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Abstract—Fifty years of research on the nature of backscatter from tissues has resulted in a number of promis-
ing diagnostic parameters. We recently introduced two analyses tied directly to the biophysics of ultrasound scat-
tering: the H-scan, based on a matched filter approach to distinguishing scattering transfer functions, and the
Burr distribution for quantification of speckle patterns. Together, these analyses can produce at least five param-
eters that are directly linked to the mathematics of ultrasound in tissue. These have been measured in vivo in 35
rat livers under normal conditions and after exposure to compounds that induce inflammation, fibrosis, and stea-
tosis in varying combinations. A classification technique, the support vector machine, is employed to determine
clusters of the five parameters that are signatures of the different liver conditions. With the multiparametric
measurement approach and determination of clusters, the different types of liver pathology can be discriminated
with 94.6% accuracy. (E-mail: kevin.parker@rochester.edu) © 2020 World Federation for Ultrasound in
Medicine & Biology. All rights reserved.
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INTRODUCTION

Assessment of the structural and functional state of the

liver is a primary concern for diagnostic imaging

(Taylor and Ros 1998; Ozturk et al. 2018). Ultrasound

examination of the liver is an accessible and inexpensive

tool across most of the world. There is a long and distin-

guished history of research in the ultrasound echoes

returning from the liver, and their change with diseases,

from early tissue characterization work (Chivers and

Hill 1975; Gramiak et al. 1976; Bamber 1979;

Lizzi et al. 1983; Campbell and Waag 1984;

Insana et al. 1990; Zagzebski et al. 1993) to more recent

investigations (Higuchi et al. 2014; Al-Kadi et al. 2016;

Liao et al. 2016; Zhou et al. 2018; Lin et al. 2019;

Tamura et al. 2020). At this point in time there are a vari-

ety of research techniques available and growing num-

bers of commercial scanners that offer new parameters

related to echoes from tissue. Yet agreement on the pre-

cise properties of ultrasound from normal and diseased

livers remains elusive. This situation is mirrored by
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uncertainty as to the most appropriate physical and math-

ematical models of scattering from the normal and dis-

eased

tissues.

There are, however, numerous studies characteriz-

ing the diseases using ultrasound images or derived

parameters (D’Souza et al. 2019); furthermore, these

have been introduced into computer-aided diagnostic

systems using machine learning. For example, the char-

acterization of normal, cirrhotic and hepatocellular carci-

noma has been studied (Virmani et al. 2013a, 2013b).

The grade of liver fibrosis was determined by feature

extraction and the support vector machine (SVM)

(Yeh et al. 2003). Breast tumors were identified as

benign or malignant using image processing including

segmentation and feature extraction (Wu et al. 2012).

Almost all machine learning studies have employed

ultrasound images as the input and used common image

processing techniques including segmentation and

feature extraction (Chang et al. 2010;

Acharya et al. 2012). Some researchers employed

parameters extracted from the images (such as con-

trast, signal-to-noise ratio and standard deviation)

(Sujana et al. 1996; Ogawa et al. 1998).
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Fig. 1. Schematic of dominant scattering structures from
normal liver tissue in an abdominal ultrasound scan. Shown
is a micro-computed tomography contrast-enhanced 3-D
rendering of the vasculature within a mouse liver. In nor-
mal liver, the weak scattering from the fluid-filled vascula-
ture is a major source of returning echoes. Mathematical
models of speckle and scattering can account for the fractal

nature of the vascular tree.
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Although previous studies tried to include multiple

features as the input for training, the majority are based

on image processing metrics, which frequently are inter-

related. In general, having more independent features

results in more accurate classifications. In this study, we

derive independent estimates of ultrasound first- and sec-

ond-order statistics based on biophysical models.

Because pathology scores are based on fatty, cir-

rhotic and ballooning content of the liver, we first exam-

ine the theoretical models of scattering that are likely to

be dominant in cases of normal, steatotic, fibrotic, and

inflamed liver tissues. Second, the effect of these scatter-

ing models on the returning echoes is examined in terms

of their first-order statistics (the histogram of echo

amplitudes) and second-order statistics (the backscatter

vs. frequency). Third, we examine liver echoes from rat

livers using a high-frequency ultrasound scanner, with

and without carbon tetrachloride (CCl4), or concanavalin

A (ConA) exposure, which incites a hepatic response,

including varying degrees of fat accumulation, fibrosis,

and inflammation. Finally, a SVM was implemented to

classify the clusters of pathologic liver states in multi-

parametric space.

