needle pres-

sure field. The smooth, finest dashed curve shows the theo-

retical or spherically focused-based directivity scaling

factor. The solid curve estimate was based on the previously

described, weighted summation of the directivities of seven

harmonics. The next three dashed curves represent single

harmonic (3.000, 3.333, and 3.667 MHz) based estimates.

Toward the edge of the focusing field (and beyond) the

directivity exhibits irregular estimates. These derive from

the finite extent of the source and the associated edge effects.

A ceiling was placed on the irregularity of such estimates

and that ceiling was the directivity factor associated with the

angle of focusing required at the edge of the source. In Fig. 4

that value is visible and it is about 1.43. For the most part,

concern about this compromise was minimal as the associ-

ated field amplitudes are small and outside of the focusing

region of the beam.

Figures 5(a)–5(c) then plot the resulting finite amplitude

distortion-computed focal pulses. In Fig. 5(a) note the

shorter duration of the needle pulse. The broadband-oriented

needle equation effectively provides for a pulse concentra-

tion in the focal region. Also, both needle and Gaussian

waveforms are asymmetric with positive/negative peak pres-

sures exceeding a ratio of 1.5 at the time of crescendo, t ¼ 0:
In Fig. 5(b) several needle focal pulses are shown. Those

pulses were constructed using the full nonlinear spectrum [as

in Fig. 5(a)], the fundamental harmonic bandwidth, and also

the second harmonic bandwidth. Again note how short the

full and fundamental harmonics-based results are in compar-

ison to the Gaussian pulse shown in Fig. 5(a). Also shown in

Fig. 5(b) is the corresponding second harmonic bandwidth

pulse. In Fig. 5(c), the needle’s second harmonic bandwidth-

based focal pulse is again shown along with that from the

Gaussian field. The needle’s second harmonic pulse is simi-

larly much shorter than that of the equivalent Gaussian

result. Thus the destructive interference noted above appears

to extend to the second harmonics’ focal performance. An

(a) (b)

(c)

FIG. 8. The focal plane (z ¼ 0:0 cm) radial peak-pulse amplitude profiles for the needle and Gaussian sources. (a) Results from the linear and nonlinear com-

putations. (b) The corresponding peak profiles from the fundamental and second harmonic bands. (c) The log-scaled depiction of the corresponding peak pro-

files from the fundamental and second harmonic bands. Note the longer radial extent depicted in (c).
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additional note here is that the focus on the fundamental and

second harmonic bandwidths—here and henceforth—is

motivated by their relevance to contemporary ultrasonic

imaging.

Next, Figs. 6(a) and 6(b) consider the corresponding

focal spectra. Figure 6(a) depicts the fundamental bandwidth

of the needle’s focal pulse as computed with and without

nonlinearity. The linear spectrum is very similar to the non-

linear spectrum and this is due to the minimal losses experi-

enced from the fundamental band in the nonlinear

propagation which did not produce a shock. Figure 6(b)

shows the corresponding nonlinear focal spectra in a loga-

rithmic format. The Gaussian spectra are as expected with its

higher harmonic narrowband nature. The needle spectra

show the broadband nature of its focal behavior. In fact the

fundamental portions of that spectra broadly represents an

integral description of the broadband source. The increasing

higher frequency content in that focal fundamental band cor-

responds to the contributions from the rising center fre-

quency content in the needle’s off-axis pulses. That focal

broadband nature is, in turn, also present in the higher

harmonics.

Figures 7(a) and 7(b) show the focal peak axial ampli-

tudes for the needle and Gaussian fields. The respective

lower curves represent the linearly propagated peak ampli-

tudes achieved along the axis. The needle curve is longer in

contrast to the corresponding focal pulse lengths considered

earlier. Thus, although the needle source produces much

shorter focal pulse lengths, it also extends the range over

which those short focal pulses maintain significant ampli-

tudes. Next, the respective higher axial amplitude curves in

Fig. 7(a) present the corresponding nonlinear results. In both

cases those peak curves were computed using the full range

of propagating harmonics. The increased heights are derived

from the increased positive pressures produced by finite

amplitude distortion along the axis in the focal region. The

bumpy surface of the needle’s nonlinear peak curve derives

from the dynamics in the short needle pulse. In particular, as

a local peak maximum fades out, the subsequent peak over-

takes it and pushes toward a new maximum amplitude. In

Fig. 7(b) the corresponding axial peak amplitude curves

associated with the needle’s respective fundamental and sec-

ond harmonic bands are plotted. Here again the form of the

second harmonic bandwidth reflects the form of the associ-

ated fundamental results. Finally, Fig. 7(c) depicts the nee-

dle’s on-axis pulses at z ¼ �0:035, z ¼ �0:015, and

z ¼ 0:015 cm. Notice that the first and last pulses are very

similar, and this is due to them being 0.05 cm apart which is

FIG. 9. The transaxial, peak-pulse amplitude planar results for the needle and Gaussian sources. All computations utilized the nonlinear model, but all figures

here are linearly scaled. (a) The planar peak pressure amplitude result computed from the needle field’s fundamental band. (b) The corresponding result from

the Gaussian’s fundamental band. (c) The planar peak amplitude computed from the needle’s second harmonic band. (d) The corresponding result from the

Gaussian’s second harmonic band.
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the distance of one 3 MHz wavelength. The peak dynamic

depicted between the outer and middle pulses here is the basis

for the nonlinear bumpy axial peak profile shown in Fig. 7(a).

