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Abstract
TheH-scan approach (‘H’ denoting hue, orHermite) is a recentmatched filtermethodology that aims
to add information to the traditional ultrasoundB-scan. The theory is based on the differences in the
echoes produced by different classes of reflectors or scatterers.Matchedfilters can be created for
different types of scatterers, whereby themaximumoutput indicates amatch, and color schemes can
be used to indicate the class of scatterer responsible for echoes, providing a visual interpretation of the
results. However, within the theory of weak scattering from a variety of shapes, small changes in the
size of the inhomogeneous objects will create shifts in the scattering transfer function. In this paper, we
argue for a general power law transfer function as the canonicalmodel for transfer functions frommost
normal soft vascularized tissues, at least over some bandpass spectrum illuminated by the incident
pulse. In cases where scatterer size and distributions change, this produces a corresponding shift in
center frequency, alongwith time and frequency domain characteristics of echoes, and these are
captured bymatched filters to distinguish and visualize in color themajor characteristics of scattering
types.With this general approach, theH-scanmatchedfilters can be set to elicitmore fine grain shifts
in scattering types, commensurate withmore subtle changes in tissuemorphology. Compensation for
frequency-dependent attenuation is helpful for avoiding beam softening effects with increasing
depths. Examples fromphantoms and normal and pathological tissues are provided to demonstrate
that theH-scan analysis and displays are sensitive to scatterer size andmorphology, and can be adapted
to conventional imaging systems.

1. Introduction

The mathematical treatment of scattering of light and
sound has a rich history spanning over 100 years. The
scattering of ultrasound from tissues forms the basis
for the worldwide use of ultrasound imaging for
diagnostic purposes, and an uncountable number of
these images are obtained every day. It is generally
understood that inhomogeneities within tissues, spe-
cifically localized changes in acoustic impedance or
density and compressibility, are responsible for the
echoes that are captured by imaging systems. A
longstanding goal within the research community has
been to supplement the traditional B-scan image of
tissue with additional quantitative information about
the scatterers, linked to the structure or size or
statistical properties of the underlying tissue and
cellular structures (Lizzi et al 1983, Mamou and

Oelze 2013). However, recently, a new hypothesis has
been formulated that the cylindrical-shaped fluid
vessels within tissue parenchyma are predominantly
responsible for the echoes commonly captured by
imaging systems (Parker et al 2019, Parker
2019a, 2019b). Within this framework and within a
more general framework encompassing different clas-
sical scattering models, the H-scan analysis can be
helpful in discriminating between tissue types
(Parker 2016a, 2016b, Khairalseed et al 2017, Ge et al
2018, Khairalseed et al 2019a, 2019b). In essence, the
H-scan seeks to make a matched filter for the case of a
bandpass ultrasound pulse incident on a tissue scat-
terer or reflector, and producing an echo. The output
of a set of matched filters covering the different types
of expected scatterers, shown in figure 1, can be
examined to determine a best fit to any particular echo
or segment, and this additional information can be
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encoded as a color overlay or a quantitative map. In
this way the H-scan analysis provides relatively high
resolution and localized information about the nature
of the underlying tissue.

In this article we make a series of arguments lead-
ing to the fine-tuning of the H-scan analysis for more
sensitive discrimination of small changes in scatterers
within different regions or over time in response to the
progression of disease or the effects of therapy. First,
an examination of scattering literature concludes that
the transfer function of soft normal vasculature can be
approximated as a power law function, at least over
some bandwidth of a bandpass interrogating pulse.
Secondly, subtle shifts in the size and distribution of
scatterers alter the power law and alter the spectrum of
the reflected echoes. These expected changes are
detected by matched filters in the H-scan process.
However, these effects can be skewed by strong fre-
quency-dependent attenuation. After careful compen-
sation for attenuation, the H-scan bank of matched
filters is capable of discriminating between the shifts in
spectral characteristics.

2. Theory

2.1. The classes of scattering structures
Considering the many different theories of scattering
from inhomogeneities, and then all of the different
types of scatterers and reflectors within tissues, we seek
a coherent framework for characterizing the nature of
tissue scattering in order to apply sensitive matched
filters to distinguish between the classes. As an