These results provide the beginning of a coherent

framework for determining the signatures or clustering

in multiparametric space of the normal liver compared

with steatotic, fibrotic, or inflammatory livers.
THEORY

Fractal branching theory for normal liver

The pioneering studies of ultrasound scattering

from human and animal livers established a number of

key results (Chivers and Hill 1975; Gramiak et al. 1976;

Bamber 1979; Zagzebski et al. 1993). The frequency

dependence of scattering was found to be a power law

function of frequency, for example, the average intensity

rising as f1.4 power (Campbell and Waag 1984). The

speckle statistics of the returning echo amplitudes were

found to be somewhat analogous to that of optical

speckle (Burckhardt 1978). Most of the work on scatter-

ing theory postulated scattering from spheres or spheri-

cal correlation functions, mostly attributed to cell size

and shapes (Lizzi et al. 1983; Insana et al. 1990). How-

ever, more recently we postulated that scattering from

the normal liver is dominated by the weak acoustic

impedance mismatch between the branching fractal

structure of the fluid-filled vascular bed and the sur-

rounding parenchyma comprised of mostly close-packed

hepatocytes. In this theoretical framework, the mathe-

matics of speckle and scattering is not based on historical

models of random points or spheres, but on the mathe-

matics of scattering from cylinders and fractal branching

structures (Parker 2019a, 2019b; Parker et al. 2019) as
illustrated in Figure 1. A key parameter in fractal analy-

sis is the fractal dimension D, which, in 3-D structures

such as the liver vasculature, is a measure of how the

self-similar and multiscale elements progressively fill a

3-D volume. Measurements of fractal dimensions of vas-

cularized tissues tend to estimate D in the range 2�2.5

(Carroll-Nellenback et al. 2020; Parker and Poul 2020b).

The fractal structure’s key parameters are summarized in

Table 1. Furthermore, the probability distribution func-

tion for speckle amplitudes from the fractal branching

vasculature are dominated by a power law relationship

related to D, specifically in the form of a classic Burr dis-

tribution (Parker and Poul 2020a).

Rayleigh scattering for simple steatosis

The most elementary model for scattering from a

liver with early steatosis is an additive model, where the

base model for a normal liver still applies with the addi-

tion of the scattering from the accumulating fat. In early

stages of fat accumulation in the liver, microvesicles and

macrovesicles appear within hepatocytes. On pathology

slides these can appear as small randomly positioned

spheres (<20 mm), and because they are composed of

triglycerides, these have a speed of sound and density

different from those of the surrounding hepatocytes and,

hence, are a source of scattering. Classic models of ran-

dom Rayleigh scatterers may apply with the long-wave-

length approximation of backscattered intensity

increasing as f 4 power across conventional imaging fre-

quencies. However, it may be too simple to consider

only randomly positioned, single spherical scatterers as

models of the inhomogeneous fat vesicles, particularly



Table 1. Interrelationship of fractal metrics in three dimensions

Name Symbol Equation Notes

fractal dimension D NðlÞ» l�D box counting with scale l; D< 3

autocorrelation C(r) CðrÞ»C0=rð3�DÞ r is autocorrelation lag in spherical coordinates; r> 0; D< 3

3D spherical Fourier transform 3DS={ } 3DS = f1=rð3�DÞg» 1=qD q is spatial frequency; 1<D< 3

scattering differential cross section sd(k) sdðkÞ» kð4�DÞ k is wavenumber, derived from Fourier transform of C(r); D< 3

speckle probability histogram p[A]
2Aðb�1Þ

λ2 A
λð Þ2þ1

� �b p[A] is the probability of an echo of amplitude A,
based on scattering from a fractal branching vasculature
with power law parameter b and scale factor λ, related to
the classical Burr probability distribution
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as the percentage of fat increases. As the steatosis pro-

gresses, the spatial distribution of fat can be heteroge-

neous, concentrating in periportal patterns (Schwen

et al. 2016). Furthermore, the composition of fat in later

stages can be shifted (Peng et al. 2015; Chiappini

et al. 2017), so both the size distribution and the scatter-

ing strength may be a function of the stages of progres-

sion of simple steatosis. The clustering effect across a

number of scales from the smallest microvesicles to the

larger portal structures may mimic a fractal clustering

structure (Javanaud 1989; Shapiro 1992), which then

comports with the general behaviors described in Table 1.
Thin septae for CC14 fibrosis

As illustrated in Figure 2, early fibrosis response

after CCl4 exposure is in the form of thin septae that

extend around the portal triads within the liver. These

can be <20 mm in thickness and represent a sheet of

increased density and compressibility compared with

surrounding hepatocytes. Thus, these form a network of

scattering sites which we model as additive to the base-

line model for normal liver. In simplest theory, the 1-D

convolution model for normal incidence on a thin sheet

predicts a scattering transfer function proportional to f 1

(Macovski 1983; Parker 2016). This represents an

upshift in the scattering amplitude transfer function com-

pared with baseline values of f 0.7 (or f 1.4 in intensity) by

Campbell and Waag (1984).
Influence of inflammation

The effects of early inflammation include the pres-

ence of ballooning of cells, necrosis and apoptosis

(Lackner 2011), which could be modeled as a spherical

impedance mismatch with respect to the surrounding

hepatocytes, thereby serving as a source of Rayleigh

scattering. This would contribute a scattering transfer

function proportional to f 4 power in intensity (f 2 in

amplitude) at long wavelengths. However, if the volume

percent of swollen cells is low, and their Rayleigh scat-

tering is weak, these additive contributions could be
difficult to separate out from the stronger effects of the

baseline scattering, plus steatosis, plus fibrosis if present.
Influence on H-scan and Burr parameters

The theoretical scattering models listed above are

hypothesized to be additive to the baseline case of the

normal liver. In our study the particular measurements

employed are related to the H-scan analysis, a matched

filter approach sensitive to scattering transfer functions.

