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The issue of speckle statistics from ultrasound images of soft tissues such as the liver has a long

and rich history. A number of theoretical distributions, some related to random scatterers or fades

in optics and radar, have been formulated for pulse-echo interference patterns. This work proposes

an alternative framework in which the dominant echoes are presumed to result from Born scattering

from fluid-filled vessels that permeate the tissue parenchyma. These are modeled as a branching,

fractal, self-similar, multiscale collection of cylindrical scatterers governed by a power law distri-

bution relating to the number of branches at each radius. A deterministic accounting of the echo

envelopes across the scales from small to large is undertaken, leading to a closed form theoretical

formula for the histogram of the envelope of the echoes. The normalized histogram is found to be

related to the classical Burr distribution, with the key power law parameter directly related to that

of the number density of vessels vs diameter, frequently reported in the range of 2 to 4. Examples

are given from liver scans to demonstrate the applicability of the theory.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5132934
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I. INTRODUCTION

A century of research on scattering of light and sound

has accumulated since the landmark papers of Rayleigh

(1897, 1918a) and today, every day, an uncountable number

of ultrasound scans are created from tissue backscatter. In

normal soft tissues such as the liver, prostate, and thyroid,

the source of the backscatter is presumed to be internal inho-

mogeneities which have been typically modeled as statistical

inhomogeneities or spherical shapes linked to the cellular

structures of the soft tissue.

For example, Chivers (1977) considered both exponential

and Gaussian correlation models in his survey of tissue scatter-

ing. Waag and colleagues (Waag et al., 1982; Campbell and

Waag, 1984b; Waag et al., 1989a, 1989b) considered Gaussian

and modified Gaussian correlation models. Lizzi et al. (1983)

established a framework for analysis of scattered ultrasound

from tissues, including a model of very small scattering sites

that were Poisson-distributed in space, and then later including

spherical shapes that have been incorporated into quantitative

ultrasound studies (Mamou and Oelze, 2013). Insana and col-

leagues (1990) considered three correlation functions for ran-

dom media, related to fluid spheres, spherical shells, and a

Gaussian behavior. These were applied to a number of phan-

toms and tissues (Insana and Brown, 1993). Shung and Thieme

(1993) demonstrated the scattering of red blood cells which in

a dispersed form exhibit classical Rayleigh scattering behavior

at the frequencies commonly used in ultrasound scans of adult

humans. The importance of clustering of red blood cells was

analyzed by Fontaine et al. (2002) and Savery and Cloutier

(2001, 2005).

A recently proposed alternative hypothesis is that within

soft and macroscopically isotropic tissues such as the liver,

the dominant parenchymal cellular structure forms the refer-
ence media and the fractal branching vasculature and fluid

channels form the weak scattering structures within the

Born approximation. The consequences of this new frame-

work are significant, as the canonical structural shape must

be cylindrical, not spherical, and the self-similar or fractal or

multiscale nature of the branching fluid channels must be

considered within the ensemble average.

The second order statistics, specifically the ensemble-

averaged backscatter, has been recently considered for this

new hypothesis (Parker, 2019; Parker et al., 2019), and the

fractal branching cylindrical models were found to predict a

power law ðf cÞ increase in backscatter vs frequency for tis-

sues such as the liver, matching the experimental results

from the early leading studies (Campbell and Waag, 1984a;

Zagzebski et al., 1993).

However, the first order statistics of soft tissues under

the new hypothesis have not yet been resolved. The distribu-

tion of the envelope of echoes from the liver and other soft

tissues has been an intense subject of research over the years

(Burckhardt, 1978; Bamber and Dickinson, 1980; Sleefe and

Lele, 1988; Landini and Verrazzani, 1990; Wear et al.,
1997; Cramblitt and Parker, 1999; Kutay et al., 2001, 2003;

