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Abstract: In dynamic optical coherence elastography (OCE), surface acoustic waves are the
predominant perturbations. They constrain the quantification of elastic modulus to the direction of
wave propagation only along the surface of tissues, and disregard elasticity gradients along depth.
Longitudinal shear waves (LSW), on the other hand, can be generated at the surface of the tissue
and propagate through depth with desirable properties for OCE: (1) LSW travel at the shear wave
speed and can discriminate elasticity gradients along depth, and (2) the displacement of LSW is
longitudinally polarized along the direction of propagation; therefore, it can be measured by a
phase-sensitive optical coherence tomography system. In this study, we explore the capabilities of
LSW generated by a circular glass plate in contact with a sample using numerical simulations and
tissue-mimicking phantom experiments. Results demonstrate the potential of LSW in detecting
an elasticity gradient along axial and lateral directions simultaneously. Finally, LSW are used for
the elastography of ex vivo mouse brain and demonstrate important implications in in vivo and
in situ measurements of local elasticity changes in brain and how they might correlate with the
onset and progression of degenerative brain diseases.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Mechanical properties of biological tissues are unavoidably influenced by the progression
of pathophysiological processes. Therefore, non-invasive measurements of these properties
(i.e. elasticity and viscosity), also known as elastography, are useful for disease diagnostics,
surveillance, and treatment [1]. Examples of applications in different tissue types include cornea,
skin, liver, breast, and brain [1, 2]. Since the 1980’s, elastography has been implemented in
various imaging modalities such as ultrasound, magnetic resonance, and optical coherence
tomography (OCT) [1, 3]. In particular, OCT-based elastography, also called optical coherence
elastography (OCE), has been intensely studied in the last two decades due to its favorable axial
and lateral resolution (∼15 µm) in a variety of different biological tissues [4]. Much of the
OCE work has been studied and categorized in review papers from years 2015 [3], 2016 [2],
and 2017 [4–6]. Here, a taxonomy of OCE methods is conducted according to the following
categories: spatial and temporal extent of loading, excitation approaches, and tissue-specific
applications.
Dynamic OCE methods, an important subset of OCE techniques, leverage the propagation

and measurement of mechanical waves for tissue viscoelastic characterization, which is usually
estimated from the displacement and speed of such waves [7–9]. Surface acoustic waves (SAW),
also referred to as surface guided waves, are the predominant perturbation in most dynamic OCE
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approaches [10, 11], given the trio of depth penetration of OCT, boundary conditions of tissues,
and mechanical excitation wavelengths. SAW propagation has been demonstrated to discriminate
elasticity gradients along the propagation direction (usually guided by the tissue surface) with
important applications in the study of tissue anisotropy [12], the evaluation of elasticity changes
before and after diseases or treatments [13], and the investigation of the relationship between
SAW speed and tissue biomarkers such as intraocular pressure in ocular tissue [14]. Nevertheless,
the discrimination of elasticity gradient along depth (perpendicular to the tissue surface) is quite
limited due to the dispersive nature of SAW [11,15].

Depth-dependent elasticity discrimination of tissues is fundamental for composite and hetero-
geneous media. For example, human cornea is a highly organized tissue composed of at least five
thin layers with differentiated structure, mechanical properties, and physiological functions [16].
Therefore, the elastic characterization of individual corneal layers using non-destructive tech-
niques is of great importance in ophthalmology for better understanding of ocular physiology,
diagnosis of ocular pathologies, and monitoring of relevant diseases and treatments [6]. Another
application relates how local and global changes in the elastic properties of the brain may correlate
with the onset and progression of degenerative brain diseases, such as Alzheimer’s disease [17]
and Parkinson’s disease [18]. Therefore, measuring the heterogeneous distribution of elasticity
in the brain will be valuable from a clinical and basic science perspective.

Longitudinal shear waves (LSW) are a special case of shear waves, characterized as polarized
slow waves originating in the near-field regime of a perturbation in elastic solids [19]. It has
been theoretically studied in [19,20] and utilized in ultrasound elastography [21]. When LSW
are generated on the surface of tissues using a force/displacement source vibrating normal to the
tissue surface, they can travel along the depth direction (and, importantly, are not guided by the
tissue surface as with SAW), which allows them to discriminate depth elasticity gradients via
changes in the wave speed. Displacement caused by LSW is longitudinally polarized along the
direction of propagation; therefore, it can be measured and detected by Doppler ultrasound or
phase-sensitive optical coherence tomography (PhS-OCT). In OCE, preliminary studies have been
conducted in phantoms, validating SAW for detecting 1D elasticity gradients along lateral [22]
and axial [23] directions. In [23], coaxial excitation of LSW is demonstrated for depth-dependent
1D elasticity characterization in phantoms.

In this study, we explore the capabilities of LSW in detecting 2D elasticity gradients along
axial and lateral directions simultaneously, using numerical simulations and tissue-mimicking
phantom experiments. LSW are generated by a circular glass plate in contact with the sample.
Finally, we demonstrate the use of LSW for the elastography of ex vivo mouse brain tissue with
important implications in in vivo and in situ measurements of local elasticity changes in brain for
neuromedicine and related clinical applications.

2. Materials and methods

2.1. Sample preparation and characterization

Tissue-mimicking phantoms were made of gelatin powder of different concentrations for
simulating softer (3% gelatin) and stiffer (5% gelatin) tissues. In all cases, the same concentration
of 0.5% intralipid powder was used to provide optical scattering to the phantoms (measured
refractive index of phantoms ∼1.35). Five different elasticity configurations were tested (where L
= left, R = right, T = top, and B = bottom): uniform 3%, uniform 5%, [L3%− R5%] horizontally
distributed halves, and [T3% − B5%] or [T5% − B3%] vertically distributed layers. The average
thickness of the top layer was measured to be ∼0.8 mm and the bottom layer is considered as a
semi-infinite media. The approximate size of each phantom was 80 × 80 mm in the lateral extent,
and 30 mm along depth.

