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Abstract
The H-scan approach (‘H’ denoting hue, or Hermite) is a recentmatched �ltermethodology that aims
to add information to the traditional ultrasound B-scan. The theory is based on the differences in the
echoes produced by different classes of re�ectors or scatterers. Matched �lters can be created for
different types of scatterers, whereby the maximum output indicates a match, and color schemes can
be used to indicate the class of scatterer responsible for echoes, providing a visual interpretation of the
results. However, within the theory of weak scattering from a variety of shapes, small changes in the
size of the inhomogeneous objects will create shifts in the scattering transfer function. In this paper, we
argue for a general power law transfer function as the canonical model for transfer functions from most
normal soft vascularized tissues, at least over some bandpass spectrum illuminated by the incident
pulse. In cases where scatterer size and distributions change, this produces a corresponding shift in
center frequency, along with time and frequency domain characteristics of echoes, and these are
captured by matched �lters to distinguish and visualize in color the major characteristics of scattering
types. With this general approach, the H-scan matched �lters can be set to elicit more �ne grain shifts
in scattering types, commensurate with more subtle changes in tissue morphology. Compensation for
frequency-dependent attenuation is helpful for avoiding beam softening effects with increasing
depths. Examples from phantoms and normal and pathological tissues are provided to demonstrate
that the H-scan analysis and displays are sensitive to scatterer size and morphology, and can be adapted
to conventional imaging systems.

1. Introduction

The mathematical treatment of scattering of light and
sound has a rich history spanning over 100 years. The
scattering of ultrasound from tissues forms the basis
for the worldwide use of ultrasound imaging for
diagnostic purposes, and an uncountable number of
these images are obtained every day. It is generally
understood that inhomogeneities within tissues, spe-
ci�cally localized changes in acoustic impedance or
density and compressibility, are responsible for the
echoes that are captured by imaging systems. A
longstanding goal within the research community has
been to supplement the traditional B-scan image of
tissue with additional quantitative information about
the scatterers, linked to the structure or size or
statistical properties of the underlying tissue and
cellular structures (Lizzi et al 1983, Mamou and

Oelze 2013). However, recently, a new hypothesis has
been formulated that the cylindrical-shaped �uid
vessels within tissue parenchyma are predominantly
responsible for the echoes commonly captured by
imaging systems (Parker et al 2019, Parker
2019a, 2019b). Within this framework and within a
more general framework encompassing different clas-
sical scattering models, the H-scan analysis can be
helpful in discriminating between tissue types
(Parker 2016a, 2016b, Khairalseed et al 2017, Ge et al
2018, Khairalseed et al 2019a, 2019b). In essence, the
H-scan seeks to make a matched �lter for the case of a
bandpass ultrasound pulse incident on a tissue scat-
terer or re�ector, and producing an echo. The output
of a set of matched �lters covering the different types
of expected scatterers, shown in �gure 1, can be
examined to determine a best �t to any particular echo
or segment, and this additional information can be
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encoded as a color overlay or a quantitative map. In
this way the H-scan analysis provides relatively high
resolution and localized information about the nature
of the underlying tissue.

In this article we make a series of arguments lead-
ing to the �ne-tuning of the H-scan analysis for more
sensitive discrimination of small changes in scatterers
within different regions or over time in response to the
progression of disease or the effects of therapy. First,
an examination of scattering literature concludes that
the transfer function of soft normal vasculature can be
approximated as a power law function, at least over
some bandwidth of a bandpass interrogating pulse.
Secondly, subtle shifts in the size and distribution of
scatterers alter the power law and alter the spectrum of
the re�ected echoes. These expected changes are
detected by matched �lters in the H-scan process.
However, these effects can be skewed by strong fre-
quency-dependent attenuation. After careful compen-
sation for attenuation, the H-scan bank of matched
�lters is capable of discriminating between the shifts in
spectral characteristics.