overview, it should be noted that the exact solutions
for strong scatterers such as spheres and cylinders can
be very complex, requiring infinite series of spherical
or cylindrical Green’s functions (Faran Jr 1951, Born
andWolf 1980). The situation becomesmore tractable
in the case of weak scattering using the Born approx-
imation (Rayleigh 1918, Morse and Ingard 1987,
Insana et al 1990, Insana and Brown 1993), where
closed form solutions in terms for scattered waves can
be formulated as a type of a spatial Fourier transform
of the scatterer shape, or else in the case of random
structures, as a transform of the correlation function
(Debye and Bueche 1949). Another useful simplified
framework comes from viewing the pulse echo process
as a convolution (Macovski 1983). Within the con-
volution framework and assuming generic bandpass
pulses, it can be shown that the transfer function of
structures or scatterers can sometimes be viewed as
simple frequency domain functions (power laws in
frequency f ) corresponding to a perfect plane reflec-
tor (all pass filter or transfer function f 0), or a
derivative ( f 1), or in-between. For example, the
ensemble average amplitude from the liver has been
estimated as approximately f 0.7 (Chivers and
Hill 1975, Bamber 1979, Campbell and Waag 1984,
Parker et al 2019, Parker 2019b), consistent with the
expected scattering from the fractal branching vascu-
lature. Transfer functions can vary in power law, for
example f 2 Rayleigh scatterers such as a red blood
cells. In figure 1 in the column under red blood cells is
shown its model as simple impedance inhomogeneity,
below that its one-dimensional convolution model

Figure 1. Schematic of shapes of inhomogeneities that cause reflections, with specific transfer functions in the frequency domain,
creating specific orders ofGaussianweightedHermite functions as echoes. Right to left is ordered in increasing power of the frequency
domain reflection function. Second row: Acoustic impedance ( )Z x shows a ramp function, a step function, a thinwall, Rayleigh
scatterers, andHermite scatterers. Third row: the corresponding reflections under the convolutionmodel, obtained by spatial
derivative of the impedance function; a step (corresponding to an integration function), an impulse, a doublet (corresponding to afirst
derivative), a second derivative, and higher order derivatives. Note that soft tissue scattering sites can correspond to fractional orders
above or belowunity. Fourth row: frequency domain transfer function corresponding to integration -f ,1 all pass f ,0 derivative f ,1

second derivative f ,2 and higher order derivatives f .2N Bottom row:Matchedfilter order from theGaussianweightedHermite family
corresponding to each structure, assuming a round trip impulse response of the transmitted pulse as a ( )H tG n function.Most natural
structures within tissues are thought to bewithin the f 0 to f 2 range, thus this range represents the core region forfine tuning of the
H-scan analysis.
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( f 2 is the transfer function of a second derivative), its
frequency domain representation, and finally the form
of the return echo from an incident GHn pulse
according to a simple convolution model, where GHn

are Gaussian-weighted Hermite functions, a useful
bandpass model. Theoretically, even higher power law
transfer functions above f 2 are possible for specially
constructed Hermite scatterers (Parker 2017, Asthei-
mer and Parker 2018). Schematically, this framework
of scattering from structures and tissues is depicted in
figure 1 and some specific details will be explored in
the following sections.

2.2. Convolutionmodels
Assume a broadband pulse propagating in the x
direction is given by separable functions:
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where GH4 is a fourth-order Hermite polynomial for
the pulse shape with a spatial scale factor of sx

(Poularikas 2010, Parker 2016a), representing a broad-
band pulse. Its spatial Fourier transform is then:
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where we use Bracewell’s convention (1965) for the
formof the Fourier transform.Using a 3D convolution
model (Bamber and Dickinson 1980, Macovski 1983,
Prince and Links 2015), we will determine the
dominant echoes.

In the convolution model, the echo transform is
given by the product of the transforms:
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where the ( )kx
2 term pre-multiplying the cylinder

transform stems from the Laplacian spatial derivative
in the Born scattering formulation (Rayleigh 1918,
Morse and Ingard 1987) and in the 3D convolution
model (Gore and Leeman 1977, Bamber and Dick-
inson 1980). One can consider the last two terms of
equation (4) as the frequency domain transfer function
which can change the shape of the interrogating pulse.
This is examined further in the next section.

2.3. The scattering transfer function
From the earliest tissue characterization work in
ultrasound to today, many investigations into soft
tissue scattering have reported the frequency depend-
ence of scattering as commensurate with a power law
(Chivers and Hill 1975, Gramiak et al 1976, Waag et al
1976, Chivers 1977, Bamber 1979, Wear et al 1995,
Nam et al 2013,Wei et al 2018). This is consistent with
some theories of distributions of scatterers over a
range of sizes, or a fractal distribution of scatterers, or
cylindrically-shaped weak scatterers, or random scat-
terers with standard correlation functions (Chivers
and Hill 1975, Waag et al 1976, Bamber 1979, Java-
naud 1989, Parker 2019b). Early in the ultrasound
tissue characterization era, Bamber (1979) noted the
power law behavior seen in measurements from that
period. He also pointed out that different theoretical
models of Born scattering from both deterministic
shapes and random structures, all trended from long
wavelength Rayleigh scattering of f 4 (in intensity), but
then gradually decreased in power law as frequency
increased. The details of this power law trend depend
of course on the specific model but the general
implication is that over any limited bandwidth,
scattering can be approximated as a power law
function of frequency.