The Young’s modulus of each phantom concentration was measured by taking three cylindrical
samples (n = 3) of ∼40 mm in diameter, and conducting a stress-relaxation compression test in a
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MTS Q-test/5 universal testing machine (MTS, Eden Prairie, Minnesota, USA) at a strain of 5%
for a total time of 600 s. The stress-time plots obtained were fitted to a Kelvin-Voigt fractional
derivative rheological model for the frequency-dependent Young’ s modulus (E) estimation [24].
For the excitation frequencies used in the experiments (1 kHz and 2 kHz), Young’s moduli were
found to be similar (assuming negligible non-linear elastic behavior) for each concentration:
E3% = 3.95 ± 0.23 kPa and E5% = 10.57 ± 0.68 kPa, for 3% and 5% concentrations, respectively.
Assuming that the phantom is an isotropic and homogeneous material of density of ∼1 g/cm3,
and a Poisson’s ratio of ∼0.5, the shear wave speed can be calculated [1] and reported as:
c3%
s = 1.15 ± 0.03 m/s, and c5%

s = 1.88 ± 0.06 m/s, for 3% and 5% concentrations, respectively.
Brains were procured from euthanized (no more than one hour) 8-week old male C57B1/6 mice

(Charles River Laboratories, Wilmington, MA, USA) and placed in a 2% concentration agarose
gel solution of artificial cerebrospinal fluid, which slows the desiccation of brain tissue during
the OCT imaging process. The temperature of the agarose solution was controlled not to exceed
37◦C before solidification to ensure all sides of the brain were covered with a separation between
brain and gel surfaces not exceeding 0.1 mm for optimal OCT imaging. No optical scatterers
were added in the coupling gel to ensure deeper OCT penetration in brain tissue. During OCE
experiments, a harmonic loading glass coverslip is placed on the top of the agarose gel volume
containing the mouse brain. The gel in between the coverslip and brain tissue (thickness ∼0.1
mm) serves as an elastic coupling medium. The shear wave speed in the 2% concentration
agarose gel was measured to be 2.67 ± 0.05 m/s, which is in the range of previously reported
shear wave speed in mouse brain [25] and avoids the creation of strong wave reflections.

2.2. Experimental setup

The schematic of the experimental setup is shown in Fig. 1. Here, a PhS-OCT system is
used for the motion detection of LSW generated in the sample via a synchronized mechanical
excitation using a piezoelectric actuator attached to a circular glass coverslip. The PhS-OCT
system is implemented with a swept-source laser (HSL-2100-WR, Santec, Aichi, Japan) with
a center wavelength of 1318 nm and a full-width half-maximum (FWHM) bandwidth of 125
nm. The imaging depth was measured to be 5 mm (-10 dB sensitive fall-off). The optical
lateral resolution is approximately 20 µm, and the FWHM of the axial point spread function
after dispersion compensation is 10 µm. The A-line rate is 20 kHz, which provides a sampling
time Ts = 50µs. A galvo-scanner was used to change the lateral position of the beam in the
sample. The synchronized control of the galvo-scanner, mechanical excitation, and the OCT data
acquisition were conducted using a LabVIEW (Version 14.0f1, National Instruments Corporation,
Austin, TX, USA) platform connected to a work station.

The mechanical excitation system begins with a function generator (AFG320, Tektronix,
Beaverton, OR, USA) output signal connected to an ultra-low noise power amplifier (PDu150,
PiezoDrive, Callaghan, NSW, Australia) feeding a small piezoelectric actuator (SA030305,
PiezoDrive, Callaghan, NSW, Australia) of 3 × 3 × 5 mm. The actuator is fixed to the top surface
of a circular glass coverslip (Thermo Fisher Scientific, Waltham, MA, USA). The bottom surface
of the glass coverslip is touching the sample. The OCT laser beam passes through the glass while
vibrating along the axial direction for the generation and measurement of LSW as described in
Fig. 2. Distortion in the phase information of OCT A-lines generated by the movement of the
glass plate is modeled and compensated for (see Section 2.3). The signal set in the function
generator for experiments in phantoms and ex vivo brain tissue is a 1 kHz (5 cycles) or 2 kHz (10
cycles) harmonic signal. The region of interest (ROI) was defined to be 10 mm × 2.5 mm along
the lateral and depth axis of the cross-sectional B-mode plane, respectively.
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Fig. 1. Experimental setup using a PhS-OCT imaging system synchronized with mechanical
excitation using a piezoelectric actuator attached to a circular glass coverslip. Two types of
samples are shown: gelatin tissue-mimicking phantoms, and embedded mouse brain tissue.

Fig. 2. Configuration of the sample, glass coverslip, and the OCT scanning probe for
analyzing waves generated in the sample and particle velocities measured by OCT.

2.3. Acquisition scheme

The MB-mode acquisition approach, as described in Zvietcovich et al., was used for data
acquisition [26]. It consists of triggering the excitation (via a burst of the 1 kHz or 2 kHz
continuous sinusoidal waveform) and acquiring 100 A-lines during a 5 ms period at a single
position within the lateral axis of the ROI. Subsequently, the galvanometer controlling the x-axis
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changes position to scan an adjacent lateral location. The excitation and acquisition process are
then repeated for different positions. The process is stopped when the x-axis has covered the
10 mm lateral length of the ROI. The number of samples taken in the x-axis is 200. The total
acquisition time is 1 second per experiment. The 3D data (2D spatial, 1D temporal) is then
reorganized into 100 2D spatial frames of 10 × 2.5 mm, where each frame corresponds to a
virtual instantaneous snapshot of sample motion, and the apparent frame rate is 20 kHz.

