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1. Introduction

It is well established that the electromagnetic and acoustic scattering from an inhomogeneous medium can be 
related to properties of the spatial correlation function, a statistical measure of the spatial patterns or fluctuations 
within the material (Debye and Bueche 1949, Morse and Ingard 1987). Under the Born approximation and 
assumptions of stationarity, the key integral formula relating the ensemble average measures of backscattered 
intensity to the material spatial correlation function can be interpreted as a Fourier transform operation. In the 
long history of scattering measurements, several functions appear repeatedly across vastly different experimental 
domains, particularly autocorrelation functions related to spheres, exponential decays, and power laws. It is 
natural to think that these could have application to biological soft tissues, which are comprised of cells that 
have often been modeled as spheres. This paper re-examines the experimental evidence and common theories 
to gauge the most likely elements of backscatter from soft tissue. A different picture emerges if we consider the 
closely packed cells to be the reference media, while the long, cylindrical fluid-filled vessels and extracellular 
spaces are the weak scattering sites.

Before considering tissue fluid channels, however, we review the major models developed over time from 
scattering experiments. Because of the common integral kernel for the backscatter equation in both electro-
magnetic and acoustic regimes under the Born approximation, we examine common themes from both domains 
as they developed over a century of research.

1.1. Classical structures and functions in scattering
A great wealth of scattering studies has been reported in the 100+  years since Lord Rayleigh’s foundational work 
on light and sound (Rayleigh 1897, 1918, 1945). In this overview, we concentrate on formulations from weak 
scatterers and resulting distributions. More exact formulations typically involve series expansions (Faran 1951, 
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Abstract
What causes scattering of ultrasound from normal soft tissues such as the liver, thyroid, and prostate? 
Commonly, the answer is formulated around the properties of spherical scatterers, related to 
cellular shapes and sizes. However, an alternative view is that the closely packed cells forming the 
tissue parenchyma create the reference media, and the long cylindrical-shaped fluid vessels serve 
as the scattering sites. Under a weak scattering or Born approximation for the extracellular fluid in 
the vessels, and assuming an isotropic distribution of cylindrical channels across a wide range of 
diameters, consistent with a fractal branching pattern, some simple predictions can be made about 
the nature of backscatter as a function of frequency in soft tissues. Specifically, a number of plausible 
shapes would predict that backscatter increases as a power law of frequency, where the power law 
is determined by the function governing the number density of the vessels versus diameter. These 
results are compared with some historical models developed over the last 100 years in scattering 
theory and point to the need for higher spatial resolution and higher bandwidths to obtain more 
precise measures of the key parameters in normal tissues, and to better identify the dominant 
structures responsible for backscatter in everyday clinical imaging.
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Born and Wolf 1980) and are beyond the scope of this discussion. Within the weak scattering formulations, we 
frequently encounter exponential functions, power law functions, and Gaussian functions.

1.1.1. Optics and electromagnetic scattering
Debye and Bueche (1949) formulated the integral transform relation between the ensemble averaged and 
normalized correlation function of the material properties, and the resulting scattering. They explicitly 
considered an exponential correlation and demonstrated that it corresponds to a power law in scattered intensity 
according to the well-known Fourier transform pair relating exp [−r] to 1/(1 + k2) . In a later paper, Debye et al 
(1957) derived an equation for random holes in a material that leads to an exponential correlation function.

Chernov (1960) begins his first chapter with experimental evidence from Lieberman showing an exponential 
correlation function from measurements of temperature fluctuations in the ocean. He explicitly considers an 
exponential autocorrelation function and a modified form that has a zero first derivative at the origin. In later 
chapters, Chernov considers Gaussian and modified Gaussian autocorrelation functions.

Ishimaru (1978b), in his third chapter, displays a number of attenuation and scattering spectra from a range 
of electromagnetic and bioacoustics experiments. Many of these, such as scattering from bubbles in an aqueous 
medium, have distinct peak-and-valley characteristics, and thus do not naturally fall within the simple exponen-
tial correlation function favored by earlier references.

Tatarskii (1961), in his first chapter, explicitly considers exponential, Gaussian, and modified power law cor-
relation functions of inhomogeneities within turbulent media such as the atmosphere.

Sheppard considered the statistics of coherent imaging of random surfaces, and considered profiles with 
Gaussian random profiles (Sheppard and Connolly 1995) and then with exponential and fractal profiles (Shep-
pard and Connolly 1995).

Schmitt and Kumar (1996) measured refractive index variations in tissues and found a power law spectrum 
from mouse liver tissues, at least over a few decades of spatial frequencies. They related this to a von Karman spec-
trum which was then linked to a correlation function modeled as a modified Bessel function Km [∆r].

1.1.2. Bioacoustics
Morse and Ingard (1987), in their classical derivation of scattering from weak acoustic scatterers, consider 
Gaussian and modified Gaussian correlation functions.