In addition, the analysis of speckle amplitude histograms

is studied. The details of these analyses are given under

Methods, and the analyses produce five estimated param-

eters. Our hypothesis, based on the scattering models, is

that these metrics will be sensitive to changes in the

hepatic scattering structures under conditions of fibrosis,

steatosis, and inflammation. The trends are given in

Table 2. Briefly, under the additive models, most param-

eters are expected to increase with the addition of scat-

tering structures. The exceptions are for ultrasound

attenuation under fibrosis and inflammation, where the

addition of low-attenuating collagen and fluid, respec-

tively, lowers the overall loss. However, we currently

lack the accurate parameters (e.g., the size distribution

and material properties of the fat vesicles) required for

quantitative predictions. For that reason, the principal

components analysis and clustering of classes using the

SVM will be applied to the measured results. These are

described in later sections.
METHODS

Study design and animals

An in vivo study was designed as illustrated in

Figure 3 to investigate normal and diseased liver in rats.

All animals were maintained according to the National

Institutes of Health (NIH) standards established in the

Guide for the Care and Use of Laboratory Animals. The

Pfizer Animal Care and Use Committee approved all

experimental protocols. Rats were pair-housed, had free

access to water and were fed a standard commercial lab-

oratory-certified rodent diet (No. 5002, PMI Feeds, Inc.).

The testing facility maintained a 12-h light/dark cycle,



Fig. 2. Histology images of liver sections stained with picrosirius red for fibrosis. Object scale and 10£ object virtual
magnification are shown. Left, middle, and right columns represent untreated control, vehicle control, and fibrosis
induced by CCl4 administration; fibrosis structures were stained picrosirius red and are shown in the right column
images. The upper set of images denoted as “day 29” were obtained 29 d after the start of dosing CCl4 as a fibrosis
inducer; similarly, the lower set was obtained 56 d after the start of dosing. Control and vehicle groups appear to be

unchanged; however, the CCl4 dosing group in the right column exhibits fibrosis growth from days 29 to 56.
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Fig. 3. Study design and data acquisition of ultrasound. All 35 enrolled rats were scanned by ultrasound every 2 wk.
Twenty-six rats were dosed to induce liver diseases. At the termination of the study, rats were euthanized, and then his-

tology and assessments were performed. ConA = concanavalin A; US = ultrasound.

Table 2. Hypothesized changes in measured parameters based on additive models of scattering from fibrosis, fat and inflammation*

H-Scan Burr

% Blue: higher frequency
scattering

a: Attenuation IdB: Brightness b: Number density
fractal branching

λ: Scale of echoes from
fractal branching

Normal 50% by design 0.05 Np/cm/MHz -15 dB measured 3 measured 350 measured
Fibrotic, low fat " # " " "
Fibrotic, high fat dependent on distribution " " "" ""
Inflammation weak " weak # weak " weak " weak "

* Arrow directions indicate increase or decrease.
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with controlled temperature, humidity, and air changes.

A total of 35 male rats were analyzed for this study, 31

Sprague�Dawley (SD, Charles River Laboratories, Wil-

mington, MA, USA) and 4 TAC NIHRNU (nude,

Taconic Biosciences, Inc., Rensselaer, NY, USA). A

CCl4 (Sigma Aldrich, St. Louis, MO, USA) model

was used to induce fibrosis with varying fat, and a

ConA model was used to induce inflammation. ConA

has been reported to induce acute hepatitis

(Heymann et al. 2015), and CCl4 induces fibrosis and
Table 3. Descriptions of th

Dosing Confirmed state

Control or vehicle controls (olive oil PO) Normal
CCl4 Fibrosis with low faty

CCl4 Fibrosis with high faty

Concanavalin Inflammationz

SD = standard deviation.
* This study was designed to use fibrosis inducers to cause liver disease. T

nude rats were confirmed as fibrotic with low fat. The four confirmed states
machine classifier. Each rat has approximately 30 ultrasound scan frames, resu

y Fibrosis with low fat and fibrosis with high fat are classified by oil red O
fat and fibrosis with high fat have <6.5% and >9% fat, respectively.

z Inflammation group has no fibrosis and very low fat, which is comparable
varying degrees of steatosis, as outlined in Table 3.

ConA was dosed intravenously once each week at a

dose of 20 mL/kg in sterile phosphate-buffered saline,

and CCl4 was dosed orally three times per week

(Monday, Wednesday, and Friday) at a dose of

1 mL/kg in a 1:1 mixture with the vehicle olive oil.

To monitor the livers over time, rats were ultrasound

imaged at baseline, that is, before dosing and every 2

wk after dosing began. A Vevo 2100 (VisualSonics,

Toronto, ON, Canada) was used to image the rats
e four liver groups*

Oil red O-stained area (%, mean § SD) No.