Methodologically, in a medium with refractive index n, the depth-dependent phase difference
of a given A-line at two consecutive instants t0 and t1 (t0 < t1) for a given lateral x0 position, is
related to particle velocity vz (z) in the axial direction by

vz (z) = ∆φ (z)
λ0

4πnTs
, (1)

where φ is the phase of the A-line signal acquired with the PhS-OCT system, n is the refractive
index of the medium, λ0 is the center wavelength of the laser, Ts and is the time sampling
resolution. In practice, given the experimental setup, three media with different refractive indexes
are concatenated coaxially as shown in Fig. 2: coupling air, glass, and the sample. Then,
∆φ (z) measurements (and, therefore, vz (z)) can be affected by the motion of surfaces within the
transition of materials. An appropriate model to compensate for those effects and estimate the
true phase difference ∆φT (z) produced by any scatterer within the sample is presented as

∆φT (z) = ∆φ (z) +
(

n3
n2
− 1

)
∆φ (s2) +

(
n3
n1
−

n3
n2

)
∆φ (s1) , (2)

where ∆φ (z), ∆φ (s1), and ∆φ (s2) are phase differences measured at the sample, the boundary
between the sample and the bottom surface of the glass coverslip, and the boundary between
the top surface of glass coverslip and air, respectively. Also, n1, n2, and n3 are the refractive
indexes of air, the glass coverslip, and the sample, respectively. The derivation of Eq. (2) is
presented in the Appendix Section. Assuming the glass coverslip is rigid, then ∆φ (s2) = ∆φ (s1),
and Equation 2 reduces to

∆φT (z) = ∆φ (z) +
(

n3
n1
− 1

)
∆φ (s1) , (3)

which is the same correction factor found in [27] for a two-medium configuration (air and sample).
We select Loupas’ algorithm [28] for the accurate estimation of ∆φ (z), which increased the
signal-to-noise ratio compared to other approaches. For the corrected phase, we use n1 ≈ 1 (air),
and n3 ≈ 1.35 (gelatin phantom), and the ∆φ (s1) measurement at the top surface of the glass
coverslip. Finally, spatio-temporal particle velocity fields vz (x, z; t) are obtained within the ROI
for each experiment.

2.4. Numerical simulation

Numerical simulations of LSW propagation produced by an axisymmetric, uniformly distributed
transient displacement excitation applied on the top of a 3D solid volume were conducted using
finite elements in Abaqus/CAE version 6.14-1 (Dassault Systems, Velizy-Villacoublay, France).
The 3D solid elastic media of 16 × 16 × 10 mm size is subjected to a spatially-uniform (disk
shape) and temporally-transient (one cycle of a 1 kHz signal) displacement field on the top
surface, and zero displacement and rotation on the bottom and lateral surfaces of the solid (see
Fig. 3(a)). The spatial distribution of the displacement field in the disk was softened at the
borders in order to avoid drastic changes that may produce numerical errors to propagate (ringing
effect). Similarly, the transient 1 kHz signal was softened at the initial transition from zero
displacement to the first cycle. The solid was meshed with an approximate grid size of 33 µm and
using linear and hexahedral dominant elements (C3D8R). The type of simulation was selected to
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be dynamic-implicit with a minimum temporal discretization of 1.65 µs and analyzed during a
time range of 3 ms.

Fig. 3. Numerical 3D solid elastic media of 16 × 16 × 10 mm, showing boundary conditions
(BC) of displacement and the ROI for measurements. (b) Four cases of material distribution
defined in the simulation. Details on Young’s modulus for 3% and 5% material are specified
in Table 1.

Two linear elastic materials whose properties mimicked the mechanical measurements of the
3% and 5% gelatin concentration phantoms described in Section 2.1 were chosen to characterize
four different configurations: uniform 3%, uniform 5%, [L3% − R5%] horizontally-distributed
halves, and [T3% − B5%] vertically-distributed layers as shown in Fig. 3(b). In all cases, the
diameter of the displacement disk in the top surface of the solid is 9 mm. Table 1 shows the
selected density, Poisson’s ratio, Young’s modulus, and the equivalent shear wave speed for each
designated material. Finally, for the uniform 5% material case, LSW is simulated for different
disk diameters of displacement distribution: {4, 5, 6, 7, 8, 9} mm in order to evaluate its effect on
the generation of LSW wavefronts. Simulated particle velocity vFEM

z (x, y, z; t) estimated along
the z-axis is evaluated at the xz-plane crossing through the center of the volume (justified by the
symmetric assumptions of the model) and organized in 2D spatial frames along time, generating
vFEM
z (x, z; t) for the calculation of LSW speed.

Table 1. Elastic material parameters of 3% and 5% materials defined in Abaqus/CAE version
6.14-1.