Waag (Waag et al 1982, 1989a, 1989b, Campbell and Waag 1984b) demonstrated power law behaviors from all 
ensemble-averaged spectra derived from optical and ultrasound scattering experiments performed on normal 
and diseased tissue, as well as on bio-mimicking materials. He also considered Gaussian and modified Gaussian 
correlation models.

Chivers (1977) considered both exponential and Gaussian correlation models in his survey of tissue scatter-
ing.

Lizzi et al (1983) established a framework for analysis of scattered ultrasound from tissues, including a model 
of very small scattering sites that were Poisson distributed in space, and then later including spherical shapes that 
have been incorporated into quantitative ultrasound (QU) studies (Mamou and Oelze 2013).

Insana, Hall, and colleagues (1990) considered three correlation functions for random media, related to fluid 
spheres, spherical shells, and a Gaussian behavior. These were applied to a number of phantoms and tissues 
(Insana and Brown 1993).

Shung and colleagues demonstrated the scattering of red blood cells which in a dispersed form exhibit classi-
cal Rayleigh scattering behavior at the frequencies commonly used in ultrasound scans of adult humans (Shung 
and Thieme 1993).

There have also been assessments of possible periodic spacing of structures within tissues, and coherent 
comp onents of scattering; candidates include portal triads within the liver (Fellingham and Sommer 1984, Insana 
et al 1986, Landini and Verrazzani 1990, Varghese and Donohue 1993, Cramblitt and Parker 1999, Machado et al 
2006, Rosado-Mendez et al 2016). This remains an area of research.

1.1.3. Correlation functions from other natural phenomena
It is fascinating to note some parallel mathematical treatments stemming from other research fields. Whittle, in a 
series of papers, considered the variations in agricultural yield across time and space, and considered power law, 
exponential, and modified Bessel function K1 [∆r] correlation functions to model the sampled data (Whittle 
1954, 1962, 1963). Agterberg furthered this work and applied models to samples of geological variables, with 
some of the analysis centered on exponential correlation functions of space (Agterberg 1970).

Pedersen (1997) considered smallangle x-ray and neutron scattering from polymers and considered a 
number of form factors. These included the simple spherical shapes as well as other geometrical shapes such as  
ellipsoidal, octahedral, and disks.
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George and Wang considered turbulence as a space-time fractal grid process and demonstrate that the meas-
ured power spectrum exhibits a power law behavior, at least over three decades of scale (George and Wang 2009).

1.1.4. Fractal structures and scattering
Since the popular work by Mandelbrot (1977), the idea of self-similar structures occurring across a wide range 
of scales has been applied to natural structures. The concept of fractals in biological systems has seen numerous 
applications (Bassingthwaighte and Bever 1991, Glenny et al 1991). The nature of scattering from fractal 
structures has also received attention, with the concept of a fractal dimension df  driving power law relations 
and scattering behavior. For 3D space-filling structures, the measured df  would be less than 3. Lin et al (1989) 
modeled fractal aggregates and essentially argue that the long wavelength (low frequency or Rayleigh scattering) 
limit would be the standard k4 dependence of backscatter where the wavenumber k = ω/c, whereas the short 
wavelength (high frequency) limit would approach k(4−df ). Javanaud (1989) simply invoked a power law relation 
for scattering using df  as the scaling power.

Shapiro (1992) argued from a number of examples that a fractal structure would have a spectrum (over some 
range of scales) that follows a power law, and derived scattering formula for different regimes under that assump-
tion. One conclusion was that over some scale the backscattered intensity would be proportional to k(4+ν), where 
ν  is a constant related to the fractal power law behavior. The compatibility of these works requires further study.

In summary, we are left with a set of theoretical correlation functions in random media that are related to 
exponentials, Gaussians, spheres, and rather loosely defined fractals that are linked to power law relations. This 
leaves open some remaining questions as to the structure and nature of backscatter from soft tissues.

2. Theory of soft tissue fluid channel scattering

2.1. General theory
When considering scattering from random media, it can be shown (Ishimaru 1978a, Campbell and Waag 1984b, 
Insana et al 1990) that the relationship between the differential scattering cross section per unit volume σd (k) 
and the spatial correlation b (r̂) function of the inhomogeneities is

σd (k) = k4A

˚
b (r̂) e j2k̂·r̂dVol, (1)

where k is the wavenumber and r̂ is the vector separation between two points within the ensemble average. 
Assuming the correlation function is isotropic and simply dependent on separation distance r, the volume 
integral reduces to

VI (k) =
2π

k

ˆ ∞

0
r · b (r) sin (2kr) dr, (2)

similar to the integral found in equations (4), (9) and (11) from Parker (2017) covering both acoustic and 
electromagnetic scattering under the Born approximation.

By comparing this to the form of the 3D Fourier transform in spherical coordinates shown in appendix A 
with spherical symmetry 3DS�{} (Bracewell 1965, Baddour 2010) we may write

σd (k) = A · k4 · 3DS�{b (r) , k} , (3)

where 3DS�{b (r) , k} = (2π/k)
´∞

0 r · b (r) · sin (2kr) dr . Thus, the calculation of backscattering reduces to the 
question of the 3D Fourier transform of the isotropic and spherically symmetric ensemble-averaged correlation 
function of r. This spatial correlation function of cylindrical fluid-filled vessels is considered next.