1.2 § 1.5 9
2.9 § 1.9 11
17.3 § 11.2 6
0.7 § 1.6 9

he total of 35 rats includes 31 Sprague�Dawley and 4 nude rats, and all
by pathology are considered as desired classes in the support vector
lting in 998 frames for training set.
-stained area compared with tissue-stained area (%). Fibrosis with low

to normal group.
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with a 21-MHz center frequency linear transducer

(MS 250), and radiofrequency (RF) data of the liver

were collected. The liver echoes were used for signal

processing to estimate tissue parameters, including H-

scan classification, attenuation estimation, B-scan

intensity, and ultrasound speckle statistics using the

Burr distribution.

For scanning, rats were anesthetized with 1%�3%

isoflurane and euthanized by CO2 inhalation, followed

by necropsy and collection of liver tissues for histology

analysis. The time points for euthanasia were 4, 6, and 8

wk after dosing for 7, 12, and 16 rats, respectively.

Blood serum panels were obtained at baseline and every

2 wk for liver biomarker analysis (alanine transaminase,

aspartate transaminase, glutamate dehydrogenase, albu-

min, globulin, alkaline phosphatase, glucose, insulin, bil-

irubin, g-glutamyl transferase). Fibrosis was assessed by

trichrome stain and Picrosirius Red. Oil Red O stain was

used to detect lipid, and the area was compared with the

tissue stained area and provided a ratio (%) of oil red O

stain area to tissue area as an indicator of fat content.

With these measures, the liver states were categorized

postmortem by an expert pathologist as described in

Table 3.

H-Scan analysis

A summary of the H-scan method is given in this

section; additional details can be found in Parker and

Baek (2020). Fundamentally, the H-scan is a matched fil-

ter analysis that models the pulse-echo phenomenon as a

power law transfer function in the frequency domain. In

general, smaller structures have higher power law trans-

fer functions, and these are encoded as blue on the visual

display of the H-scan output. However, frequency-

dependent attenuation effects can accumulate over depth

and require compensation if an accurate analysis is

required.

Attenuation estimation and correction within the H-scan

analysis

Ultrasound imaging systems commonly employ a

pulse with a round-trip impulse response that can be

approximated by a bandpass Gaussian spectrum of

e�ðf�f0Þ
2=2s2

with a center or transmit frequency of f0 and a

bandwidth of s. When considering the frequency and

depth-dependent attenuation of e�afx, the frequency spec-
trum is described by

S fð Þ ¼ e
� f�f0ð Þ2

2s2 ¢ e�afx ð1Þ
where a is the attenuation coefficient (in Np/cm/MHz), f

is frequency of ultrasound (in MHz) and x is depth (in

cm). The attenuation makes the peak frequency of the

spectrum decrease, which can be estimated by taking the
first partial derivative with respect to f and finding 0 at

peak frequency fp given by

@S
@f

����
f¼fp

¼ fp�f0
s2

þ ax
� �

¢ S fp
� � ¼ 0: ð2Þ

We obtain the attenuation coefficient in the form

â xð Þ ¼�fp xð Þ�f0
x ¢ s2

ð3Þ

where f0 and s represent properties of the transducer

related to transmit frequency and designed bandwidth,

respectively. Therefore, by measuring peak frequency

along with depth of fp(x), the attenuation coefficient can

be estimated according to eqn (3). This approach

assumes homogeneous (or stationary) distribution of

scatterers within the region of interest (ROI), but has the

advantage of being independent of amplitude fluctua-

tions related to system gain.

As an example of this approach, Figure 4a is a

B-scan of a rat liver with a ROI for H-scan process-

ing, and Figure 4b is an H-scan colormap. By averag-

ing the color values over all scanlines within the

ROI, representative H-scan color levels along with

depth x can be calculated as illustrated in Figure 4 (c,

d); the color levels can be converted into peak fre-

quencies in Figure 4f by pseudocolor given in

Figure 4e. The color levels from 1 to 256 are mapped

to frequencies ranging from 8.7�20.3 MHz. The mea-

sured peak frequency in Figure 4f is used to estimate

the attenuation coefficient in eqn (3), and the attenua-

tion coefficients obtained are averaged over depth. In

summary, the attenuation coefficient can be obtained

using H-scan results within assumptions of a Gauss-

ian bandpass pulse and attenuation of the form e�afx.
Once the attenuation parameter is estimated for a

given ROI in the liver, a depth-dependent inverse filter

can be applied to correct for losses, at least to the limit

of the noise floor (Parker and Baek 2020), and proceed

with the matched filter analysis. The final outputs for

each liver ROI are estimates of attenuation (a in dB/cm-

MHz), echogenicity or brightness (dB), and percentage

of blue. The attenuation coefficient was estimated by

averaging eqn (3) over depth within the ROI. Brightness

was calculated from log-compressed data where 0 dB is

set to the same brightness level for all scans. When cal-

culating percentage of blue, color levels obtained from

H-scan ranging from 1 to 256 as illustrated in the color

bar in Figure 4b were used; the pixels with color levels

of [1, 128] and [129, 256] are red (i 2 R) and blue pixels

(i 2 B), respectively. Data normalization was performed

by converting the color levels from 1 to 256 into the nor-

malized color levels I from �1 to 1 in sequence; then

percentage of blue is defined by



Fig. 4. Attenuation estimation using H-scan.
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% of blue ¼
1
nB

P
i2 BjIij

1
nB

P
i2 BjIij þ 1

nR

P
i2RjIij

� 100% ð4Þ

where i is the index of each pixel in B-scan, Ii is normal-

ized color level value for the pixel i, and nB and nR are

the numbers of blue and red pixels, respectively.