Laporte et al., 2009). Based on models originating from

radar and optical speckle, and on one-dimensional convolu-

tion models, the envelope of radio frequency (RF) echoes

have been fit to Rayleigh, Gamma, Rician, Homodyne-K,

and other distributions. It was hoped that some measure of

tissue structure, such as the number of discrete scatterers per

unit volume, could be estimated from these distribution func-

tions; however, no definitive consensus has been achieved.a)Electronic mail: kevin.parker@rochester.edu
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With the goal of clarifying the dominant mechanisms at

work in pulse-echo imaging, we depart from earlier frame-

works in two significant ways: first, the scattering structures

are assumed to be a multiscale set of cylindrical vessels of

radius a with a density distribution that follows a power law,

NðaÞ ¼ N0=ab: Second, we derive a fully deterministic (not

probabilistic) ensemble of echo amplitudes based on the

dominant (maximum) signals obtained from the three-

dimensional (3D) convolution of a pulse with the isotropic

ensemble of scattering cylindrical vessels. The result is a

model of the envelope histogram that is deterministic and

somewhat resembles—but is not equal to—the Rayleigh dis-

tribution. In this framework a key tissue parameter of the

envelope distribution is the power law parameter b; which

captures the multiscale distribution of vessels from the few

large vessels to the greater numbers of smaller vessels.

II. THEORY

Assume a broadband pulse propagating in the x direc-

tion is given by separable functions,

P y; z; t� x

c

� �
¼ Gy y; ryð ÞGz z; rzð ÞPx t� x

c

� �
; (1)

where Gyðy; ryÞ ¼ exp ½�y2=2r2
y �, i.e., Gaussian in the y and

z directions, and where the pulse shape Px in the x direction

is given by

Px xð Þ ¼ GH2

x

rx

� �
exp � x

rx

� �2

¼ e�x2=r2
x

4x2

r2
x

� 2

 !
;

(2)

where GH2 is a second-order Hermite polynomial for the

pulse shape with a spatial scale factor of rx (Poularikas,

2010; Parker, 2016), representing a broadband pulse. Its spa-

tial Fourier transform is then
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¼ 4e�k2

xp
2r2
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; (3)

where we use Bracewell’s (1965b) convention for the form

of the Fourier transform.

Using a 3D convolution model (Bamber and Dickinson,

1980; Macovski, 1983; Prince and Links, 2015), we will

determine the dominant echoes from the pulse interacting

with each generation of elements in a branching, fractal,

self-similar set of vessels shown in Fig. 1, and whose num-

ber density follows a power law behavior NðaÞ ¼ N0=ab.

From these echoes, the histogram of envelopes is determined

by summing up over all the fractal branches.

Assuming an isotropic spatial and angular distribution of

each generation of fractal branching structures, we need to con-

sider a basic element across all angles of incidence with respect

to the propagating wave and across all size scales, from very

small microchannels of fluid to the largest arteries and veins

that can exist within the organ. Specifically, we will examine a

long fluid-filled cylinder of radius a,

f rð Þ ¼
j0 r � a

0 r > a

(

F qð Þ ¼
j0 � a � J1 2pa � q½ �

q
; (4)

where j0 is the fractional variation in compressibility,

assumed to be � 1 consistent with the Born formulation,

FðqÞ represents the Hankel transform, which is the two-

dimensional Fourier transform of a radially symmetric func-

tion, J1½�� is a Bessel function of order 1, and q is the spatial

frequency. The fractional variation in compressibility, j0,

between blood vessels and liver parenchyma has been esti-

mated to be approximately 0.03, or a 3% difference based on

published data (Parker, 2019).

Consider first one infinitely long cylinder with material

property f ðrÞ—symmetric—as shown in Fig. 2(a) and tilted

at some arbitrary angle in a spherical coordinate system. It

has a 3D Fourier transform that is a thin disk, shown in Fig.

2(b) (delta function kz but shown with finite thickness to

make the graphic easier to draw and visualize). A particular

radius of spatial frequency equal to q0 is shown for refer-

ence. The shape of the 3D spatial Fourier transform of the

pulse is shown in Fig. 2(c).

FIG. 1. (Color online) Model of 3D convolution of a pulse with the fractal branching cylindrical fluid-filled channels in a soft tissue.
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One can see from Fig. 2 that the convolution of the pulse

with a cylinder of radius a is dominated by the case where

the cylinder is perpendicular to the direction of the forward

propagating pulse, the x axis in our case. For all other orien-

tations, the delta function of the cylindrical transform shown

in Fig. 2(b) is misaligned with respect to the transform of the

pulse shown in Fig. 2(c). Thus, assuming an optimal align-

ment, the 3D convolution result is given by the product of

the transforms,

3D= echo x; y; z; t ¼ 0ð Þ
� �
¼ =3D p x; y; zð Þ

� � � kxð Þ2=3D cylinder x; y; zð Þ
� �

¼ 4e�k2
xp

2r2
x k2

xp
5=2r3

x

� �
e�2k2
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2r2

y
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2p
p
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� ��
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2r2
z
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where t ¼ 0 is assigned to the central peak of the echo, and

the ðkxÞ2 term pre-multiplying the cylinder transform stems

from the Laplacian spatial derivative in the Born scattering

formulation (Rayleigh, 1918a; Morse and Ingard, 1987) and

in the 3D convolution model (Gore and Leeman, 1977;

Bamber and Dickinson, 1980).