Thus, our working approximation is that a band-
pass interrogating pulse in tissue will be scattered
according to a power law transfer function; in terms of
echo amplitude this transfer function is likely to vary
within a range of approximately f 2 at low frequencies
to f 0 at higher frequencies approaching =ka 1. This
power law transfer function will then shift the peak
frequency of the interrogating pulse spectrum, which
will be analyzed in the next sections.

2.4. Generalization of backscatter forHermite
transmit functions; non-integer power laws
We assume a broadband transducer is used to produce
a pulse with a round-trip impulse response. We
consider two bandpass models that are relevant, first
the Gaussian-weighted Hermite functions which have
precise and useful derivative relations, and then the
standard Gaussian spectrum which has been widely
used in pulse-echomodels since at least the early 1980s
(Kuc 1984). First, consider a Gaussian-weighted
Hermite function, in this case of order 4, which we
designate as ( )tH tG ,4 where t is a scale factor:
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and its Fourier transform is:

{ ( )} ( )( )I p t= pt-p t fe4 . 6f 4 9 2 52

The spectral peak occurs at pt=f 2 .max The
time and frequency domain representations of this
function are shown in figures 2(a) and (b),
respectively.
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Now we assume the convolution model with the
transfer function from scatterers of ∣ ∣gf , where for
ensemble averages over liver, we expect g to be near
0.7 (Campbell and Waag 1984). Note also that our
choice of the transfer function as a real and even func-
tion of frequency implies that a real and even transmit
pulse like the HG 4 will, upon convolution with the
scatterer, return an echo that remains real and even in
form. In the frequency domain, the transform of the
echo is given by the product of the pulse and the trans-
fer function, thus
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The inverse transformof this yields:
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where the hypergeometric function is defined in
chapter 15 of Abramowitz and Stegun (1964). This
function has the bandpass appearance similar to that
shown in figure 4, but with an upshifted frequency
content for positive g.

It can be shown that for the echo spectrum of
equation (7), the peak frequency fmax is given by:
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g
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This produces a relatively subtle shift in peak fre-
quencies when tissue structures produce limited varia-
tions in g around 0.7 because the square root of the

g+4 term in the numerator governs this effect, thus
the fine tuning of the H-scan or matched filter opera-
tions requires examinations of these incremental
shifts.

We note that similar effects are produced when
alternative pulses are transmitted. Although the HG n

pulses have general bandpass properties, some other
specific models have been frequently used in

simulations. For example, if we use a sine-modulated
Gaussian pulse, then:
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After convolution with the scatterer transfer func-
tion of ∣ ∣gf , the return echo can also be expressed in
terms of hypergeometric functions. In the frequency
domain, a shift caused by the power law can be calcu-
lated. For the Gaussian-shifted spectrum defined
above, aftermultiplication by ∣ ∣gf the peak is:
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In this case a matched filter can be approximated
by shifted Gaussians, and the similarity to HG n func-
tions can be quite close. However, the HG n family
retains the advantage of possessing exact derivative
relationships between integer orders
(Poularikas 2010).

2.5. Effect of attenuation
For the functions ( )H tG ,n derived from the nth

derivative of a Gaussian (Poularikas 2010,
Parker 2016b), we have the general frequency domain
Fourier transform representation
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for integers >n 0 and >f 0.
The peak frequency fmax is determined by taking

the first derivative with respect to f and finding its

zero. The result is pt=f n 2max for the ( )tH tG n

family. If one of this class of pulses is used in tissue
backscatter imaging with a tissue comprised of scat-
terers with an ensemble average spectral magnitude of
∣ ∣gf and an attenuation of · ·a-e ,f x then the transfer

Figure 2. (a) ( )tH tG 4 round-trip pulse shapewhere t is p1 m s. Its Fourier transform is shown in (b) as a function of f .This time-
frequencymodel is specific to the GH family, but is a reasonable representative of a wider class of broadband ultrasound pulses.
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functionwill be in the frequency domain:
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The peak frequency will be influenced by their
product. Again, using the first derivative to find the
peak frequency of the altered spectrum results in:
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for { }g a t >x n, , , , 0. As g  0 and a x 0, the
result approaches the original spectral peak of the
Hermite function, pt=f n 2 .max As will be shown
in the Results section, the strong cumulative effects of
attenuation can mask any subtle change in scattering
power law behaviors due to alterations of tissue
structure.