2.5. LSW speed estimation

Local speeds of LSW are calculated using two methods: (1) time-of-flight approach for transient
excitations and (2) correlation approach for harmonic excitations. The time-of-flight approach
is based on space-time waveform tracking along the propagation direction. For a given x-axis
position, the local group velocity of the wavefront cLSW is approximated by the slope of
space-time curves within a window (W) along depth by
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cLSW (zw) =
∆z
∆t
, (4)

where zw is the location of the window in the z-axis, and ∆z is the distance traveled by the
wavefront during time ∆t within the window along depth. Equation (4) can be adapted to a least
square regression approach as described in [26] for reducing noise and increasing accuracy in the
estimation of wave speed. The sequential estimation cLSW (zw) of along depth for each lateral
position until the entire ROI is covered generates a 2D shear wave speed map (SWSM), also
called an elastogram.
The correlation approach (for harmonic excitation), also referred to as Hoyt’s method

in [26, 29], leverages the complex-valued spatial particle velocity field v
Cplx
z (x, z) obtained

by: (1) Calculating the Fourier transform of the time signal at a given (x0, z0) position:
=tz {vz (x0, z0; t)} (x0, z0;ω), and (2) evaluating the transformed signal at the angular frequency
ω0 = 2π f0, where f0 is the excitation frequency: vCplx

z (x0, z0) = =tz {vz (x0, z0; t)} (x0, z0;ω0).
Defining the z-axis as the LSW propagation direction, for a given lateral position x0, the first lag
of the auto-correlation function R of vCplx

z using a kernel window of size L along depth is:

R (n, 1) =
1

L − 1

L−2∑
m=0

v
Cplx
z (x0, n + m) · vCplx

z (x0, n + m + 1) , (5)

where zn = n∆z , for n = 0, 1, 2, ..., N − L − 1; where N is the number of samples along the z-axis,
and ∆z is the depth sampling resolution. Then, the local spatial wavenumber k can be estimated
as:

k (x0, zn) =
1
∆z

arctan
{

Im {R (n, 1)}
Re {R (n, 1)}

}
, (6)

where Re {·} and Im {·} refer to the real and imaginary parts of a complex number. Subsequently,
the LSW speed can be calculated as cLSW (x0, zn) = ω0/k (x0, zn). The sequential estimation of
cLSW (x0, zn) along depth for each lateral position until the entire ROI is covered generates a 2D
SWSM. Motion information (particle velocity) coming from pixels with a low structural OCT
signal were masked out and, therefore, not taken into account for the LSW speed calculation.

3. Results

3.1. LSW propagation in numerical simulations

The effect of plate diameter on LSW propagation was evaluated using a uniform 5% material
property in simulations. Figure 4 shows a sequence of motion frames at instants {1.2, 1.8, 2.4}
ms when plate diameters of 9 mm, 6 mm, and 4 mm are excited with one cycle of a 1 kHz signal.
The LSW wavefronts are propagating along the depth direction from the surface of the medium.
In all cases, the edge of the plate in the surface of the medium produces shear waves propagating
outwards and inwards, and towards depth as expected in the theoretical description of Figure 2.
While the outward propagating Rayleigh and shear waves fade with distance from the source, the
inward propagating shear wave can interact with the LSW and perturb the estimation of speed
and amplitude. In the propagation sequence of Figure 2, a dashed border box shows that the
inward propagating shear wave is approaching the center of the LSW faster when the diameter
of the disk is smaller. This will have important implications for selecting the appropriate plate
diameter for excitation of LSW.

The displacement amplitude and speed of the LSWare analyzed from space-time representations
extracted at the center of the plate along depth (position x1 = 8 mm in Fig. 4) when excited by
plate diameters of 4, 5, 6, 7, 8, and 9 mm, and shown in Fig. 5. In Fig. 5(a)-(c), we show how
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Fig. 4. Sequence of motion frames showing LSW propagation when excited by a disk of 9
mm (top row), 6 mm (middle row), and 4 mm (bottom row) diameter, and one cycle of a 1
kHz signal in simulations for a uniform 5% material. Color bar represents displacement
in µm. The dashed border box shows how the inward propagating shear wave reaches the
center of the LSW faster when a smaller diameter disk is used.

the disk diameter influences the spatio-temporal effect of the inward propagating shear wave
(dashed border box) in distorting the amplitude and speed of the LSW wavefront. Displacement
of the LSW main peak before the interference of the inward propagating shear wave (∼1.2 ms in
Fig. 5(d)) tends to decrease when the plate diameter is increased, accounting for the geometrical
spreading of the initial LSW wavefront.
For the simulation, we ensured that all disk diameters were excited with the same initial

displacement in the sample. Later in time, the inward propagating shear wave interferes with the
LSW wavefront producing an initial displacement increment as shown in Fig. 5(d). This effect
can be more dramatically observed when the speed of the LSW is analyzed in Fig. 5(e). The
perturbation caused by the shear wave deviates the LSW speed from the nominal value of 1.943
m/s. This near field effect occurs closer to the surface as the plate diameter is decreased and it
fades during propagation (as in the far field regime). When the plate diameter is increased, the
perturbation occurs farther in depth and then disappears as the LSW propagates deeper in the
material. Since the measured OCT depth of field typically ranges from 1 mm to 3mm, a larger
diameter plate is desired to avoid the near field effect.
In Fig. 6, the potential of utilizing LSW for the [L3% − R5%] characterization of the