2.2. Particular cylindrical shapes
We consider fractal branching networks of the fluid-filled vasculature and other parallel fluid channels as primary 
scattering sites. For example, the liver is highly vascularized (Guyton 1971) with both hepatic arterial and portal 
venous systems as well as the hepatic vein and the lymphatic, the biliary, and other fine scale extracellular paths, 
as shown in figure 1.

Hepatocytes form nearly 80% of the liver volume (Guyton 1971) and blood and fluid-filled vessels have a 
relative change in compressibility on the order of 3%, as described in appendix B.

Since soft tissue vascularity and fluid channels are considered to have a branching, self-similar, multi-scale, or 
fractal behavior, we consider a model of scattering, shown in figure 2, where the shapes are formed from long cyl-
inders, branching and covering the 3D volume. The mathematics of this phenomenon have been actively studied 
and a key parameter is the distribution of vessels as a function of diameter. For example, larger vessels will branch 
into two or three smaller ‘daughter’ vessels and this continues over many scales or generations. The increasing 
number of vessels with smaller and smaller diameters has been shown to follow a power law function (Singhal 
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et al 1973, Krenz et al 1992, Gan et al 1993, Parker et al 1997) in different organs. Accordingly, for our scattering 
model we assume a continuous distribution of cylindrical diameters from large to small, following a power law: 
N (a) = N0/ab . The power law parameter b captures an important dimension of the fractal branching model; its 
relationship to other fractal measures is discussed in more detail in section 4.4. With reference to figure 2, we will 
also assume that the 3D region of interest interrogated for the ensemble average scattering measure will have a 
generally isotropic distribution of the cylindrical vessels. This assumption would not hold for anisotropic tissues 
such as muscles.

Figure 1. Complex architecture of the liver illustrating possible scattering sites and their range of sizes. By courtesy of Encylopaedia 
Britannica, Inc., copyright 2010; used with permission.

Figure 2. Schematic illustration of fractal branching vasculature elements as long cylindrical shapes within a soft tissue organ. The 
elements will be branching and self-similar over a wide range of diameters. Key assumptions include a branching pattern whereby 
the number of vessels at each diameter is governed by a power law, and that the ensemble average used to determine scattering 
behavior contains an approximately isotropic distribution of cylindrical shapes.

Phys. Med. Biol. 64 (2019) 175022 (15pp)
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Assuming an isotropic spatial and angular distribution of each generation of fractal branching structures, 
the goal is to integrate the form of a basic element across all angles of incidence with respect to the interrogat-
ing ultrasound and across all size scales from very small microchannels of fluid to the largest arteries and veins 
that can exist within the organ. Specifically, we will examine four canonical cylindrical shapes as weak scattering 
primitives, in order to examine the range of backscatter versus frequency behavior that may be possible. In these 
formulations, f (r) is the fractional change in incompressibility (and/or density) of the shape, r is the radial coor-
dinate, and F (ρ) is its Hankel transform with ρ  as the spatial frequency. The four cylindrical scattering shapes are 
as follows.

 (Case 1)  The fluid-filled cylinder of radius a:

f (r) =

ß
κ0 r � a
0 r > a

F (ρ) = κ0·a·J1[2πa·ρ]
ρ .

 (4)

 (Case 2)  The fluid ‘cup’ with strongly scattering walls of opposite sign:

f (r) =

®
κ0 ·
Ä

1 − 2
(

r
a

)2
ä

r � a

0 r > a

F (ρ) = κ0·a·J3[2πaρ]
ρ .

 (5)

 (Case 3)  Cylindrical walls:

f (r) = κ0δ [r − a]
F (ρ) = 2πκ0 · a · J0 [2πa · ρ] . (6)

 (Case 4)  Zero mean vessel with walls of opposite sign:

f (r) = κ0

î
1 −

(
r
a

)2
ó

e−(
r
a )

2

F (ρ) = a4π2κ0ρ
2e−(aπρ)2

,
 (7)

where κ0 is the fractional variation in density plus incompressibility, assumed to be � 1 consistent with the Born 
formulation. These four functions are displayed in figure 3.

We will work through the derivation and assumptions for Case 1, the fluid cylinder, and then summarize the 
results for the others and compare these.

First, assuming the fluid-filled cylinder is long in the z-axis, then the shape is 1D and its autocorrelation can be 
obtained from the inverse Hankel transform of the square of the shape’s Hankel transform:

Bcyl (r) = 2π

ˆ ∞

0
ρ · F(ρ)2J0 (2πr · ρ) dρ, (8)

where ρ  is the spatial frequency. Second, we assume that cylinders of this kind exist within a fractal geometry in 
an isotropic pattern. Therefore, copies of this are interrogated by the forward wave over all possible angles. Thus, 
we form a 3D isotropic correlation function for the shape by conversion to spherical coordinates.