By Parseval’s theorem, the integral of the square of the

transform equals the integral of the square of the echo, and

after integration over the delta function in kz,
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The square root of this gives the root-mean-square

(RMS) amplitude of the echo, as a function of the radius a,

shown for the practical span of 0 < a=rx < 10 in Fig. 3.

We will associate the RMS amplitude from each echo with a

proportionally higher maximum value of the envelope, as a

function of cylinder radius a. This single value mapping is

justified in the Appendix.

Also shown in Fig. 3 is an approximation which will be

useful for deriving a closed form solution, the approximation is

of the form A½a� ¼ A0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� amin
p

, justified by the nearly linear

increase in the energy term above some minimum threshold,

and the asymptotic modulus of J1ðakÞ which is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpakÞ

p
(Abramowitz and Stegun, 1964) as ak becomes

large. Of course the exact shape is dependent on the particular

pulse shape’s spectrum, for example, if instead of a GH2 we

use a kx � sech½kx� bandpass for = PxðxÞ
� �

, which has an expo-

nential asymptotic tail instead of a Gaussian, then the result is

shown in Fig. 4. So as a general approximation, we apply the

relation A½a� ¼ A0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� amin
p

for a > amin. The parameter amin

depends on a number of factors, including the dynamic range

selected (for example, 45 dB) and the Rayleigh scattering (long

wavelength, small a) behavior of the cylinder interacting with

the particular pulse transmit signal, along with the noise floor

and quantization floor of the receiver.

FIG. 2. (Color online) A cylindrical function (a) and its Hankel transform represented in 3D Fourier transform space (b). Rotations around spherical coordi-

nates similarly rotate the corresponding transform. The transform of a propagating pulse is shown in (c). The maximum product of (b) and (c) arrives when the

angle h approaches zero.

FIG. 3. (Color online) The RMS echo amplitude (vertical axis, arbitrary

units) vs cylinder radius normalized by rx from Eq. (6), and square root

approximation, assuming a GH2 pulse.
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Now, applying the general theory of transformed distri-

butions (see the Appendix), we have within the ensemble the

number density of vessels at different radii given by

N½a� ¼ N0=ab, and this will be transformed into the distribu-

tion of amplitudes, AðaÞ. The general rule is

N A½ � ¼ 1

dA=da
N a½ �: (7)

In our case, the derivative dA=da ¼ ½ð1=2ÞA0�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� amin
p

,

and the inverse function is a½A� ¼ ðA=A0Þ2 þ amin. Thus,

substituting these into Eq. (7) the distribution N½A� is

N A½ � ¼ 2N0A

A2
0 A=A0ð Þ2 þ amin

h ib
: (8)

So, for example, if b ¼ 2 and A0 and N0 are unity, then

N½A� ¼ 2A=ðA2 þ aminÞ2, and this is plotted in Fig. 5 along

with variations in parameters. This provides a four-

parameter fit N0;A0; amin; bf g to a histogram taken from a

reasonably sized region of interest (ROI) within a vascular-

ized tissue or organ, assuming an isotropic and spatially uni-

form distribution across the ROI.

However, of these four parameters, N0, A0, and amin are

influenced by system parameters such as amplifier gain and

the size of the ROI. To simplify the analysis, one can

normalize by the integral of the distribution
Ð

N½A�dA ¼ N0=
½ðb� 1ÞðaminÞb�1� to form a proper probability density func-

tion (PDF), which integrates to unity

Nn A½ � ¼
2A aminð Þb�1 b� 1ð Þ

A2
0

A

A0

� �2

þ amin

" #b
: (9)

Furthermore, by substituting k ¼ A0
ffiffiffiffiffiffiffiffi
amin
p

, we find this

reduces to a two-parameter distribution

Nn A½ � ¼ 2A b� 1ð Þ

k2 A

k

� �2

þ 1

" #b
; (10)

which is a Burr type XII distribution with c ¼ 2 (Burr, 1942;

Rodriguez, 1977). Thus, the normalized distribution offers a

simplification to a two-parameter distribution with analytic

expressions for PDF, cumulative distribution function

(CDF), and moments (Rodriguez, 1977).