Alternatively, if a conventional bandpass Gaussian
pulse is utilized, a corresponding frequency can be cal-
culated. For the expected spectral magnitude of the
returned echomodeled as
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These functions display a nearly linear downshift
in peak frequency with depth for typical parameters
found in human abdominal ultrasound. In
equation (17) f0 is determined by the round-trip
impulse response and results from the scatterers
within tissue. In some cases, there is no reference
impulse response available and average spectra are
sampled from a region of interest within tissue, and
then curve-fit to a Gaussian spectrum. In that case, we
can re-interpret equation (17) with fmax as the
observed ensemble average peak and g implicitly as 0,
thus the equation reduces to

( ) ( )s as= -f f x f x, , , 18fmax 0 0
2

or as an estimate fromplotting the data:
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using the slope of fmax versus depth. A linear down-
shift was first derived for attenuating media and a
Gaussian pulse by Kuc (1984). For completeness, we
note there are many additional estimators for attenua-
tion that have been proposed over the last four decades
(Cloostermans and Thijssen 1983, Parker and
Waag 1983, Parker 1983, Maklad et al 1984, Parker
et al 1984, Parker and Tuthill 1986, Garra et al 1987,
Parker et al 1988, Zagzebski et al 1993, Fujii et al 2002,
Lee et al 2012, Tai et al 2019). More comprehensive

analyses include the effects of beam diffraction and
other systemparameters (Mamou andOelze 2013).

2.6. Compensation for attenuation
Here we proposed an inverse filter approach to the
compensation of attenuation. Once estimated by the
downshift formulas, the inverse filter in the frequency
domain is approximated as a real and even exponential
increase as a function of frequency and depth. In
practice, some upper band limit must be imposed to
ensure finite energy and avoid unproductive amplifi-
cation of noise. In the continuous domain, we note
that a practical, finite energy inversefilter

⎛
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20
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will have positive amplification out to some frequency
set by the sf parameter, taken to be consistent with the
transmit pulse’s upper frequency range. If implemen-
ted as a time domain convolution, assumed to be a real
and even function of time and frequency, the impulse
response of this can be expressed in terms of Gaussian
and erf functions, in which the complex terms appear
as conjugates so the overall result is also real and even.
In digital signal processing, this can be implemented as
an IIR or an FIR discrete time filter of the sampled
echoes.

Of course this inverse filter is depth-dependent,
however the convolution for any increment of x can
be repeated over subsequent increments of x2 , x3 , x4 ,
and onward since repeated convolutions in the time
domain are equivalent to multiplications in the fre-
quency domain, and

( · · ) ( · · · )a a=f x f N xexp expN for real and
positive values of the arguments.

3.Methods

3.1. Attenuation correction
The ultrasound signal is emitted from a transducer as
shown in figure 3, and we assume the RF echoes from
tissue scatterers in the absence of attenuation would
be ( )xRF , where x is the propagated distance from the
probe.

Due to the attenuation the received ultrasound
intensity can be described as ( ) · a-x eRF fx where a is
the attenuation coefficient in NP/cm/MHz and f is
frequency of ultrasound in MHz. The received ultra-
sound is compensated depending on depth in the time
gain compensation (TGC) amplifier, which is a prac-
tical component of ultrasound systems. To recon-
struct the transmitted signal when the gain function is
not recorded, we assume that the TGC was set prop-
erly to a function of depth so as to approximately com-
pensate for attenuation, proportional to â+e x0 at the
depth x and â0 is an a priori estimate of attenuation in
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Np/cm. Therefore, the unamplified ultrasound signal
is reconstructed as

( ) ( ) · ( ) ( )= -x x xRS RF TGC . 211

To compensate for frequency-dependent attenua-
tion, the transmitted signal can be reconstructed in
frequency domain at some selected depth:

{ ( )} · ( ) ( )I x fRS , 22

where ( ) f is a frequency domain function to
compensate for frequency-dependent attenuation. In
this study, we assume ( ) f is proportional to a+e fx0

within a defined region of interest (ROI) and spectral
bandwidth. This is a depth-dependent filter, however
to simplify the implementation, we define several
zones in the depth direction. Each zone has one
nominal depth, xz for each zone z. The reconstructed
transmitted signal results in:

{ ( )} · ( ) { ( )} · ( )I I= ax f x eRS RS 23z
fxz

for { }= ¼z n1, 2, , , where n is the number of zones.
The limited dynamic range of receiver amplifiers and
noise floor will always present a limit as to how far in
depth the correction can be taken. Similarly, the
practical upper limit of the pulse bandwidth in
equation (23)may require an upper limit to the inverse
filter as given in equation (20).

3.2. Estimation of attenuation coefficient
For the attenuation correction in section 3.1, we used
one estimated attenuation coefficient for the same
target when we perform multiple scans. To estimate
the attenuation coefficient, the frequency spectrum
can be modeled using Gaussian pulse and attenuation
of ultrasound, in accord with equations (17)–(19). To
simply compensate for the depth-dependent variables
in the frequency domain spectra, we partitioned the
ultrasound signal into several depth regions, for
example it can be five zones along the axial direction,
as shown in figure 4, or more zones for longer
(deeper)ROIs.