First-order statistics of speckle and the Burr distribution

Consistent with the framework provided in

Figure 1 and Table 1, the normal liver’s speckle pat-

tern results from the fractal self-similar network of

fluid vessels (Parker 2019b; Parker et al. 2019;

Parker and Poul 2020a). Our analysis assumes that a

broadband pulse interacts with a fluid-filled, branch-

ing, self-similar set of long vessels in the tissue,

whose number density as a function of radius a is

described by a power-law behavior as NðaÞ ¼ N0=ab,
with the key power law parameter b governing the

branching behavior of the vasculature over a wide range

of scales. By finding the dominant echoes from the 3-D

convolution model, the histogram of echo amplitude is

derived and, after normalization, can be expressed as a

probability density function (PDF):

Nn A½ � ¼ 2A aminð Þb�1 b�1ð Þ

A2
0

A
A0

	 
2

þ amin

� �b ð5Þ
Equation (5) is a three-parameter PDF describing

the distribution of the echo amplitude A with A0 and amin

related to the system gain and minimum size of scatter-

ing vessels, respectively. This equation reduces to a two-

parameter PDF by change of variables as λ ¼ A0

ffiffiffiffiffiffiffiffiffi
amin

p
:

Nn A½ � ¼ 2A b�1ð Þ
λ2 A

λ

� �2 þ 1
h ib ð6Þ

The two-parameter PDF of eqn (6) happens to be a

Burr type XII distribution, which was derived in the

1940s without any consideration of ultrasound

(Burr 1942). The speckle distribution has also been

found to be in reasonable consistency with the parame-

ters of the Lomax distribution when fitted to the intensity

of echoes and also with the logistic distribution parame-

ters when fitted to the natural log of echo amplitudes, by

employing the general transformation principle

(Parker and Poul 2020a).

The two parameters of b and λ may be sensitive to the

change in the scattering structures of soft tissues. The two

parameters of the Burr distribution are estimated using

MATLAB’s (The MathWorks, Inc., Natick, MA, USA)

non-linear least-squares minimization of errors when fitted

to the normalized distribution of the speckle amplitude data

from the liver ROIs. To place a reasonable bound on the

parameters of b and λ in curve fitting, an additional step is
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taken. We calculate the mode and median of the speckle

histogram and compare these with the theoretical formulas

for the Burr distribution:

Mode ¼ 1

2b�1

� �1
2

¢ λð Þ ð7Þ

Median ¼ 2
1
b�1ð Þ�1

	 
1
2 ¢ λð Þ ð8Þ

By use of eqns (7) and (8) for the mode and median

of the Burr distribution, which both depend on b and λ, a
system of equations is solved for each image frame’s

ROI to obtain frame-by-frame estimates for these two

parameters. These data are used as bounds with §10%

to §20% intervals for the histogram Burr fitting estima-

tion of b and λ. This additional step ensures that the

parameters lie in a trimmed, middle range. This process

is done for all the frames for each of the selected 35 rat

liver data and the results of the b and λ parameters pre-

sented as boxplots, separating the sensitivity of parame-

ters in four groups of rat livers.
Fig. 5. Overall block diagram for support vector machine
(SVM) classifier to train and predict liver states. Ultrasound
scan of liver area where region of interest (ROI) is contoured.
Five measurements are obtained by H-scan analysis, attenua-
tion estimation, B-scan intensity estimation, and Burr histo-
gram analysis with two parameters. Thus, each input image has
five features that are assigned as the input of the SVM classi-
fier. During training with a train set, SVM constructs decision
planes for the four groups: normal, fibrosis with low fat, fibro-
sis with high fat, and inflammation. To visualize the training
set and decided hyperplanes in the 3-D plane, principal compo-
nent analysis was performed to reduce the number of features

from five to three.
SVM classifier

The classification of liver pathology states was per-

formed by the SVM, which results in decision planes for

the classification in the 5-D parameter space: H-scan,

attenuation, B-scan, and Burr b and λ. Figure 5 is a sche-

matic of the proposed classifier. For each of the 35 rats

scanned, the liver ROIs were manually set to select rela-

tively uniform liver appearance with an absence of arti-

facts such as shadowing and reverberations. Each case

has approximately 30 frames, including the liver; there-

fore, a total of 998 ultrasound images were enrolled as a

training set. Instead of using the images directly as the

machine learning input, this study uses the five measure-

ments within the ROIs as the input: the percentage of

blue from the H-scan, the attenuation coefficient a (dB/

MHz/cm), the intensity IdB (dB) from the B-scan, and λ
and b (dimensionless) from Burr histogram analysis. In

other words, the five measurements define the five input

features of the machine learning procedure, and the total

number of features is 998:

x nð Þ; y nð Þ
	 
n oN¼998

N¼1
;where x nð Þ

¼ % of blue;a; IdB; λ; bð Þ2R5 ð9Þ

Here y(n) is a desired class confirmed post-mortem

pathology, and there are four classes: normal, fibrosis

with low fat, fibrosis with high fat, and inflammation.