That is because changes in the distribution of the pulse’s posi-

tive peaks produces a small variation in the axial peak profile.

Figures 8(a)–8(c) show the focal radial peak amplitude

results from the two sources. In Fig. 8(a) the corresponding

linear and nonlinearly propagated radial profiles are pre-

sented. The nonlinear results utilized the full harmonic

range. The lower pair of curves, bearing the linear results,

reflects a relationship somewhat analogous to the earlier

axial peak curves. The broadband needle source has an

almost exponential asymptotic decay away from the central

lobe. The narrowband Gaussian linear result, on the other

hand, drops faster off-axis. This may reflect the inherent

advantages with a single center frequency focal field, in that

such fields are better able to achieve destructive interference

away from their focal peak. The corresponding nonlinear

curves reveal the concentrated boost in peak focal pressures

near the axis for both sources. Figure 8(b) depicts the corre-

sponding fundamental and second harmonic band-based

results. Note that in both harmonic band cases, the needle

result is narrower in the inner portion of the main lobe and

then slower in its asymptotic decline off-axis. The half

amplitude focal (pulse peak-based) beam widths for the

second harmonics were 0.62 and 0.60 of the corresponding

fundamental half amplitude beam widths for the needle and

Gaussian fields, respectively. This is less than the theoretical

value of 0:71 (or 1=
ffiffiffiffi
N
p

for the Nth harmonic, here N¼ 2)

(Hamilton and Blackstock, 1998a) for nonlinear beampat-

terns from a single frequency source. Figure 8(c) then shows

the log-scaled version of the Fig. 8(b) data. With both of the

needle source results, their slower off-axis sidelobe decline

is visible, although the ultimate sidelobe levels are lower

than their Gaussian peers. Note also that both the Gaussian

and needle sources display significant sidelobe levels which

are related to the source edge truncation.

Planar focal results are given in Figs. 9(a)–9(d). All of

these figures display the peak amplitude pressures obtained

in the r � z plane in a linear fashion. Figure 9(a) shows the

radial planar peaks from the needle’s fundamental band.

Figure 9(b) depicts the corresponding Gaussian result.

Figures 9(c) and 9(d) then show the corresponding second

harmonic results from the nonlinearly propagated needle and

Gaussian fields. In these results the lengthened axial focus of

the needle source is apparent. Also displayed is the fact that

the Gaussian field’s sharp sidelobe decline [shown in Fig.

8(b)] is limited to close to the focal plane. The needle field’s

focal performance, on the other hand, appears to be rela-

tively constant over the 1 cm of axial distance displayed.

FIG. 10. The transaxial, fixed-time, pulse value planar results for the needle and Gaussian sources. All computations utilized the nonlinear model, but all fig-

ures here are linearly scaled. Note the reduced transaxial and axial range compared to Figs. 9(a)–9(d). (a) The planar pressure result computed from the needle

field’s fundamental bandwidth. (b) The corresponding result from the Gaussian’s fundamental band. (c) The planar peak pressure result computed from the

needle’s second harmonic band. (d) The corresponding results from the Gaussian’s second harmonic band.
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Planar focal nonlinear results are depicted in Figs.

10(a)–10(d) for fixed time. The time used corresponded

to the time of propagation to the focus, which was

3 cm�0.15 cm/ls¼ 20 ls (although that time corresponds to

t ¼ 0 seconds in the needle field’s formulation). All of these

figures display in linear fashion the amplitude of the pulse at

a given position in the r � z plane. Figures 10(a) and 10(b)

show the fundamental-derived results for the needle and

Gaussian results fields, respectively. Figures 10(c) and 10(d)

depict the associated second harmonic-derived results for the

needle and Gaussian results fields, respectively. The rela-

tively sustained and stable form of the needle focal field is

again apparent.

IV. CONCLUSION

We have compared a focused 3 MHz broadband

Gaussian beam against a corresponding needle pulse field by

utilizing the output of a nonlinear propagation model. These

results suggest that the unique qualities of a needle focal

field are inherited by their higher harmonic components. In

particular, analogous to the fundamental linear needle pulse,

the second harmonic characteristics include an extended

needle-like, on-axis spatial peak, underlying shorter focal

temporal pulses, and a narrower main lobe followed by a

slower sidelobe decline.

The needle pulse’s focal features—particularly the

extended spatial focal peak and the shorter focal pulse

lengths—may prove to be useful in some future applications

where an extended depth of field and narrow beam width are

advantageous.
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