Consider first one infinitely long cylinder, with material property f (r)—symmetric—as shown in figure 4(a). 
It has a 3D transform that is a thin disk (delta function in kz  but shown with finite thickness to make the graphic 
easier to draw and visualize). Its transform in the kx, ky directions is symmetric and given by the Hankel trans-
form of order zero, F (ρ) = H{ f (r) , ρ}. A particular radius of value q0 is shown for reference.

Now, if we measure an ensemble average of F2 (ρ) across many cylinders at random angles (orientations) 
as shown in figures 4(c) and (d), but consider them as uniformly distributed with respect to angles (a cloud of 
sparsely spaced and randomly oriented scattering cylinders), then the ensemble average 3D transform is formed 
from the disk shown in figure 4(d), summing up over all realized angles. In the limit, any cylindrical radius q0 in 
figure 4(b) forms a spherical shell in the ensemble average (figure 4(e)).

Thus, the ensemble average simply takes the Hankel transform function F2 (ρ) found in figure 4(b) and pop-
ulates the spherically symmetric 3D transform Bs (q). However, there is a scaling of the cylindrical transform 
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Figure 3. The four cylindrical shapes studied: (a) the fluid-filled cylinder, (b) the fluid cylinder with strongly scattering walls of 
opposite sign, (c) the cylindrical walls or shell, and (d) a modified Gaussian shape with walls of opposite sign. The vertical axis is 
the fractional inhomogeneity (arbitrary magnitude, see appendix B for estimates). The horizontal axis is r/a , normalized radial 
distance.

Figure 4. A cylindrical function (a) and its Hankel transform represented in 3D Fourier transform space (b). Rotations around 
spherical coordinates (c) similarly rotates the corresponding transform (d), leading to a spherically symmetric ensemble average (e).

Phys. Med. Biol. 64 (2019) 175022 (15pp)
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function over the spherical ensemble average. Specifically, the 3D spatial Fourier transform of the long cylinder 
can be expressed as

F2
(
kx, ky, kz

)
=3DS�{b (r)}
= δ (kz)H0 {b (r) , ρ}
= δ (kz) F2 (ρ)

 (9)

where ρ2 = k2
x + k2

y and H0 { } is the Hankel transform of order zero (Bracewell 1965) and δ (·) is the Dirac delta 
function. However, a thin disk (delta function) in cylindrical coordinates represented as F2 (ρ0) δ (kz) must be 
converted to a thin disk in spherical coordinates Bs (q0) δ (θ − π/2) as considered in figure 5, where the common 
radius ρ0 = q0 and ∆ρ = ∆q. Of importance is the relative scaling of the functions within the conversion to 
spherical coordinates.

In the limit of small element size, the integral of each function, or Riemann middle sum, around a point q0 on 
a plane orthogonal to the kz  axis will be

q0 · F2 (q0)∆ρ∆φ for Figure 5(a)
q2

0 · Bs (q0)∆q∆φ for Figure 5(b)
, (10)

where the sifting property of the Dirac delta function in curvilinear coordinates is used in the ∆z  and ∆θ 
directions, respectively. In spherical coordinates, this result is independent of θ (see equation (17) of Baddour 
(2010)). By setting these equal and thus independent of coordinate system, and setting ∆ρ = ∆q, we find

Bs (q) =
F2 (q)

q
. (11)

Thus, with reference to equation (3), we conclude that

σd (k) = A · k4 · 3DS�{b (r) , k}
= A · k4

(
F2(k)

k

)

= Ak3F2 (k) ,

 (12)

where F2 (k) = (H0 { f (r) , k})2.
Finally, the cross-correlation of an ensemble of these elements against all other (larger and smaller) elements 

within a fractal structure needs to be derived. The simplest assumption that can be made is that each scattering 
element has an autocorrelation function with itself that has been determined (equation (8)), but within the over-
all ensemble average the cross terms with all other branches (larger and smaller within the fractal structure) is 
simply a small constant that is essentially invariant with position and therefore can be neglected except for spatial 
frequencies nearing zero. Under that very simplistic assumption, the overall autocorrelation function within the 
ensemble is given by the principle of superposition as the sum (or integral in the continuous limit) of the differ-
ent sizes’ correlation functions over all generations of branches, weighted by their relative numbers (number 
density in the continuous limit). Fractal structures in 3D and volume filling in 3D tend towards number density 
functions that are represented by N0/ab , where a is the characteristic radius of the canonical element, N0 is a 
global constant, and b is the power law (Krenz et al 1992). Within this framework, the overall correlation function 
BT (rs) is

Figure 5. Differential volume element around point q0 in 3D curvilinear coordinates; cylindrical coordinates in (a), and spherical 
coordinates in (b).