horizontally-distributed materials is explored. Figure 6(a) shows a sequence of motion frames at
instants {1.2, 1.8, 2.4} ms when a plate of 9 mm diameter is used. The main LSW wavefront
is propagating from the surface of the media toward depth at a different speed in each half. In
the boundary of both halves, the refraction of waves is stronger as it propagates, limiting the
capabilities of detecting sharp changes in LSW speed between both halves. Figures 6(b,c) show
space-time representations of wave propagation at lateral positions x1 = 6 mm (3% material)
and x2 = 10 mm (5% material), respectively. The first perturbation detected corresponds to the
pressure waves, which are also called P-waves or longitudinal fast waves because their speed is at
least two orders of magnitude faster in nearly incompressible solids such as biological tissue.
The second perturbation corresponds to the LSW propagation and its slope corresponds to the
wave speed. The time-of-flight approach for speed estimation in both (3% and 5%) material sides
is reported in Fig. 6(d) when the entire propagation extent is considered. Speeds of 1.18 m/s (3%
material) and 1.94 m/s (5% material) are consistent with the material’s ground truth definitions
reported in Table 1. Small discrepancies between estimations and ground truth speed values are
attributed to the refraction effects in the boundary.
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Fig. 5. Space-time map representation of LSW propagation taken along depth and time at
position x1 = 8 mm in Figure 4, when a disk diameter of 9 mm (a), 6 mm (b), and 4 mm (c)
is used as displacement loading, and excited using one cycle of a 1 kHz signal. Solid line
indicates LSW propagation and the dashed border box shows the inward propagating shear
wave distorting the LSW speed and amplitude. Color bar represents displacement in µm. (d)
Displacement produced by the main LSW wavefront peak, while propagating in space and
time, produced by disk-distribution displacement of different diameters. (e) Wave speed
measured by tracking the main peak of the LSW wavefront produced by disk-distribution
displacement of different diameters. Ground truth (GT) shear wave speed in the simulation
is 1.943 m/s.

In Fig. 7, the potential of utilizing LSW for the characterization of the layered [T5% − B3%]
vertically distributed media is explored. Figure 7(a) shows a sequence of motion frames at
instants {1.2, 1.8, 2.4} ms when a plate of 9 mm diameter is used. The main LSW wavefront is
propagating along the depth direction from the surface of the media at different speeds in each
layer. In the boundary of both layers, the refraction of waves occurs, limiting the capabilities of
detecting sharp changes in LSW speed between both layers. Figure 7(b) shows the space-time
representation of wave propagation at lateral position x1 = 8 mm. The first perturbation detected
corresponds to the pressure wave, as in previous cases. The second perturbation describes the
LSW propagation and how its slope changes in each layer. The time-of-flight approach for
speed estimation in both the 5% (top layer) and 3% (bottom layer) materials is reported in Fig.
7(c), when the entire propagation extent is considered. Speeds of 1.08 m/s (3% material) and
1.75 m/s (5% material) are consistent with material ground truth definitions reported in Table
1. Speed underestimation in both layers is attributed to the interference of waves coming from
the plate edges that rapidly collapse the boundary between the 5% and 3% layers. In Fig. 7(d),
depth-dependent speed estimations in both layers are reported when using the time-of-flight
approach in a small moving window of 0.1 mm. LSW speed variability can be explained by the
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Fig. 6. Sequence of motion frames showing LSW propagation when excited by a 9 mm
diameter disk at one cycle of a 1 kHz signal in simulations for the [L3%−R5%]material. The
color bar represents displacement in µm. Space-time representations of LSW propagation
are shown in (b) and (c) when measured along depth and time at lateral positions x1 = 6
mm and x2 = 10 mm, respectively, in (a). Depth-time tracking of LSW wavefront peak and
speed calculation measured from (b) and (c).

repetitive refraction of waves produced at both layer boundaries (or a classical resonance effect)
as well as the propagation of numerical error during simulations. The transition from T5% to
B3% (z-axis) was fitted to a sigmoid function for OCE resolution characterization described as

c (z) = c3% + (c5% − c3%)
1

1 + e−(z0−z)/τ
, (7)

where c3% and c5% are the average LSW speeds in the 3% and 5% media, respectively; z0
and τ represent the location and width of the transition, respectively. Then, we define the
OCE resolution along the z-axis as the distance from 20% to 80% of the transition, also called
R2080 [26]. We found R2080 = 0.109 mm as reported in Fig. 7(d).

3.2. LSW propagation in tissue-mimicking phantoms

In Fig. 8, LSW propagation is explored in tissue-mimicking phantoms of uniform 3% and
5% gel concentrations as a 9 mm glass coverslip is continuously excited at 1 kHz. Motion
frames taken at 1 ms instants show differing wavelengths between the 3% and 5% materials
(Fig. 8(a)). The correlation approach was used to generate the 2D LSW speed elastograms
as shown in Fig. 8(b). Average LSW speeds of 0.80 ± 0.04 m/s and 1.67 ± 0.09 m/s are
reported for the uniform 3% and 5% materials, respectively, considering all excitation frequencies
and disk diameters. Experimental results have the same tendency as mechanical measurement
results: c3%

s = 1.15 ± 0.03 m/s, and c5%
s = 1.88 ± 0.06 m/s, for 3% and 5% concentrations,

respectively. A bias error between experimental and mechanical measurement results is reported
to be approximately 0.33 m/s.

Results for the [L3%−R5%] horizontally-distributed phantoms are reported in Fig. 9 as a glass
coverslip of 4 mm or 9 mm diameter is excited at 1 kHz and 2 kHz. In Fig. 9(a), motion frames
captured at 1 ms instants demonstrate a Rayleigh wave propagating outwards from the glass
coverslip borders along the phantom surface, and LSW propagating along depth from the phantom
surface. Differentiated wavelength patterns in all cases between the 3% and 5% halves are evident.
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Fig. 7. (a) Sequence of motion frames showing LSW propagation when excited by a 9
mm diameter disk at one cycle of a 1 kHz signal in simulations for the [T5% − B3%]
material. The color bar represents displacement in µm. (b) Space-time representation of
LSW propagation measured along depth and time at lateral position x1 = 8 mm in (a). (c)
Depth-time tracking of LSW wavefront peak and speed calculations measured from (b). (d)
Depth-dependent LSW speeds measured from (c) and compared to ground truth (GT) shear
wave speed values of each layer material obtained in simulations. A sigmoid fitting is shown
using a dashed line for resolution characterization.