The estimate of the attenuation coefficient within
the ROI is derived from the slope of fmax versus depth.
The peak frequency for each zone is estimated from a
Gaussian fit of the ensemble average spectrum, which
is the Fourier transform of ultrasound signal in time
domain from each zone, averaged across the ROI scan
lines at constant depth. By selecting the maximum
value of the smoothed frequency spectrum, the peak
frequency for each zone can be estimated as a function
of depth, and subsequently a linear fit of peak fre-
quency versus depth is calculated according to
equations (18) and (19) to yield a single attenuation
estimate over the ROI; this approach is shown in
figure 5. The zones in this study were each several mm
in depth, depending on frequency and bandwidth of
different scans, and sufficient to establish reasonable
resolution in both time and frequency.

3.3.H-scan convolution
The H-scan concept is based on convolution with
matched filters corresponding to specific sized scat-
terers. In figure 6, five different matched filters with
different peak frequency were used to obtain convolu-
tion images of a phantom, using a 6.4 MHz center
frequency transducer. The filters with the smallest
peak frequency in figure 6(b) highlighted the target
strings in the phantom, corresponding to larger
structures; otherwise, figure 6(f) enhanced smaller
sized speckles.

In ultrasound images, scatterers from small to
large can correspond to smaller speckles to larger
structures in the human body. When using different
filters, various sized structures in the human body can
be matched to specific filters. In this study, Gaussian
bandpass functions with 256 peak frequencies were
used to obtain convolution between the Gaussian
functions and ultrasound echoes ( )xRF . These corre-
spond to equations (10)–(12), where f0 is taken as
4.7 MHz and fmax ranges from 1.4 to 7.9 MHz for the
case shown in figure 6. The frequencies f0 and fmax are
set depending on the spectrum of the input signal.

Figure 3. Schematic for attenuation correction.
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Thus, each pixel in the ultrasound image has a
corresponding set of 256 convolution values, as shown
in figure 7, from which we select a maximum accord-
ing to the concept of a matched filter. In our experi-
ence, these 256 outputs for each pixel have a single
maximum; in other words, multiple peaks are unlikely
to be observed from soft tissue echoes.

After attenuation correction, the convolution with
Gaussian functions is examined to generate H images,
which are specific frequency range enhanced signals;
in H1, the lowest frequency range signal is amplified,
and the highest frequency is enhanced in H256. The
selected indices for each pixel correspond to a color
map ranging from 1 to 256 RGB colors. Using

Figure 4.Attenuation-corrected spectra. Five zones.

Figure 5.Estimated peak frequencies corresponding to each of 10 zones. The linearfit of this curve is obtained, which can be used to
calculate the estimated attenuation coefficient for the tissuewithin the ROI.

Figure 6. (a) Input ultrasound image. (b)–(f) are convolution images with five differentmatched filters, whose peak frequencies are
1.4, 3.1, 4.7, 6.3, and 7.9 MHz. The smallest peak frequencyfilter in (b) highlights the largest structures in the phantom. The largest
frequency filter of (f) tends to enhance the smallest speckle structure in the ultrasound image.
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transparency overlays to combine the color and
B-mode data, the final H-scan image can be displayed,
as described in the next section.

3.4. Colormap forH-scan
To enhance visualization, a color map for H-scan is
proposed, corresponding to the maximum output
selected from the matched filter bank. This color map
can also be thought of as a way to show the
instantaneous frequency of each pixel in an ultrasound
image.

A flow chart of H-scan is shown in figure 8.
Attenuation-corrected convolution images are
assigned as input data for colormap processing, which
generates the H-scan color map. By combining tradi-
tional B-scan and H-scan color map data, a transpar-
ency of the two displays theH-scan image; the B-mode
contains the highest spatial resolution, and the color
map corresponds to peak frequency components.

A color map of 256 levels is set for H scan; the
levels 1 to 256 correspond to red to blue colors,
sequentially, as shown in figure 9. After the convolu-
tion process described in section 3.3, each pixel has
one maximum matched filter output determining a
specific color map level among 256, as described in
figure 9.

3.5. Experimental setup
H-scans with attenuation correction were obtained
from in vitro and in vivo studies. To evaluate the
performance of the proposed attenuation correction
method, a tissue-mimicking phantom (CIRS 040GSE,
Computerized Imaging Reference Systems, Norfolk,
VA, USA)was used. This phantom has two zones with
higher and lower attenuation, whose attenuation
coefficients were 0.5 and 0.7 dB/cm/MHz. For this
phantom study, a Verasonics ultrasound scanner
(Verasonics, Kirkland, WA, USA) with a linear array
transducer (L7-4, ATL, Bothell, WA, USA) acquired
RF signal at the center frequency of 5 MHz and 6.4
MHz for plane wave and focused wave, respectively.
Coherent plane wave compounding (Montaldo et al
2009) was implemented to obtain beamformed RF
data. TGC data were not recorded for all the scans and
sowere assumed to have been increasing exponentially
with depth as described in section 3.1.