Phys. Med. Biol. 64 (2019) 175022 (15pp)
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BT (rs) =

ˆ ∞

0
N (a)Bs (rs) da =

ˆ ∞

0

N0

ab
Bs (rs) da (13)

where N (a) is the number density of elements as a function of size a. Alternatively, in the 3D transform domain:

BTR (k) =

ˆ ∞

0
N (a)

[
F2

r (k, a)/k
]
da. (14)

For the specific Case 1, the fluid cylinder, this becomes

BTR (k) =

ˆ ∞

0

Å
N0

ab

ãÅ
1

k

ãÅ
κ0aJ1 [2πak]

k

ã2

da = f1 (b) k(b−6) for 2 < b < 3, (15)

where f1 (b) is a function of b. Thus, with reference to equation (3), we conclude that for Case 1:

σd (k) = Af1 (b) k(b−2). (16)

Note that the integral operators (transform, average over angles, average over radii) are all linear so the order of 
these operations can be transposed for computational ease.

Our general approach is shown in figure 6.

3. Results

The four functions shown in figure 3, plus a range of others with plausible corresponding shapes comprised of 
exponential, Gamma, and modified Bessel functions of integer order (Parker 2018), were treated in accordance 
to the procedure shown in figure 6. As shown in table 1, with one exception, the results are uniform in predicting 
that σd (k) will be proportional to the power b − 2, in the range of convergence usually b < 5. The exception is 
Case 3 with the delta function wall, resulting in scattering proportional to the power b. This, however, assumes 
that the scattering delta function has a strength of κ0 throughout, invariant with scale. If we instead assume that 
the delta function magnitude is proportional to an invariant κ0 times a small thickness proportional to a, then 
this function, rotated and scaled, reverts to the b − 2 power which is common to the other tested functions. Other 
power laws can be generated from arbitrary functions in f [r], particularly when singularities at the origin are 
considered, such as 1/r or log [r] functions; however these would be difficult to justify in terms of the physical 

structure of fluids within a long vessel.

4. Discussion

4.1. Assessment of the model versus measured data
For soft tissue scattering, a number of studies have linked optical and acoustical measurements of tissue 
specimens. Looking at backscatter results from soft tissues, we see that most of the carefully calibrated systems 
report smoothly increasing backscatter with frequency. Generally this can be fit to a power law with an exponent 
of 1 < γ < 2 for liver, with some tissues’ power law estimate at 2 < γ < 3 (see figure 6.6 in Hill et al (2004), 
table 4.22 in Duck (1990), and table 1 in Nasief et al (2015)). For example, Campbell and Waag found liver 
backscatter to increase as f 1.4 over the medical imaging band of 3–7 MHz (Campbell and Waag 1984a) consistent 
with other pioneering reports from the early 1980s (Reid and Shung 1979, Bamber and Hill 1981, Nicholas 1982, 
Lizzi et al 1983, D’Astous and Foster 1986).

Although many scattering studies were performed on ex vivo specimens that were carefully procured and pre-
pared so as to minimize artifacts, some early in vivo studies also produced results that were consistent with the ex 
vivo measurements (Zagzebski et al 1993, Wear et al 1995, Lu et al 1997, 1999) from different groups.

To compare theory and experiments, we replicate data from liver backscatter from Campbell and Waag 
(1984a) at discrete frequencies from 2 to 7 MHz, these are shown as blue dots in figures 7(a) and (b), converted 
to wavenumber assuming the speed of sound is 1.5  ×  106 mm s−1. Also shown are the formulas for Case 1 (top, 
blue line), Case 4 (middle, green) and Case 2 (lowest line, red), assuming nominal parameters of κ = 0.05, 
N = 1/2000 , and b = 3.4, which according to table 1 produces a scattering power law proportional to frequency 
to the power 1.4, noted by Campbell and Waag at that time. This shows reasonable agreement; however the value 
of b = 3.4 is above the upper limit of convergence of the integral over all cylindrical diameters a from 0 to infin-
ity (see equations (13)–(15)). This can be avoided with practical, finite limits on the integration and, so long as a 
reasonable number of decades of diameters are included, the predicted power law is still observed. For example, 
figure 7(b) uses numerical integration of Case 1, equation (15), with limits of integration on a  =  {4 microns,  
1 mm}, and similarly a numerical integration over the same limited range for Case 2 and Case 4. In these cases, 
the power law coefficient of 1.4 is still observed up to the higher wavenumbers, where the integrand is sensitive to 
the lower limit of diameters entered.

Phys. Med. Biol. 64 (2019) 175022 (15pp)
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Other examples of increasing backscatter versus frequency can be seen in figure 5 of Ghoshal et al (2012) 
extending up to 25 MHz in liver, and in figure 5 of Lu et al (1999), also in livers. Similarly, for other tissues includ-
ing sarcoma and carcinoma models, see figure 7 of Oelze and Zachary (2006), and for thyroids, see figure 4 of 

Figure 6. Derivation of isotropic scattering from cylindrical element of radius a, where rc  is the radial coordinate in cylindrical 
coordinates and rs in spherical coordinates.

Table 1. Scattering functions.