Ideally, the five metrics for each class form clusters in

the 5-D space, whereby the goal of this machine learning

study is constructing decision planes to distinguish the

liver states based on the parameters. Further details of

our implementation, including the training protocol, are

found in the Supplementary Data, Appendix A (online

only).
RESULTS

B-Scan, H-scan and attenuation parameters

The enrolled 35 rats were scanned every 2 wk, and

we attempted to contour the ROIs consistently over time

by using vessels or skin layer as landmarks, whereby the

ROIs for the same rat are located in the relatively same

position near the biomarkers over time. The selected B-

scan and H-scan results are in Figure 6; ROIs for the

processing are indicated using the red boxes. The H-scan

of low fat fibrosis and inflammation classes appear more

blue than those of normal livers, but high fat fibrosis

cases show more red compared with normal cases.

Selected histology results are illustrated in Figure 2, and

fibrosis structures were stained in red. CCl4-exposed rats

had an increase in fibrosis from 29 to 56 d after the start

of dosing, while untreated and vehicle controls remain



Fig. 6. B-Scan (top row) and H-scan (botom row) images of (a) normal, (b) fibrosis with low fat, (c) fibrosis with high
fat, and (d) inflammation.
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unchanged over time. The thin fibrotic septae seem to

divide the sinusoids, driving the H-scan results for fibro-

sis cases with more blue colors, indicating the addition

of relatively small scattering sites.

The investigation over time and the statistical plots

are provided in Figure 7. H-Scan results of low fat fibro-

sis and inflammation in Figure 7 (a, b) indicate an

increase in percentage of blue over time, and low fat

fibrosis has a greater percentage of blue than inflamma-

tion, which is also illustrated in Figure 6; low fat fibrosis

in Figure 6b exhibits a greater increase in blue than the

case of inflammation in Figure 6d. As for the high fat

fibrosis group in Figure 7a, the effect of fibrosis growth

is likely to mainly appear from the first until the fourth

week as the increase in percentage of blue; but the fat

accumulation effect appears later in the sixth and eighth

weeks, exhibiting the decrease in percentage of blue.

According to statistics in Figure 7b, the H-scan can dis-

tinguish the four groups from each other, although there

are overlapped distributions between the groups.

Figure 7 (c, d) represent the results of attenuation estima-

tion. Attenuation for normal and inflammation groups

remains unchanged over time. However, attenuation for

fibrosis with low fat decreases over time. Attenuation for

fibrosis with high fat tends to decrease until the sixth

week but increase later, suggesting that the dominant

effects of fat appear later, which is consistent with the

H-scan trend for fibrosis with high fat. According to sta-

tistics of attenuation results in Figure 7d, attenuation can

separate the four groups except for one case of compari-

son: normal versus high fat fibrosis. Figure 7 (e, f) illus-

trate the results of the B-scan. Fibrosis increases in
brightness over time, while normal and inflamed liver

remain unchanged. According to the brightness of the

B-scan in Figure 7f, there can be significant differences

when comparing the four groups. Although normal liver

and inflammation overlap, the B-scan can statistically

separate the two groups; however, the B-scan indicates

better separation between normal liver and fibrosis.

According to the data distribution in half-violin plots in

Figure 7 (b, d, and f), the three analyses play essential

roles to separate some cases from others but they work

well for different separations. To be specific, the B-scan

indicates better separation between normal and fibrosis,

although it has more overlap between fibrosis with low

and high fat; however, the H-scan and attenuation can

differentiate low and high fat. Furthermore, the H-scan

is the method that can indicate the best separation

between normal and inflammation. Therefore, combin-

ing the results can provide the potential to discriminate

each case from the others.
Burr parameters

For each image frame from the 35 rat livers of this

study, the analysis is performed on a well-defined ROI

and the underlying Burr statistical properties of the liver

speckle are derived from the envelope of the RF signal.

The ROIs for the Burr study are located in the same

region as those used in the H-scan and attenuation stud-

ies in this work to ensure that the analyses are applied

consistently. Because of the sensitivity of the Burr

parameters to the presence of large inhomogeneous

regions, the ROIs were adjusted slightly if necessary to



Fig. 7. H-Scan, attenuation, and B-scan result plots. Left column: Investigation over time, including progression of dis-
eases. Right column: Statistics at the final time points for 35 rats; rats were euthanized at different time points ranging
from 4 to 8 wk after the start of dosing. The following notations are used for the statistics: ns (no significance),

p > 0.05; *, p <0.05; **, p <0.01; ***, p <0.001; and ****, p < 0.0001.
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avoid any major vessel or area including large nodules

and artifacts.