For in vivo studies, rat and mouse liver data were
used and there are three kinds of data: normal, hepatic
fibrosis, and cancerous. For the hepatic fibrosis data, a
Vevo 2100 (VisualSonics, Toronto, Canada) with a
21MHz center frequency linear transducer (MS 250)
was used to scan one normal and three fibrotic rats.
Separately, a spontaneous murine model for

Figure 7.Convolution values for a pixel in ultrasound image. 256 filters were used to get convolution images.

Figure 8. Schematic forH-scan.
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cholangiocarcinoma (Han et al 2019) was imaged
using the Vevo 3100 (VisualSonics, Toronto, CA)with
a 32MHz center frequency linear probe (MX 550D).
Finally, using a liver metastasis model (Soares et al
2014, Ahmed et al 2020); a normal and a cancerous
mouse were scanned, and a Verasonics (Vantage-256,
Verasonics, Kirkland, WA, USA)was used with a L11-
5v probe at 10 MHz center frequency. The VisualSo-
nics scanner used focused beam transmission and the
Verasonics used plane wave transmission. All in vivo
animal studies were reviewed and approved by the
University Committee on Animal Resources at the
University of Rochester or the sponsoring institution.

3.6. Evaluation forH-scan
To evaluate the performance of H-scan, intensity-
weighted percentage of blue ( )IWPblue and red
( )IWPred were defined as follows:

( )

( ) ( )

å
å å

å
å å

=
+

´

=
+

´

Î

Î Î

Î

Î Î

I

I I

I

I I
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IWP 100%, 24

i B i

i B i i R i

i R i
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where i is index of each pixel in B-mode image and Ii

is normalized color intensity for i. The indices, Îi B
and Îi R, are pixels within the ROI classified as blue
and red, respectively.

Our colormap in figure 9 ranges from 1 to 256; the
lower range of 1 to 128 represents red (reflected echoes
have a lower peak frequency), and the upper range of
129 to 256 represents blue (higher peak frequencies).
The extreme color map indices of 1 or 256 are dis-
played as saturated red (lowest frequency matched fil-
ter) or blue (highest frequency), respectively, and so
red and blue shifts can be quantified by their difference
from the middle, denoted as ÎIi R and ÎI ,i B respec-
tively. To normalize the color data ranging from 1 to
256, the red colors from 128 to 1 are re-assigned to 0 to
1 in sequence, and the blue colors from 129 to 256 are
set to 0 to 1, which is given by:

( )=
-

ÎI
C 129

127
, 25i B

i

where Ci is the color map for the ith pixel for blue
data, and

( )=
-

ÎI
C128

127
26i R

i

for red data.

4. Results

4.1. Phantom study
In the phantom study, the attenuation correction
method was evaluated using estimated peak frequency
and H-scan results. Traditional B-mode image and
B-mode after attenuation correction for the phantom
are seen in figures 10(a) and (b), respectively. Their
peak frequencies were estimated for ten depth zones in
figure 10(d). B-mode image has frequency down shift
along depth; otherwise, the down shift after attenua-
tion correction is compensated for, resulting in amore
flat linear fit of estimated frequency. Figures 10(e) and
(f) showH-scan color maps without and with attenua-
tion correction, respectively. More red pixels at
increasing depth are observed when attenuation
correction is not used for H-scan in figure 10(e). After
using the attenuation correctionmethod, red and blue
pixels are more uniformly distributed over the entire
depth, as shown infigure 10(f). The intensity-weighted
percentage of blue and red were averaged for depths
and it is presented as a function of depth; figures 10(g)
and (h) represent the percentages for the method
without and with attenuation correction, respectively.
In figure 10(g), red pixel percentage gradually
increases, and blue pixels decrease due to the fre-
quency down shift. However, in figure 10(h), the
percentage of blue and red pixels are similar with
depth,meaning that the frequency attenuation effect is
compensated by using the proposed attenuation
correction method. As a result, figure 10(c) demon-
strates regularly-distributed red and blue colors
regardless of depth in theHscan image.

Figure 9. For each pixel in B-mode image, there are 256matched filter convolution values. By selecting themaximumvalue, we can
generate a colormap. (a), (b), and (c) are three pixels in a B-mode image. The x-axis represents indices among 256Gaussian, and the y-
axis represents relative amplitude of each convolution value. According tomaximumamplitudes, (a), (b), and (c) pixels are assigned as
red, black, and blue in the RGB colormap, respectively.
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Other H-scan results for the phantom are shown
in figure 11, scanned using focused beam transmission
with 6.4 MHz center frequency. The regularly spaced,
more echogenic wire targets in the phantom appear
more red in color than the background speckle since
the size of the wire targets is larger than the back-
ground scatterers. To show the H-scan results more
clearly, figure 11(d) used threshold in color map,
which shows red colored pixels with color map values
ranging from1 to 55. The clustered red colors are posi-
tioned at wire targets in the phantom.