2. Theory

2.1. The classes of scattering structures
Considering the many different theories of scattering
from inhomogeneities, and then all of the different
types of scatterers and re�ectors within tissues, we seek
a coherent framework for characterizing the nature of
tissue scattering in order to apply sensitive matched
�lters to distinguish between the classes. As an

overview, it should be noted that the exact solutions
for strong scatterers such as spheres and cylinders can
be very complex, requiring in�nite series of spherical
or cylindrical Green’s functions (Faran Jr 1951, Born
and Wolf 1980). The situation becomes more tractable
in the case of weak scattering using the Born approx-
imation (Rayleigh 1918, Morse and Ingard 1987,
Insana et al 1990, Insana and Brown 1993), where
closed form solutions in terms for scattered waves can
be formulated as a type of a spatial Fourier transform
of the scatterer shape, or else in the case of random
structures, as a transform of the correlation function
(Debye and Bueche 1949). Another useful simpli�ed
framework comes from viewing the pulse echo process
as a convolution (Macovski 1983). Within the con-
volution framework and assuming generic bandpass
pulses, it can be shown that the transfer function of
structures or scatterers can sometimes be viewed as
simple frequency domain functions (power laws in
frequency f ) corresponding to a perfect plane re�ec-
tor (all pass �lter or transfer function f 0), or a
derivative ( f 1), or in-between. For example, the
ensemble average amplitude from the liver has been
estimated as approximately f 0.7 (Chivers and
Hill 1975, Bamber 1979, Campbell and Waag 1984,
Parker et al 2019, Parker 2019b), consistent with the
expected scattering from the fractal branching vascu-
lature. Transfer functions can vary in power law, for
example f 2 Rayleigh scatterers such as a red blood
cells. In �gure 1 in the column under red blood cells is
shown its model as simple impedance inhomogeneity,
below that its one-dimensional convolution model

Figure 1. Schematic of shapes of inhomogeneities that cause re�ections, with speci�c transfer functions in the frequency domain,
creating speci�c orders of Gaussian weighted Hermite functions as echoes. Right to left is ordered in increasing power of the frequency
domain re�ection function. Second row: Acoustic impedance ( )Z x shows a ramp function, a step function, a thin wall, Rayleigh
scatterers, and Hermite scatterers. Third row: the corresponding re�ections under the convolution model, obtained by spatial
derivative of the impedance function; a step (corresponding to an integration function), an impulse, a doublet (corresponding to a �rst
derivative), a second derivative, and higher order derivatives. Note that soft tissue scattering sites can correspond to fractional orders
above or below unity. Fourth row: frequency domain transfer function corresponding to integration -f ,1 all pass f ,0 derivative f ,1

second derivative f ,2 and higher order derivatives f .2N Bottom row: Matched �lter order from the Gaussian weighted Hermite family
corresponding to each structure, assuming a round trip impulse response of the transmitted pulse as a ( )H tG n function. Most natural
structures within tissues are thought to be within the f 0 to f 2 range, thus this range represents the core region for �ne tuning of the
H-scan analysis.
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Thus, each pixel in the ultrasound image has a
corresponding set of 256 convolution values, as shown
in �gure 7, from which we select a maximum accord-
ing to the concept of a matched �lter. In our experi-
ence, these 256 outputs for each pixel have a single
maximum; in other words, multiple peaks are unlikely
to be observed from soft tissue echoes.

After attenuation correction, the convolution with
Gaussian functions is examined to generate H images,
which are speci�c frequency range enhanced signals;
in H1, the lowest frequency range signal is ampli�ed,
and the highest frequency is enhanced in H256. The
selected indices for each pixel correspond to a color
map ranging from 1 to 256 RGB colors. Using

Figure 4.Attenuation-corrected spectra. Five zones.

Figure 5.Estimated peak frequencies corresponding to each of 10 zones. The linear �t of this curve is obtained, which can be used to
calculate the estimated attenuation coef�cient for the tissue within the ROI.

Figure 6. (a) Input ultrasound image. (b)–(f) are convolution images with �ve different matched �lters, whose peak frequencies are
1.4, 3.1, 4.7, 6.3, and 7.9 MHz. The smallest peak frequency �lter in (b) highlights the largest structures in the phantom. The largest
frequency �lter of (f) tends to enhance the smallest speckle structure in the ultrasound image.
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