In Figure 8 are the B-scan with the selected ROI

and the histogram of normalized echo amplitude, back-

scattered from speckles, fitted to the Burr distribution for

one sample frame of a rat liver representing each of four

groups. The corresponding b and λ parameters of the

Burr distribution for each case are presented along with

the results of fitting goodness as R2 and root mean square

error in Table 4. The plots of histogram of amplitudes in

all four groups indicate that the Burr model gives a close

fit of the pathology of liver tissues in normal liver,
fibrosis with low fat, fibrosis with high fat, and also

inflammation conditions. Also, the b and λ parameters

are found to be sensitive to changes in pathologic condi-

tions of the liver. The clear trend is increasing in b and λ
when the rat liver condition shifts from normal to abnor-

mal conditions because of fibrosis, fat increase (steato-

sis), or inflammation. To go into more detail, b and λ
increase with the presence of a high stage of fibrosis and

also with increase in fat inclusion.

To summarize the results of all the analyses for the

35 rat livers considering the parameter estimates for all

the frames for each rat liver, the results are shown as two



Fig. 8. Top row: B-scan image. Bottom row: Burr-fitting to the histogram of normalized echo amplitude for (a) normal
rat liver, (b) rat liver with inflammation, (c) low-fat fibrotic rat liver and (d) high-fat fibrotic rat liver. The selected ROIs

for Burr analysis are shown as dashed boxes.
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separate half-violin plots in Figure 9 (a, b) for b and λ,
respectively. The median of the results in each group is

marked as a horizontal line in the box and the variation

outside the quartiles appears as dashed whiskers. The

significance of the difference between each pair was ana-

lyzed by the p value from the one-way analysis of vari-

ance and the multiple comparison test. The p value is

indicated by asterisk as in Figure 7. Comparing dif-

ferent groups on the boxplots in Figure 9, we observe

that the power law parameter b distinguishes between

the four groups of rat livers, with the high-fat fibrotic

group having higher values of b than the low-fat

fibrotic group, and both groups show significant

increases in b in comparison to the normal and

inflamed liver groups. On the other hand, when look-

ing at the λ results, the same trend is observed and

the λ parameter can discriminate five of six pairs;

however, the difference is less obvious because of the

presence of a few outliers in the low-fat and high-fat

fibrotic groups. One of the rats in the low-fat fibrotic
Table 4. Burr-fitting parameters of a rat liver sample from each
of four groups along with the goodness-of-fit parameters

Dosing b λ R2 RMSE

Normal 3.06 253 0.997 0.051
Liver with inflammation 3.40 358 0.997 0.043
Low-fat fibrotic 4.60 804 0.995 0.004
High-fat fibrotic 5.41 1013 0.997 0.003

RMSE = root mean square error.
group has unusually high values of λ in comparison

to the other rats in this group. This specific case pro-

duced most of the elevated outliers in Figure 9b. On

histology of this case, a hemorrhage in its lung was

noted, and this might be an indication of additional

complications.

SVM-based classifier

The SVM-based liver state classifier was imple-

mented, as described in more detail in the Supplemen-

tary Data, Appendix B (online only). To build the

classifier, the two parameters of box constraint (C) and s
were decided according to the accuracy and shape of

hyperplanes; we found that optimal values of C and s

are approximately 50 and 0.7, respectively. The final

results with a classification accuracy of 94.6% is pro-

vided in Figure 10. The details of the SVM optimization

procedure are further examined in the Supplementary

Data, Appendix B.

To visually examine the hyperplane shapes or clus-

ters of data set, reduced dimensions were considered as

the employed features have five dimensions that cannot

be visualized in 3-D space. The five dimensions were

reduced to two or three dimensions using principal com-

ponent analysis (PCA), as depicted in Figures 10 (c, d).

To derive the principal component analysis, a uniform

scaling was performed by modifying min�max normali-

zation features (Han et al. 2011). Further details of this

normalization and analysis are provided in the Supple-

mentary Data, Appendix C (online only).



Fig. 9. Summary of Burr parameter estimation results for 35 different rat livers. (a) Boxplot of the power law parameter b.
(b) the Boxplot of λ for four groups of livers. *Statistically significant difference. ns indicates that the difference is not statisti-
cally significant. The following notations are used for the statistics: ns (no significance), p>0.05; *, p<0.05; **, p<0.01; ***,

p<0.001; and ****, p<0.0001.

Fig. 10. View of clusters and SVM classification. (a�c) Groups in 2-D parameter space: (a) results of Burr analysis; (b)
H-scan and attenuation measures. (c, d) First two and three principal components (PC) derived from the five-parameter
analysis: Burr λ and b, H-scan, attenuation, and intensity. (e, f) Hyperplanes to separate the liver states in 3-D principal
component space defined by the support vector machine (SVM)-based liver state classifier that were optimized and
implemented in this work. (g) Misclassified cases. Classification accuracy is 94.6% for the implemented SVM-based
liver classifier of this work. All fibrosis and fatty cases were correctly classified. Two cases of inflammation and five nor-

mal cases have misclassified frames. Each liver scan has approximtately 30 frames.