4.2. Attenuation correction: in vivo study
An in vivo scan of a rat liver with grade 4 hepatic
fibrosis demonstrates color difference betweenH-scan
images without attenuation correction and with
attenuation correction in figure 12. Figure 12(b) shows
the frequency down shift: more blue pixels in near
depth, and more red pixels in the more distal region.
However, after correction the H-scan color distribu-
tion in figure 12(c) is not dependent on depth,
demonstrating that attenuation is compensated prop-
erly, which is consistent with phantom results. The %
of blue and red profile along depth in figure 12(d) is
altered due to the attenuation effect; on the other
hand, after the attenuation correction, the blue and
red percentage distribution becomes more uniform as
shown infigure 12(e).

The attenuation correction method allows us to
correct for color change caused by the frequency down
shift; therefore, a color difference is likely to come
fromvariation of tissue characteristics.

In figure 13(b), a spontaneous murine tumor is
poorly differentiated from normal tissue because of
the shift to more red colors at depth caused by

attenuation. After applying the attenuation correction
shown in figure 13(c), tumor cells appear more red
than normal tissues at the same axial depth.

4.3.H-scan: in vivo study
Murine and rat in vivo studies with diffuse pathologies
demonstrate H-scan visualizations within normal,
hepatic fibrosis, and cancerous tissues. To compare
hepatic fibrosis and normal liver, the H-scan ROI was
set at the same depths in figure 14. For the case of early
and late stage tumor, livers were contoured as shown
in figure 15. To compare the color and percentage, the
H-scan process used the same Gaussian function set
for convolution in the figure 14 case; the figure 15 case
also used the same Gaussian set. Figures 14 and 15
show obvious color difference between the cases;
H-scan results with hepatic fibrosis and severe stage of
tumor contain more blue than the other tissues. The
hepatic fibrosis case has 61.5% of the intensity-
weighted blue percentage, which represents a shift to
the smaller scatterers; on the other hand, the normal
rat liver has 51.9%. According to figures 14(c) and (f),
the hepatic fibrosis case represents a greater difference
of distribution between the red and blue pixels in
H-scan. For the normalized intensity, the mean value
differences between red and blue are 0.18 and 0.03 for
hepatic fibrosis and normal tissue, respectively. The
p-value between the red and blue scatterer groups for
hepatic fibrosis is 1.05×10−10, which is smaller than
the p-value of 0.19 for normal, indicating that hepatic
fibrosis has more significant difference between the
red and blue groups than the normal case; there are no
significant differences for normal. In figures 14 and 15,
the following notations are used for the statistics: ns
(no significance) p>0.05; * p<0.05; ** p<0.01;

Figure 10.H-scan correction for phantom: nominally 0.7 dB/MHz/cm attenuation. Verasonics L7-4, 5 MHzplanewave
transmission frequency. (a)Traditional B-mode, (b)B-mode after attenuation correction, (c)H-scan, (d)Estimated center frequency
along imaging depth and curve-fit. (e)H-scan colormap for traditional RF signal, (f)H-scan colormap for attenuation corrected RF
data, (g) Intensity-weighted percentage of blue and redwithout attenuation correction, and (h) Intensity-weighted percentage of blue
and redwith attenuation correction.
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Figure 11.B-scan andH-scan of phantom, 6.4 MHz focused transmit. (a)B-scan, (b)H-scan colormap, (c)H-scan image. (d)H-scan
colormapwith threshold to show red pixels ranging from1 to 55 colormap levels, which correspond to relatively larger scatterers in B
scan.

Figure 12.Rat liver data. (a)B-mode, (b)H-scanwithout attenuation correction, (c)H-scan after attenuation correction, (d) intensity-
weighted percentage of blue and redwithout attenuation correction, and (e) intensity-weighted percentages with attenuation
correction.
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*** p<0.001; and **** p<0.0001. In the tumor case,
the smaller scatterer percentages are 50.5% for early
stage (the first B-scan at 11 days after the injection of
cancer cells) and 65.8% for late stage (the last scan at
28 days), and the mean value differences between red
and blue are 0.01 for early stage and 0.17 for late stage.
For the blue and red distribution in figures 15(c) and
(f), late stage metastatic pancreatic ductal adenocarci-
noma (PDAC) tumor demonstrates a greater differ-
ence compared to early stage PDAC; p-values between
red and blue groups are 0.0813 and 1.0597×10−10

for early and late stage, respectively.

5.Discussion

Our analysis of transfer functions from different
classes of scatterers has led to a generalization in terms

of a simple power law function of frequency, whereby
shifts in the scattering size or type lead to shifts in the
power law. Integer orders of power law 0, 1, and 2,
correspond to an all-pass filter, a derivative, and a
second derivative, respectively, and structures with
these behaviors are easily constructed in the laboratory
and may be approximated in tissues under certain
conditions (Parker 2016a). Fractional power laws
above and below 1 may correspond to a physiological
range of fluid-filled vessels modeled as cylinders
(Parker 2019b). While the exact solution for specific
scatterer shapes can be complicated, the narrowband
slope for <ka 1 is more easily characterized by power
law behavior. This is consistent with a first order
expansion, or Taylor’s series expansion in log-log
space around some frequency. In the long wavelength
(Rayleigh scattering) regime the power law is 2,

Figure 13.Murine tumor in liver. (a)B-mode, (b)H-scanwithout attenuation correction, and (c)H-scan after attenuation correction.