Inhomogeneity shape Ensemble average Backscatter

Function f (r)
´∞

0
1
ab

(
F2(q)

q

)
da σs (k)

Case 1 κ0 r � a
0 r > a

f1 (b) q(b−6) c1k(b−2)

Case 2 κ0

Ä
1 − 2

(
r
a

)2
ä

r � a

0 r > a
f2 (b) q(b−6) c2k(b−2)

Case 3 κ0δ (r − a) f3 (b) q(b−4) c3k(b)

Case 4
κ0

[
1 −
Ä

r2

a2

ä2]
e−(

r
a )

2
f4 (b) q(b−6) c4k(b−2)

Figure 7. (a) Theoretical versus experimental backscatter versus wavenumber using values from Campbell and Waag (1984a) for ex 
vivo calf liver (dots) as compared with theory. Solid lines are, from upper to lower: Case 1, fluid-filled cylinder with κ = 0.05, Case 
4 modified Gaussian radial shape, Case 2 parabolic radial shape. (b) uses the same data and cases, except numerical integration was 
used over a practical range of diameters, a  =  {0.04, 1} mm instead of a  =  {0, infinity}. The power law coefficient of 1.4 noted by 
Campbell and Waag is still observed over most of the range despite the truncated limits of integration. For reference, a wavenumber 
of 20 corresponds to approximately 5 MHz, within the range of adult liver scans.

Phys. Med. Biol. 64 (2019) 175022 (15pp)
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Rouyer et al (2016). Thus, in assessing our theoretical models we are seeking a prediction of a backscatter power 
law fit of an exponent larger than or equal to 1.4 in liver, given a relatively isotropic fractal fluid network scattering 
power law of b − 2. In that case, it is clear that the power law b governing the number density of vessels must be 
greater than 3. This is plausible, although reported data has to be considered in light of the methodologies used; 

this will be considered in section 4.4. We also note for completeness that for F[q]2/q in spherical radial frequency 
being proportional to q(b−6), also corresponds in the spatial domain to an autocorrelation function proportional 

to 1/r(b−3)
s  , where 3 < b < 5. In other words, a power law in scattering is produced by a power law in spatial auto-

correlation of the weak cylindrical inhomogeneities.

4.2. Limits of integration
One possibly unrealistic feature of these derivations is that the integration over diameters a has been taken from 
zero to infinity, meaning small to large diameter cylinders without specifying realistic limits on each end. It 
should be noted that in all the functions examined (and other well behaved functions) the results are only weakly 
dependent on the exact limits so long as the limits cover many decades of scale above and below the midband of 
the medical ultrasound range (single digit MHz range). This behavior is demonstrated in figure 7(b). However, 
the exact limits in soft, vascularized tissue are of interest, especially as higher frequency systems become available 
for small parts and small animal imaging. At the low end, Schmitt and Kumar (1996) studied phase contrast 
images of mouse liver histology slides and found a power law power spectrum behavior for spatial frequencies 
down to at least 1/10 microns−1 (see figure 8).

Similarly, Rouyer et al (2016) studied thyroid tissue and by replotting their data we can estimate a power law 
behavior from 6 MHz to 16 MHz, corresponding to wavelengths as low as 90 microns.

We note that of the evaluated models, two have a zero mean f (r), corresponding to an important theor-
etical issue of a zero mean F (ρ = 0). This was addressed by Waag et al (1989b), who noted that ‘The additional 
assumption of weak scattering is required so that the Born approximation holds. Then the condition of zero 
spectral power at a spatial frequency value of zero follows directly from consideration of the mean-square value 
of scattered pressure at zero spatial frequency when the scattered pressure is expressed as a spatial Fourier trans-
form of the medium variations which are defined to have a zero mean value’. In other words, the entire frame-
work of the Born approximation assumes a fractional, zero mean variation in density and compressibility, thus 
the Fourier transform (related to backscatter versus frequency) must approach zero at zero spatial frequency. 
In our examples, Cases 2 and 4 (figures 3(b) and (d)) explicitly have that property. The physical interpretation 
would be that the extracellular fluid resides within the channels, and the cellular structures forming the walls are 
of opposite fractional variation while the integration across the entire structure is set to zero mean.

Switching to the upper end of the integration over cylindrical scatterers of radius a, we note that ultrasound 
imaging of human abdomens at 3 MHz usually resolves individual hepatic arteries and vessels over a few millim-
eters in diameter; these may be ‘cropped out’ of the analysis in many ensemble averages. Thus, there is a practical 
limit on the upper end, and depending on the protocol used, this could alter the integration of equation (13) away 
from the assumed limits.

4.3. Modifications of the model
This paper has purposefully focused on normal vascularized tissues, to propose a model for the dominant 
structures defining backscatter. Of course, most diagnostic scans are done to assess the presence or absence of 
pathologies, so the next question pertains to how this fluid-channel fractal-network model would be altered 
by common disease states. One change in the model parameter that can easily be altered is the size distribution 
N (a), which is related to the fractal dimension of the structures. Two opposites could be realized in different 
pathologies. For example, in some tumors the neovasculature, the leaky vasculature, and the elevated hydrostatic 
pressure could change the fractal properties of small (capillary-sized and smaller) fluid spaces compared with 
normal tissue (Savage et al 2013). Conversely, in early liver fibrosis the development of fibrotic structures larger 
than the hepatic sinusoids would increase the number density of larger structure sizes, relative to normal tissue. 
These can be modeled to some extent by changes in N (a) and specifically the power law. In turn, this increases or 
decreases the slope of the backscatter versus frequency curve.