Using the notations from Bracewell (1965a), we calcu-

late by integration the centroid of the distribution and find

the expected value of the normalized histogram

hAi ¼
k �1þ bð Þ ffiffiffipp C � 3

2
þ b

� �
2C b½ �

for b >
3

2
; (11)

where C½�� is the gamma function (Abramowitz and Stegun,

1964). Similarly, the mean square abscissa can found by

integration

hA2i ¼ k2

b� 2
for b > 2: (12)

In a similar way, the variance can be calculated, and then a

measure of signal-to-noise ratio (SNR) defined by the mean

value over the standard deviation is

SNR ¼ hAi
rA
¼

C � 3

2
þ b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 b� 2ð ÞC b� 2ð Þ2=p� C � 3

2
þ b

� �s :

(13)

FIG. 4. (Color online) The RMS echo amplitude for a second bandpass

pulse shape with exponential tails vs normalized radius of a scattering cylin-

der, and a square root approximation.

FIG. 5. (Color online) The proposed histogram function of envelope amplitudes A, having the form A=ðA2 þ aminÞb. In (a) are normalized functions where

amin ¼ 1=2 and the power law parameter b is 3, 2.5, 2, and 1.5. In (b) are normalized functions where the power law parameter is fixed at 2.5; however, amin is

varied as 1/4, 1/2, 3/4, and 1. Vertical axis: counts (arbitrary units); horizontal axis: envelope amplitude (arbitrary units).
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Generally, in the range of interest (2 < b < 4), we find that

the SNR is less than 1.5, which is below the theoretical 1.91

SNR found for fully-developed speckle under a Rayleigh

PDF (Burckhardt, 1978; Tuthill et al., 1988; Thijssen, 2003).

However, it must be kept in mind that our underlying model

of cylinders vs radius has a power law tail as the radius a
goes to infinity, creating a long asymptotic tail of high echo

amplitudes. In practice, each organ has a finite upper limit to

the largest artery or vein, and this truncates the upper tail of

the distribution, leading to a smaller standard deviation and

a larger SNR than would be suggested by formulas.

III. METHODS

In the following examples, conventional B-scans were

obtained using a Verasonics scanner with a 5 MHz ATL lin-

ear array transducer (V1, Verasonics, Inc., Kirkland, WA). A

scan from a healthy adult was imaged under the requirements

of informed consent and the University of Rochester

Institutional Review Board. Rat experiments were reviewed

and approved by the Institutional Animal Care and Use

Committee of Pfizer, Inc., Groton, CT, where the ultrasound

scan was acquired using a Vevo 2100 (VisualSonics, Toronto,

CA) scanner and a 20 MHz center frequency transducer (data

provided courtesy of Terri Swanson). Parameter estimation

was performed using MATLAB (The Mathworks, Inc., Natick,

MA) nonlinear least squares minimization of error, for two-

parameter fits of the Burr distribution to the data.

IV. RESULTS

An ultrasound B-scan of a normal rat liver is shown in

Fig. 6 (left), with a ROI denoted within the liver parenchyma

where the pattern of echoes demonstrates a speckle pattern. This

region is distal to the transmit focus, which is located at 11 mm

depth. A close-up view is shown in Fig. 6 (right). The envelope

of the beam-formed RF is distributed as shown in the histogram

of Fig. 7, along with a theoretical Burr distribution with a power

law parameter of b ¼ 3:4; and an R2 of 0.999. The match of this

deterministic theory to the data is reasonable.

The normal human liver is shown in Fig. 8. This utilized five

compounded plane wave transmit pulses with dynamic receive.

The histogram of echo amplitudes is shown in Fig. 9

along with the Burr distribution fit with a power law parame-

ter of b ¼ 2:9 and an R2 of 0.995.