Figure 14.H-scan of normal and abnormal rat livers. The upper row and lower row data are the results of normal and hepaticfibrosis
rat, respectively. (a) and (d) showH-scan images withH-scan box, and (b) and (e) showH-scan colormap data. (c) and (f) showhalf
violin and half box plots.
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frequency squared for the amplitude of the scattered
wave. As ka increases towards unity the slope
decreases, ultimately towards zero as shown by
Bamber (1979). The H-scan matched filters can be
arranged so as to detect some shifts in the transfer
function. We note that historically, bandpass filter
banks have been used in ultrasound as frequency
diversity approaches to flaw detection (Bilgutay et al
1979, Bilgutay and Saniie 1984) and for speckle
reduction (Galloway et al 1988). The H-scan differs
from these in its framework of selecting the matched
filter for echoes produced by subtle changes in
scattering characteristics.

A practical question involves the minimum sensi-
tivity of the matched filters to subtle shifts in tissue
structures. The shift in peak frequency as a function of
power law g and other factors is given by equations (9)
and (12) for the case of a HG 4 pulse and a Gaussian
pulse, respectively. Also, the functional dependence of
the power law a on the cylinder radius is maximum in
the long wavelength limit where transfer functions are
proportional to frequency squared. Using the chain
rule of calculus, for a bandpass pulse with peak spec-
trum at f ,max we canwrite:

⎜ ⎟⎛
⎝
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⎠ ( )
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The first term on the right can be simply obtained
for our specific cases by differentiation of either
equations (9) or (12) for HG 4 or Gaussian bandpass
models, respectively. For example, from equation (9)
wehave:
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The second term ( )g¶ ¶a is more complicated
since g is a power law fit, but the derivative with
respect to a is linear. However, from the literature
(Bamber 1979, Parker 2019b) we observe that the
slope in log-log space is 2 at low ka and then slowly
decreases to 0 near =ka 1 for a number of models. In
the important subresolvable zone near =ka 0.1 or
0.2, we find generally that g¶ ¶a is in the range of k 4
(units of 1/length). Using this, we have:
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Now examining the case where the peak frequency
was 6MHz pt@ 2 , and g near 2, we have:
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This result is consistent with the findings pub-
lished previously (Khairalseed et al 2017), where chan-
ges in scatterer radius on the order of 10 mm were
separated by a set of 4 H-scan filters, implying a
0.1 MHz discrimination in outputs.

Limitations of this study include the effect of noise
on the performance of the matched filters. As can be
inferred from figures 7–9, there can be substantial
overlap in the spectra of neighboring matched filters,
however from equation (15)–(17), we wish to have fine
grain sensitivity to changes in the scattering transfer
function. Broadband noise can degrade the correct

Figure 15.H-scan of early stage and advancedmetastatic cancermurine livers. Upper row data are from early stage following injection
of cancer cells, and lower row data are from the liver withmetastatic cancer at end stage. (a) and (d) areH-scan images. (b) and (e) are
H-scan colormaps. (c) and (f) showhalf violin and half box plots. End stage tumor tissues appear significantlymore blue.
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choices of a matched filter bank by adding uncorre-
lated and random components to the signal. These
interactions and their parameterization are left for
future study, however it can be concluded generally
that the accuracy of selecting the correct matching fil-
ter will degrade as the signal-to-noise ratio decreases.

6. Conclusion

The H-scan analysis implemented as a set of matched
filters is capable of distinguishing relatively small shifts
in scatterer transfer functions, corresponding to small
changes in size of the dominant scatterers within a
region. The effects of frequency-dependent attenua-
tion can be a confounding factor at increasing depths,
however a zone approach to attenuation correction
can be carried out to mitigate these effects, at least to
some noise-limited depth. These analyses can be cast
into a deterministic frameworkwherebymany types of
scatterers encountered by an incident bandpass pulse
have a scattering transfer function that is modeled as a
power law. The general trend is for smaller structures
to have higher power laws. Within natural structures
of soft tissues, the power law g will frequently lie above
0 and below 2, with many important changes in tissue
due to pathologies resulting in subtle shifts from
baseline values. The clinical uses of H-scan, providing
greater discrimination of subtle changes in tissue due
to pathology, is potentially broad. Applications extend
from cancer detection and staging to a variety of
diffuse diseases such as steatosis of the liver, so long as
a shift in the underlying scattering is present. This has
been a goal of tissue characterization efforts for
decades.
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