However, there may also be pathologies where the scattering model must also consider spherical shapes in 
addition to the cylindrical fluid spaces. Liver steatosis would be one prominent example as the subcellular-sized 
spherical fat vacuoles accumulate and may be modeled as Rayleigh scatterers over some frequency range (Parker 
2016, Parker et al 2018). In this case, the total scattering would result from both the fractal network of fluid 
branches and the Rayleigh spherical scatterers, thus exhibiting a power law plus f 4 behavior. Furthermore, even 
in normal tissues, cellular inhomogeneities such as mitochondria could have a scattering effect. Given the size 
of sub-cellular components, these would also produce Rayleigh f 4 contributions over the usual clinical range 
of frequencies. There is an ironic historical twist to this concept since over 70 years ago Mason and McSkimin 
(1947) proposed a dual model for scattering and attenuation from metal and glass samples, with a linear function 
(power law near 1) plus an f 4 Rayleigh term.
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4.4. Refinement of theory versus experiments
Further experimental results over an extended frequency range are required to test the proposed cylindrical 
model of fluid channels in fractal networks, in competition with earlier models based on spherical cell shapes. It 
would be valuable to have data on normal vascularized tissues over a wide bandwidth so that baseline measures 
could be established and hypothesis testing (cylindrical versus spherical) could be accomplished with a high 
degree of confidence.

A more exact comparison of theory to experiment will require greater precision on two fronts: the scatter-
ing power law, and the fractal branching power law of the fluid channels for specific organs. In order to obtain 
system-independent values of tissue backscatter, experimental measures must carefully consider the beam width 
and axial window employed, along with the transducer round trip sensitivity as a function of frequency. The 
type of system correction depends on the approach taken. For example, Campbell and Waag (1984a, 1984b) and 
Davros et al (1986) employed separate transmit and receive transducers, so the beam’s overlap in space was cal-
culated as a function of frequency and angle. The quantitative approach developed by Lizzi et al (1983) employed 
a reference spectrum approach and beampattern terms. The reference phantom or reference scatterer approach 
(Yao et al 1990, Wear et al 1995, Chen et al 1998) utilizes a well characterized set of scatterers, usually small Ray-
leigh scatterers, scanned at the same depth and same system settings as the tissue, to provide the correction for 
system-dependent effects.

The fractal branching behavior assumed in equation (13) is a continuous number density of cylinders repre-
sented as proportional to 1/ab ; this forms a major assumption of this framework, yet is not known precisely. In 
reviewing the literature results, it must be kept in mind that there are major distinctions running through differ-
ent analyses, principally 2D versus 3D, and also the type of measurement utilized. Fractal dimension is limited by 
topographical dimension, so 2D analysis of slices or projections will have a lower dimension than corresponding 
3D measurements. Full 3D measurements at high resolution are rare and difficult due to the demands on resolu-
tion and sheer size of the imaging data. Some high quality and high resolution 3D assessments of the branching 
vasculature have been painstakingly acquired for the brain (Risser et al 2007) and the placenta (Parker et al 2016), 
however to our knowledge there have not been any published results from 3D fractal analyses of the liver, pros-
tate, or thyroid vasculature at high resolution.

Adding to the uncertainty about the important power law parameter b, which defines the number density of 
cylindrical vessels as a function of their radius, over the ensemble and in linear dimensions, is the wide variety of 
measurement styles that are typically reported. This is a major source of possible misinterpretation. Our power 
law parameter b is not the same as the fractal dimension measured by sandbox or related box counting tech-
niques. Even in the cases of older literature reports where the number of vessels were painstakingly counted (see 
figure 1 of Krenz et al (1992) indicating a power law of approximately  −2.7 over some older studies, or table 1 of 
Gan et al (1993) indicating a power law of approx.  −1.3 in pulmonary veins, or table 4 of Singhal et al (1973) sug-
gesting a power law of  −2.5 in pulmonary arteries), there are important methodological details that can swing 
the assessment. For example, many counting schemes derive the number of vessels versus branch generation 
number 1,2,3,… as ordinal numbers. The slope of this curve is not the same as our number density versus radius 

Figure 8. Optical scattered power spectrum of tissue slides indicating a power law behavior to below 0.1 microns in scale. Reprinted 
with permission from Schmitt and Kumar (1996), OSA Publishing.
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curve. Other schemes count ‘greater than or equal to’ a varying radius, which corresponds to an integration. 