To further examine the asymptotic characteristics of the

histogram, we integrate the normalized histogram from the

rat liver data to form the CDF which is important in a num-

ber of statistical tests such as the Kolmogorov-Smirnov test

(Feller, 1948). This is shown in Fig. 10 using the parameters

found in Fig. 7 (b ¼ 3:4 and k ¼ 6:5� 105) against the theo-

retical CDF for the Burr distribution, given by

CDF Að Þ ¼ 1� 1þ A

k

� �2
" #� b�1ð Þ

: (14)

The two functions (sampled histogram counts and theoretical

function) are nearly indistinguishable on this scale and resolution.

Finally, because of the historic interest in the Rayleigh

distribution (Burckhardt, 1978), the PDF for the rat liver is

shown with the minimum mean squared error curve fit,

shown in Fig. 11, where the Rayleigh PDF is given by

R Að Þ ¼ A

S2
e �A2=2S2ð Þ: (15)

The overall shape of the Rayleigh distribution appears more

compact and less suitable for the measured amplitude data.

V. DISCUSSION AND CONCLUSION

This framework postulates that the histogram of speckle

amplitudes is determined by a simple Eq. (8) governed by

FIG. 6. (Color online) Left: ultrasound B-scan image from a 20 MHz scan of a normal rat liver, focused transmit at 11 mm depth. Right: zoom view of speckle

region ROI selected for analysis.

FIG. 7. (Color online) Histogram of echo amplitudes from the normal rat

liver. Vertical axis ¼ counts; horizontal axis ¼ amplitudes of echo enve-

lopes (arbitrary units). The dashed line indicates theoretical fit to the derived

Eq. (10), with the power law parameter of b ¼ 3:4 and k ¼ 6:5� 105.
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four parameters: a power law b, a minimum cylinder size

amin above which the echo amplitude rises as a square root

of radius, a vessel density N0, and a scale amplitude A0

depending on system factors such as amplifier gain.

Furthermore, upon normalization of the histogram by its

integral, the resulting PDF reverts to a Burr distribution first

described in 1942 without any consideration of waves or

scattering. The formulation is a major departure from the

treatments over the last 100 yr in that the accounting is deter-

ministic and focused on the maximum or predominant result

in each step. Effectively, this means that each local maxi-

mum of the echoes is modeled as resulting from one domi-

nant cylinder aligned perpendicular to the propagation

direction of the pulse. Then, assuming a spatial ensemble

large enough to encompass all radii according to the power

law, the form of Eq. (8) is derived as the histogram of

speckle envelopes within soft vascularized tissue. This for-

mulation is limited by the major assumptions which simplify

the derivations:

• The echoes are assumed to be produced by an isotropic

ensemble of long cylindrical fluid-filled Born scatterers,

dominated by those cylinders that are aligned perpendicu-

lar to the propagating pulse.
• The echoes from each generation of cylinders of radius a

are mapped to an envelope amplitude of A by a square

root function.
• The local maxima of envelopes dominate the histogram of

sampled echoes.

Each of these assumptions are linked to a theoretical for-

mula with examples; however, collectively they simplify the

accounting of the overall chain of echo formation into a final

histogram. Consequently, the issues of complex interference of

phasors are not included in the analysis. In this sense our analy-

sis returns to the earliest formulations of weak scattering from

cylinders (Rayleigh, 1918b; Albini and Nagelberg, 1962).

FIG. 8. (Color online) B-scan image of a healthy liver tissue in a human. A

ROI is selected (dashed lines) for analysis.

FIG. 9. (Color online) Data from a 5 MHz probe on a normal human liver

with b ¼ 2:9 and k ¼ 3:3� 106. Vertical axis: counts; horizontal axis:

amplitudes of echo envelopes (arbitrary units).

FIG. 10. (Color online) The comparison of the CDF of the rat liver echo

amplitudes and the theoretical Burr distribution CDF.

FIG. 11. (Color online) A comparison of the histogram of the rat liver echo

amplitudes with a minimum mean squared error curve-fit to the classical

Rayleigh distribution.
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An important question which must be resolved by further

studies of ensembles of human and animal soft tissue echoes

is the following: will one of the theoretical distributions

(Burr, Rayleigh, Rician, K, Homodyne-K, Gamma, or others)

described in the literature be consistently the best fit, with

lower mean squared errors, than all the others? A related

question involves the sensitivity of the parameters to abnor-

malities that develop within the tissues and that change the

scattering characteristics. Mathematically, we can say that the

Burr distribution derived herein has an asymptotic behavior

for high amplitudes that includes a power law proportional to

A�2b. In comparison, the other distributions derived in the

classical literature have asymptotic behaviors related to

Gaussian (Rayleigh), Gaussian times modified Bessel I0 func-

tion (Rician), modified Bessel K functions (K distribution), or

other transcendental functions (Gamma). The fractal branch-

ing vasculature hypothesis for scattering is naturally associ-

ated with a power law behavior describing the number of

vessels of different diameter, and this power law b propagates

through the derivations of the scattering functions and the

final accounting of histogram amplitudes. Thus, a power law

asymptotic behavior in amplitudes is plausible.