Fig. 8. Experimental results of LSW propagation in uniform phantom materials 3% (top
row), and 5% (bottom row) when excited by a 9 mm diameter disk with a continuous 1 kHz
harmonic signal. (a) Motion frames recorded at time intervals of 1 ms. The color bar is in
arbitrary units representing particle velocity. (b) 2D SWSM representing local shear wave
speeds using Equation 6. The color bar is in m/s.

Smaller wavelength patterns are found when the excitation frequency is increased, allowing for
the elastic characterization of smaller components (which corresponds to improvement in OCE
resolution). Refraction and reflection effects are found in the boundary between both halves
as predicted in numerical simulations, creating strong artifacts in the LSW speed calculation
shown in Fig. 9(b) using the correlation approach. In the 9 mm plate the size of artifacts is 1
mm approximately, corrupting the average estimation of speed and lateral OCE resolution in
the transition of both material halves. Average LSW speeds of 0.76 ± 0.11 m/s and 1.68 ± 0.19
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m/s are reported for the L3% and R5% material cases, respectively, considering all excitation
frequencies and disk diameters. The average transition from L3% to R5% (x-axis) in the regions
of strongest presence of artifacts was fitted to a sigmoid function (Eq. (7) along the x-axis) for
OCE resolution characterization. We found R2080 = 0.78 mm for the 9 mm plate diameter, and
R2080 = 0.46 mm for the 4 mm plate diameter, averaged over all frequencies. Discrepancies
between R2080 estimations for the 1 kHz and 2 kHz cases (for a given plate diameter) are weak
since the presence of artifacts dominates the transition compared to the LSW wavelength.

Fig. 9. Experimental results of LSW propagation in the [L3% − R5%] phantom material
when excited by 9 mm (top two rows) and 4 mm (bottom two rows) diameter disks with
a continuous harmonic signal of 1 kHz and 2 kHz. (a) Motion frames recorded at time
intervals of 1 ms. The color bar is in arbitrary units representing particle velocity. (b) 2D
SWSM representing local shear wave speed using Equation 6. The color bar is in m/s.

Results in [T3% − B5%] and [T5% − B3%] layer media are reported in Fig. 10 when a 4
mm and 9 mm diameter glass coverslip is exited at 2 kHz. In Fig. 10(a), motion snapshots
obtained at 1 ms instants show the changes in LSW wavelength pattern in each layer when
traveling along depth from the top surface. Propagation of Rayleigh waves in the surface and
reflections of LSW produced in the boundary between layers are present as predicted in numerical
simulations. Figure 10(b) shows 2D LSW elastograms calculated using the correlation approach
from Figure 10a. Average LSW speeds for all cases including uniform, and horizontally- and
vertically-distributed material layers are reported in Fig. 11. Finally, more defined LSW speed
transitions between layers are found in vertically distributed media when compared to horizontally
distributed materials due to the directionality of reflections produced in the boundary. The
average transitions from T3% to B5% and T5% to B3%, choosing regions of strongest presence
of artifacts, and averaging for both disk diameter cases, are reported to be R2080 = 0.101 mm
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and R2080 = 0.128 mm, respectively, by applying Eq. (7) along the z-axis. Discrepancies in
LSW speed values in phantoms when compared to mechanical measurements are attributed to
reflections produced in the boundaries and the interference of Rayleigh and shear waves generated
by the harmonic excitation.

Fig. 10. Experimental results of 2 kHz harmonic LSW propagation in [T3% − B5%] (top
two rows) and [T5% − B3%] (bottom two rows) phantom materials when excited by 9 mm
and 4 mm diameter disks. (a) Motion frames recorded at time intervals of 1 ms. The color
bar is in arbitrary units representing particle velocity. (b) 2D SWSM representing local shear
wave speed using Equation 6. The color bar is in m/s.

3.3. LSW propagation in ex vivo mouse brain

Results from the ex vivo mouse brain experiment are demonstrated in Fig. 12. The glass coverslip
was placed at the top surface of the agar phantom where the brain was suspended, covering
sections of cerebral cortex, midbrain (superior and inferior colliculus), and cerebellum (see
Fig. 12(a)). The 9 mm diameter coverslip was harmonically excited at 2 kHz. An en face
structural image (showing a transverse cut) taken at a depth of 1.2 mm is shown in Fig. 12(b),
which demonstrates finer details within the cerebral cortex. In Fig. 12(c), a motion snapshot
taken at the same depth at time 1.8 ms shows Rayleigh waves propagating outwards and parallel
to the coverslip orientation, and a large LSW aberrated by the brain structure. In order to
characterize LSW propagation along depth, a cross-section along the xz-plane (y1 = 6.2 mm) is
analyzed through time in Fig. 12(d). Here, the LSW wavefront can be tracked at time instants
{1.2, 1.8, 2.4} ms.
The correlation approach is used for LSW speed estimation in the selected cross-section
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Fig. 11. Experimental LSW speed report in all phantom configurations: uniform, [L3% −
R5%], [T3%−B5%], and [T5%−B3%] for different glass coverslip diameters and excitation
frequencies. Bar heights and whisker size represent average and standard deviation of LSW
speed in each case, respectively; and they are compared with ground truth (GT) shear wave
speed values of 1.184 m/s for the 3%, and 1.943 m/s for the 5% layer material obtained in
simulations.

(Figure 12(e)-top) and a 2D speed elastogram is reported in Fig.
Overall, these results demonstrate differentiated elasticity values between the cerebral cortex

(stiffer) and cerebellum/midbrain (softer) regions. Frontal cuts in Figs. 12(e) and 12(f) intersect
with the sagittal cut in Fig. 12(g) in two different regions as shown in Fig. 12(a). LSW speed
values are reported within ±0.1 mm from each intersection: 1.09 ± 0.29 m/s at x1 in Fig.12(e)-
bottom, 2.99 ± 0.80 m/s at x1 in Fig. 12(f)-bottom, 0.81 ± 0.45 m/s at y1 Fig. 12(g)-bottom, and
2.91 ± 0.22 m/s at y2 in Fig. 12(g)-bottom. We found that LSW speeds at the intersections of
each frontal and sagittal cut agree reasonably well within the error bounds.