3390 Ultrasound in Medicine & Biology Volume 46, Number 12, 2020
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DISCUSSION

Our SVM with the optimized parameters classified

998 image frames with the extracted five scaled features,

whereby the decision planes that define liver states were

produced with 94.6% classification accuracy. Figure 10g

illustrates the misclassified cases among 998 data; there

are a total of 35 rats, and each rat has approximately 30

frames. Although 2 and 5 rats in the inflammation and

normal groups have misclassified frames, some frames

were misclassified, but the others were correctly classi-

fied; for example, rat 1 in the normal group has 4 mis-

classified frames, but 26 frames are correctly classified.

In accordance with SVM theory, our SVM classifier

allows a small percentage of misclassified training data,

resulting in smoother decision boundaries while avoid-

ing overfitting. As illustrated in Figure B.1 (c, d), we can

design an SVM classifier with 100% accuracy, but that

would work only for the input of this study. Because the

purpose of this work is to propose a liver state classifier

for any liver, we have optimized the classifier at 94.6%

accuracy without overfitting to reach 100% accuracy.

To visualize the clusters of the input data and classi-

fication with decision boundaries, PCA reduced the mea-

sured five features into two or three parameters because

five dimensions cannot be displayed. Therefore,

Figure 10 is a view of clusters with hyperplanes, which

have a loss of information compared with the five-

dimensional analysis mentioned in previous sections.

When using only the two and three components in

Figure 10 (c, d), classification accuracies of SVM are

90.5% and 91.9%, respectively; these are lower than the

94.6% accuracy of 5-D analysis because of the informa-

tion loss by PCA. The reduced parameters help us to

visualize the real 5-D results, but are not sufficient by

themselves for the highest accuracy.

In Figure 10 (a, b) are clusters derived by scattering

models related to the histogram analysis of echo ampli-

tudes and frequency analysis, respectively: (a) Burr

parameters; (b) H-scan and attenuation. Figure 10a illus-

trates that we can visually separate this space into three

regions of normal/inflammation, low-fat fibrosis, and

high-fat fibrosis with a distinctive area. It is noted that

the inflammation and normal groups seem to have con-

siderable overlap regions when applying only the two-

parameter Burr analysis. Although these two are not well

separable visually in Figure 10a, frequency-dependent

studies of H-scan and attenuation estimation in

Figure 10b can provide better separation between normal

and inflammation data. Moreover, Figure 10b tends to

show four separable clusters with mild overlaps.

Figure 10a tends to more clearly distinguish fibrosis

from normal cases than frequency analysis and

Figure 10b is more likely to discriminate each case from
the other groups, combining the results can take advan-

tage of the different methods and compensate for their

drawbacks; furthermore, the conventional B-scan inten-

sity is also added as a feature. By including all five meas-

urements, Figure 10c illustrates clusters in reduced 2-D

space generated by PCA. As expected, Figure 10 (a�c)

illustrates better separation between liver state groups

compared with Figure 10a or Figure 10b alone. Further-

more, when considering the first three principal compo-

nents in Figure 10d, each cluster is better distinguished

from the other clusters compared with 2-D space,

because the first principal components have 97.7% infor-

mation from the raw data, but two first principal compo-

nents have 93.5%. Therefore, it is expected that use of

all information on the raw data can have better discrimi-

nation than the view of clusters that is visualized in

Figure 10. The decision boundaries in Figure 10 (e, f)

were defined by information from the first three principal

components, with 91.9% classification accuracy. How-

ever, the hyperplanes used to classify the liver states in

5-D space have 94.6% accuracy, whereby these provide

better separation between liver states than 3-D space;

among 998 frames investigated, the founded frames in

the bar graph in Figure 10g are the only misclassified

frames.

In summary, each measurement has its distinct role

in distinguishing specific liver states. SVM plays a prom-

inent role in effectively integrating the five different

analyses into a combined classification. Consequently,

SVM indicates that there exist the boundaries that can

separate the liver states with 94.6% accuracy, meaning

that each group has distinct quantitative characteristics

based on the five measurements of this work.
CONCLUSIONS

In this study of an animal liver model in normal and

abnormal states, we employed two relatively new analy-

ses, the H-scan and the Burr distribution approaches.

These produced five output parameters linked to ultra-

sound propagation and scattering models from physics.

The parameters were sensitive to changes in liver struc-

tures and formed clusters in 5-D spaces that enabled a

robust classification of individual livers into the diagnos-

tic categories of normal, fibrosis (low fat), fibrosis (high

fat) and inflammation. A SVM classification approach

was capable of discriminating between groups with

94.6% accuracy. We believe that this supports the gen-

eral argument that matching measures to biophysical

models of tissues provides the strongest ability to dis-

criminate and classify pathologic conditions.
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