Finally, the important task of diagnosing abnormalities

is left for further research. Presumably a disruption of the

normal vascular structure in aggressive cancers would

change the power law b and the vessel number density N0,

but the necessary clinical studies of these and other common

pathologies are beyond the scope of this paper.

Further high resolution studies of the vasculature in 3D

for different organs, along with corresponding high resolu-

tion B-scans of the same organs, would be helpful for testing

and refining this theoretical framework of speckle ampli-

tudes from soft vascularized tissues.
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APPENDIX: MAPPING AND TRANSFORMATION OF
FUNCTIONS

Herein we consider how the size distribution of cylindri-

cal elements determines a distribution of echoes, in order to

derive a histogram of echo amplitudes. A lucid explanation

of the mapping of distributions is given in Chap. 5 of

Papoulis (1987). This is explained in terms of PDFs, where a

new variable is defined by y ¼ gðxÞ, and x is a random vari-

able with known PDF f ðxÞ. However, the results hold for all

well-behaved analytic functions where the area under the

curve within any small interval is preserved by the mapping.

We also assume a single valued mapping of y ¼ gðxÞ and its

inverse x ¼ g�1ðyÞ for simplicity. In that case, by simply

equating equal areas under some region of x0 to x0 þ Dx, and

mapping that to the y variable, the transformation rule is

fy yð Þ ¼
fx xð Þ

jdg xð Þ=dxj ; (A1)

where on the right side the inverse function x ¼ g�1ðyÞ is

then used to eliminate x as a variable and produce an equa-

tion in terms of y. The concept is illustrated in Fig. 12.

An important feature of this transformation for echo

envelope functions emerges as a dramatic consequence, for

anywhere near to a local maxima where the first derivative

of the envelope approaches zero, the denominator term in

Eq. (A1) approaches zero and the transformation produces a

FIG. 12. Schematic illustration following Papoulis showing the distribution

of one continuous variable x with a distribution fxðxÞ which is mapped to a

new distribution where y ¼ gðxÞ, and retaining the area under the curve.

FIG. 13. (Color online) Example of sampling an envelope function (a) to produce a resulting histogram (b) and theory from Eq. (A1) (solid line). In (a), the

vertical axis is amplitude, maximum value normalized to 1; the horizontal axis is time or distance, arbitrary units. In (b), the vertical axis is sampled counts in

a histogram; the horizontal axis is echo amplitude. Note the spike near amplitude ¼ 1, the local maximum of the envelope.
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singularity around that point. Thus, as we apply this to echo

envelopes where x is the echo space or time variable and y is

the echo envelope, each local maximum creates a large spike

in the histogram of the envelope.

As an example, let y ¼ A1ð1� x2Þ for �1 < x < 1: By

symmetry, we only need to consider 0 < x < 1 and assume uni-

form likelihood of sampling within this interval so fxðxÞ ¼ 1.

Also, jdy=dxj ¼ A1 � 2x and x ¼ g�1ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðy=A1Þ

p
:

Finally, from Eq. (A1), f ðyÞ ¼ 1=½2A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðy=A1Þ

p
� for

0 < y < A1, which has a singularity as y! 1 [the value of the

local maximum of y ¼ f ðxÞ]. This is illustrated in Fig. 13 for

A1 ¼ 1.

Another example of a modified Gaussian is shown in

Fig. 14, where y ¼ e�x2=2ð1� x2Þ; producing a similar result

deriving from the singularity produced by the local maxi-

mum of the envelope function.

Thus, we conclude that the histogram of envelopes con-

tains a dominant contribution formed by the local maximum,

where the first derivative approaches zero. This dominant con-

tribution from the local maximum of the echo is also assumed

to be proportional to the RMS echo amplitude formed by con-

volution, Eq. (6), and then is used in the superposition or sum-

mation over all cylinder sizes in our formulation.
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