4. Discussion

The propagation of LSW for the 2D elastic characterization of heterogeneous media is explored in
this paper as an alternative to improve the discrimination between different elastic structures and
layers, beyond the limited results possible using surface acoustic waves. Numerical simulation of
LSW propagation using a vibrating plate for characterizing horizontally- and vertically-gradient
materials established a starting point for: (1) understanding the detectability of these waves using
axial-displacement sensitive systems (such PhS-OCT), (2) learning the properties of these waves
by analyzing speed and amplitude changes based on the medium’s elasticity distribution, and
(3) recognizing the inconveniences caused by the near field effects, the interference with other
types of waves (i.e. shear, pressure, or Rayleigh waves), and undesired reflections produced from
the tissue boundaries. The reason for choosing a plate instead of any other actuator shape for
the generation of LSW stems from the desire for a quasi-planar extended wavefront to avoid
interference with other wave types. Another group [23] investigated the formation of LSW using
a ring actuator instead of a plate for 1D elasticity measurements.

The propagation of LSW in tissue-mimicking phantoms has been demonstrated for 2D elastic
characterization of elastic horizontally- and vertically-gradient materials. Aberrations of the
wavefronts caused by reflections in the material boundaries are more dramatic in the [L3%−R5%]
compared to the [T3%− B5%] or [T5%− B3%] cases since reflections created in the former case
tend to propagate perpendicular to the boundary plane. Such reflections in the [L3% − R5%]
case produce strong artifacts in the 2D LSW speed maps and, therefore, discrepancies between
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Fig. 12. Experimental results in ex vivo mouse brain tissue from a 9 mm diameter glass
coverslip excited continuously at 2 kHz. (a) 3D surface representation of the imaged brain
area including brain components (cerebral cortex, midbrain, and cerebellum) and locations
of cross-section analysis. (b) En face structural image (or transverse cut) of brain taken at a
depth of 1.2 mm. (c) Motion snapshot of (b) at 1.8 ms instant showing LSW and Rayleigh
wave propagation. The color bar represents particle velocity in arbitrary units. (d) LSW
propagation analyzed at xz-plane cross-section (y1 = 6.2 mm). The color code is the same
as in (c). (e) B-mode (top) and 2D LSW elastogram (bottom) obtained after processing (d).
The color bar represents LSW speed in m/s. Finally, (f) and (g) show B-mode (top) and 2D
LSW elastogram (bottom) taken at the cross-sectional xz-plane (or frontal cut) (y2 = 2.7
mm) and yz-plane (or sagittal cut) (x1 = 3.1 mm), respectively. The color bar represents
LSW speed in m/s.
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measured LSW speeds and mechanical measurement result. Similarly, the boundary between
dissimilar regions is strongly dominated by the presence of artifacts. Reflections can be minimized
by the use of directional filters at the cost of compromising resolution [30].
The resolution of LSW-based elastography along the axial direction is limited by the LSW

wavelength, and any reflections produced in the boundaries. When the boundary between
different layers in materials is oriented perpendicular to the axial axis, the direction of the
reflected and refracted waves tends to propagate axially. This case is very similar to Rayleigh
waves traveling laterally in heterogeneous media and it has been intensively studied in [26]. Then,
stiffer samples (higher Young’s modulus) may produce higher LSW speeds and, therefore, longer
wavelengths which could diminish the elastography resolution. This effect can be compensated
for by increasing the mechanical excitation frequency in order to reduce the LSW wavelength.
This alternative is constrained by the attenuation of waves in the sample (which in tissues tends
to increase monotonically with the excitation frequency) and the spatial and temporal resolution
capabilities of the OCT imaging system.
We conclude that LSW-based OCE has an axial elastography resolution approximately 5×

greater than the lateral resolution, with an R2080 on the order of 0.1 mm at 2 kHz harmonic
excitation. Our OCE resolution measurements using a sigmoid function to estimate transitions
between two differentiated materials accounts for the joint effect of OCT imaging resolution,
motion and wave speed estimation kernels, and excitation wavelength. A more formal resolution
study [31], separating the individual effect of each component on the total resolution is left for
future work. LSW-based OCE has a unique advantage over other dynamic OCE techniques such
as (1) SAW elastography, and (2) reverberant wave fields. On the one hand, we demonstrated that
LSW provides of a good discrimination of elasticity gradient along depth which very limited, if
not impossible, using SAW due to its dispersive nature. On the other hand, while LSW accounts
for a very specific type of wave whose speed is the same as shear wave speed (desired since
such speed can be converted into shear modulus in a straight forward fashion [1]), reverberant
fields leverage in the harmonic excitation of tissues that could include, besides shear waves,
other SAW branches such as Rayleigh or Lamb waves (with speeds that are not easily converted
into shear modulus). When dealing with tissues with highly irregular boundary conditions and
heterogeneous elastic properties, LSW-based OCE is limited by the wave mode conversion
and strong reflections propagating in different directions. Then, reverberant wave fields may
be established and, combined with LSW excitation methods, localized shear wave speed can
still be recovered by using the appropriate estimator [32]. Therefore, the implementation of
reverberant-LSW OCE could potentially improve the lateral resolution of LSW-based OCE. This
will be material for a future work.