Since the integration of 1/ab is proportional to 1/a(b−1) , this scheme inherently shifts and reduces the power 
law parameter by one. Similarly, a scheme of ‘binning’ together vessels by proportional limits over a log scale 
will shift the power law. For example, counting all the vessels within  ±15% of 0.1 mm, then all those within 15% 
of 1 mm, then all those within 15% of 10 mm, will effectively integrate the distribution within these bins, again 

converting the continuous distribution to a discrete set with 1/a(b−1) relative distribution. For all these reasons, 
it is plausible that different literature reports of branching vascular number densities will vary depending on the 
methodology used. Clearly, high-resolution data sets in 3D are required to better define this important factor in 
soft tissues such as liver, thyroid, prostate, and others.

4.5. Limitations of the model
This scattering model assumes that the dominant tissue parenchyma, for example the hepatocytes in the liver, 
form the reference media and the cylindrical-shaped vasculature and fluid channels form the scattering sites. 
As such, the canonical shape is a long cylinder, and the fractal branching structure is assumed to conform to a 
power law distribution of radii over many decades of sizes (many small cylinders and fewer large cylinders). It is 
further assumed that an ensemble average incorporates orientations of all cylinders across all angles. This limits 
the model to relatively isotropic tissues and would require modifications to address oriented structures such as 
myocardial muscle. Furthermore, the exact branching conditions of termination (connection) and branching 
angle are not explicitly considered and require further study. Finally, it is assumed that the cross correlation of 
each long cylindrical segment with all others is a relatively small and nearly constant parameter across spatial 
correlation lags, limiting the importance of this term to very low frequencies in practice. Within this simplified 
framework a power law of scattering is predicted based on the power law distribution of vessel sizes. 3D 
vasculature studies at high resolution are now required in parallel with quantitative scattering measurements to 
more fully assess the predictions and limits of applicability of the proposed model.

5. Conclusion

A hypothesis about scattering from tissue is generated from primitive cylindrical shapes representing the 
plausible distribution of extracellular fluids and blood in long fluid-filled channels throughout normal soft tissue. 
Assuming a wide range of diameters of the cylindrical fluid spaces and an isotropic distribution, the predicted 
backscatter is of the form of a power law with dimension greater than one. This matches some observations about 
the nature of vessels and measurements of backscatter from tissues such as the liver and thyroid. The theory, then, 
represents an alternative to longstanding explanations of scattering linked to properties of spheres representing 
cells. In the cylindrical fluid model, the fluid-filled vasculature and channels are the scattering sites, whereas the 
close-packed cells form the reference media. Pathologies that affect tissue morphology would be expected to 
modify this model in significant ways, but it is prudent to first establish an accurate working model of normal soft 
tissue scattering. More precise measurements of the key parameters will be required to fully test this hypothesis 
and prior models based on spheres.
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Appendix A. Particular form of Fourier transform pairs

Consistent with Bracewell (1965), we use the following convention.

 (a)  Fourier transform in one dimension:

F (s) =
´∞
−∞ f (x) e−i2πxsdx = �{ f (x)}

f (x) =
´∞
−∞ F (s) e+i2πxsds.

 (A.1)
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 (b)  Fourier transform/Hankel transform for cylindrical symmetry:

F (ρ) = 2π
´∞

0 f (r) J0 (2πρr) rdr = H{ f (r)}
f (r) = 2π

´∞
0 F (ρ) J0 (2πρr) ρdρ. (A.2)

 (c)  3D Fourier transform with spherical symmetry:

F (q) = 2π
q

´∞
0 f (r) sin (2qr) rdr = 3DS�{ f (r)}

f (r) = 2π
r

´∞
0 F (q) sin (2qr) qdq.

 (A.3)

Within this convention, the transform variable has units of cycles/distance. Furthermore, the 3D spherical 
transform is identical to the kernel for Born scattering, equations (1)–(3).

Appendix B. Estimates of inhomogeneities

We examine compressibility κ as a source of scattering where κ = 1/c2ρ , c is compressional wave speed, and 
density ρ ∼= 1 kg m−3, and estimate the normalized fraction ∆κ/κ0 for blood plasma and whole blood compared 
to liver tissue from published studies of ultrasound speed of sound (Goss et al 1978, 1980, Duck 1990):

For whole blood : κb =
1

(1575)2(1055)
= 0.38 (1/GPa)

For liver tissue : κl =
1

(1590)2(1060)
= 0.37 (1/GPa) .

 (A.4)

Then

For whole blood :
∆κ

κl
=

κb − κl

κl
= 0.03 or 3% dif ference. (A.5)

This is without any assumptions about arterial or venous walls adding to the mismatch. The 3% difference is 
significant within the expected range of soft tissue inhomogeneities (Macovski 1983) and will be present in every 
major vessel containing whole blood or extracellular fluids. This 3% difference is also larger than the change 
in acoustic impedance assumed in 3D models of scattering from tissue (Mamou et al 2008) where values of 
1.51/1.50 MRayls were used, a 0.6 % difference. Small capillaries and extracellular spaces may contain fluid 
that is not whole blood. Reported values of plasma have a lower speed (1520 m s−1) than whole blood at 45% 
hemocrit (1575 m s−1) (Goss et al 1978, 1980, Duck 1990), so these smaller cylinders would have a higher relative 
inhomogeneity, possibly boosting their relative contribution to the overall ensemble.
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