An experiment involvingmouse brain elastography usingLSWwas performed and demonstrated
that the cerebellum and midbrain were found to be softer than the cerebral cortex. This is
consistent with various magnetic resonance elastography studies which have shown similar
findings in both mice and humans [25, 33–35]. In these studies, a general trend for shear storage
modulus is from 4 kPa to 16 kPa for the cerebral cortex, and from 1 kPa to 4 kPa for the
cerebellum/midbrain. Our results show an average shear modulus of 9.36 kPa for the cerebral
cortex, and 1.10 kPa for the cerebellum/midbrain, which are consistent with the aforementioned
trend. In addition, the 2D LSW speed map of the cerebral cortex in Fig. 12(f)-bottom shows
variations that may be attributed to the heterogeneity of the tissue type, which has also been
previously reported using magnetic resonance elastography [35]. Artifacts created by strong
wave reflections produced by the brain’s irregular boundary conditions may affect the quality of
speed estimation in Fig. 12(f)-bottom.
Finally, the results of LSW for the elastography of ex vivo mouse brain tissue indicates

a promising method that can be implemented for in vivo studies. Pathological changes in
neurodegenerative diseases are hypothesized to be correlated with local and global elastic
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changes in the brain. Preliminary in situ OCE studies have been performed to characterize
elasticity changes in mouse brain [36]. The use of a transparent glass coverslip as an observation
and protection window after craniotomy is a common practice in optical brain studies. It is
ideal for studying mouse models since this procedure keeps the brain isolated and at normal
intracranial pressure [37]. Even though OCT signals from brain scans can be obtained at an
appropriate signal-to-noise ratio when imaging through a cranial window and glass coverslip, the
skull/brain architecture prevents the brain from receiving localized mechanical excitation, which
is fundamental for OCE applications. In this paper, we demonstrated the potential of producing
LSW using the same glass coverslip for mouse brain studies, enabling the possibility of in situ
and in vivo studies using OCE. Future research will focus on in vivo OCE of mouse brain using
LSW, taking into account the boundary conditions involving the skull, cerebrospinal fluid, and
the glass coverslip.

5. Conclusions

In this paper, we investigated the capabilities of LSW in characterizing 2D elasticmaterial gradients
simultaneously along axial (vertically-distributed layers) and lateral directions (horizontally-
distributed halves) using a PhS-OCT imaging system forOCE applications. Numerical simulations
were used to explore the detectability, properties, and inconveniences of LSW. Subsequently,
experimental results in tissue-mimicking phantoms were corroborated with numerical simulations
and confirmed the capabilities of LSW to characterize heterogeneous materials in OCE. Waves
were generated with a circular glass plate in contact with the sample and vibrated at a continuous
sinusoidal excitation while OCT signals were acquired in the sample passing through the glass.
A motion compensation model is proposed to correct for the phase errors/artifacts due to glass
motion. LSW speeds estimated in phantoms agreed with mechanical measurements. Finally, we
demonstrated the use of LSW for the elastography of ex vivo mouse brain tissue, in particular
observing speeds in the superficial cerebral cortex, midbrain, and cerebellum. Results enable
the implementation of LSW-OCE for in vivo mouse brain studies that could be important for
neuromedicine studies and clinical applications.

Appendix

Given the experimental setup shown in Fig. 2, and extending the derivation from [27], the total
equivalent optical path length (OPL) from the point scatterer of interest (located at depth z in
Fig. 2) and the fiber coupler, where the reference beam and the test beam interfere in Fig. 1, is

OPL0 (z) = L1n1 + L2n2 + L3n3, (8)

for time t = 0 when there is no motion. The roundtrip path of the light was already considered
in Equation 1. After a time t = Ts , motion at s1, s2, and z (Figure 2) produces local displacements
Tsvs1 , Tsvs2 , and Tsvz , respectively (motion towards the z-axis is defined to be positive). Then,
the equivalent OPL becomes:

OPL1 (z) =
(
L1 + Tsvs1

)
n1 +

(
L2 + Tsvs2 − Tsvs1

)
n2 +

(
L3 + Tsvz − Tsvs2

)
n3. (9)

Then, the OPL difference, OPL1 (z) −OPL0 (z), between t = 0 and t = Ts is given by:

∆OPL (z) = (n3)Tsvz + (n1 − n2)Tsvs1 + (n2 − n3)Tsvs2 . (10)

In the limiting cases, when the scatterer in z is located at any of the surfaces, then lim
L3→0

Tsvz =

Tsvs2 (when z → s2) and lim
L2→0L3→0

Tsvz = Tsvs1 (when z → s1), and the following relations hold
true:
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∆OPL (s2) = lim
L3→0

∆OPL (z) = (n1 − n2)Tsvs1 + (n2)Tsvs2, (11)

∆OPL (s1) = lim
L2→0L3→0

∆OPL (z) = (n1)Tsvs1 . (12)

Then, using Eq. (1) in Eqs. (11) and (12) to relate particle velocities vs1 and vs2 with phase
differences ∆φ (s1) and ∆φ (s2), respectively, and using ∆OPL (z) = ∆φ (z) λ0/(4π) in Equation
10, we found that

∆φ (z) =
(
4πn3
λ0

)
Tsvz +

(
1 −

n3
n2

)
∆φ (s2) +

(
n3
n2
−

n3
n1

)
∆φ (s1) . (13)

∆φ (z) is the apparent phase difference produced by the scatterer in z and measured by the
OCT system; however, the true displacement Tsvz generated by the scatterer produces a phase
difference ∆φT (z) = (4πn3/λ0)Tsvz (using Equation 1), which we call true phase difference.
Finally, rearranging Equation 13, and isolating ∆φT (z) we found Equation 2.
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