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Multiparametric ultrasound 
imaging for the assessment 
of normal versus steatotic livers
Lokesh Basavarajappa1, Jihye Baek2, Shreya Reddy1, Jane Song1, Haowei Tai3, Girdhari Rijal4, 
Kevin J. Parker2 & Kenneth Hoyt1,5*

Liver disease is increasing in prevalence across the globe. We present here a multiparametric 
ultrasound (mpUS) imaging approach for assessing nonalcoholic fatty liver disease (NALFD). This 
study was performed using rats (N = 21) that were fed either a control or methionine and choline 
deficient (MCD) diet. A mpUS imaging approach that includes H-scan ultrasound (US), shear wave 
elastography, and contrast-enhanced US measurements were then performed at 0 (baseline), 2, 
and 6 weeks. Thereafter, animals were euthanized and livers excised for histological processing. A 
support vector machine (SVM) was used to find a decision plane that classifies normal and fatty liver 
conditions. In vivo mpUS results from control and MCD diet fed animals reveal that all mpUS measures 
were different at week 6 (P < 0.05). Principal component analysis (PCA) showed that the H-scan US 
data contributed the highest percentage to the classification among the mpUS measurements. The 
SVM resulted in 100% accuracy for classification of normal and high fat livers and 92% accuracy for 
classification of normal, low fat, and high fat livers. Histology findings found considerable steatosis in 
the MCD diet fed animals. This study suggests that mpUS examinations have the potential to provide 
a comprehensive estimation of the main components of early stage NAFLD.

Nonalcoholic fatty liver disease (NAFLD) is one of the comorbid conditions associated with the worldwide 
obesity epidemic and affects between 80 to 100 million individuals in the United States  alone1,2. This disease is 
an increasingly prevalent clinical syndrome associated with obesity and type 2 diabetes  mellitus3. Most cases of 
NAFLD are asymptomatic and diagnosis of this disease only often comes to light due to testing for other liver-
related issues. As summarized in Fig. 1, NAFLD is the aggregate term defining the disease state that includes 
steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis.

Individuals that develop simple steatosis alone are generally thought to have a relatively benign long-term 
prognosis. However, up to a quarter of these patients may develop NASH, which can then progress to late-stage 
scarring (cirrhosis)4. This latter condition is known to be a potent risk factor for the development of hepatocel-
lular carcinoma (HCC) in susceptible individuals. Given the current prevalence of NAFLD, it is anticipated that 
NASH-induced cirrhosis will become the most common symptom for liver transplantation in the  future5. The 
ability to differentiate simple steatosis from NASH is critically important for the clinical management of NAFLD 
patients. Evidence to date confirms that early stage NASH may have a 40% probability of progressing to more 
advanced stages of hepatic fibrosis within 8 years6–8. Given the prevalence of NAFLD, it has even been suggested 
that early liver biopsy might be needed in all NAFLD patients as it is expected that earlier intervention and more 
aggressive treatment may reduce overall  mortality9.

Conventionally, a diagnosis of NASH requires an assessment of liver histology. Liver biopsy is therefore con-
sidered the reference standard to detect and stage liver cell injury from  NASH10. However, liver biopsy has several 
disadvantages, including sample error, interrater and intrarater variability, poor patient acceptance (especially on 
patient follow-up), and potential complications such as bleeding and  death11–13. Serologic tests have high accuracy 
for differentiating advanced fibrosis from mild or no  fibrosis14–16, but they are poor for diagnosing mild fibrosis 
and necroinflammation. Consequently, tremendous effort has also been devoted to the development of imaging 
techniques that can noninvasively detect, accurately stage, and reliably monitor NAFLD.
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Contrast-enhanced ultrasound (CEUS) uses microbubble (MB) contrast agents that are confined to the 
vascular space to improve visualization of blood flow and the measurement of tissue perfusion  kinetics17. It is 
now known that during the early stages of NAFLD development, fat-laden hepatocytes become swollen, and 
in NASH, further swelling occurs due to hydropic change (ballooning) of hepatocytes leading to sinusoidal 
distortion. Consequently, both intrasinusoidal volume and microvascular blood flow are reduced up to 50% of 
 control18,19. This observation was supported by a recent 2019 study that also demonstrated CEUS imaging was 
more sensitive in diagnosing early stage fatty infiltration-mediated microvascular changes in liver parenchyma 
and provided a NASH diagnosis in mouse models with greater  accuracy20. If unhindered, hepatic vein transit time 
and intrahepatic circulatory time progressively decrease with liver disease severity due in part to arteriovenous 
shunting and a hyperdynamic circulatory state (i.e., temporal kinetic changes in MB contrast agent flow)21,22. In 
the case of NASH, this progressive blood flow derangement within the liver precedes liver fibrosis  development23 
and any of the eventual complications of cirrhosis, such as HCC and portal vein  thrombus22. It is worth noting 
that fibrotic changes also increase the absolute peak of contrast enhancement during CEUS imaging since arte-
riovenous shunts reduce the rate of MB dissolution as the contrast agent bypasses capillary  beds24.

The use of noninvasive ultrasound (US) for tissue characterization has been the focus of research efforts for 
several decades now, where the challenge is to find hidden patterns in the US data to reveal more information 
about tissue function and pathology that cannot be seen in conventional US images. H-scan US is a new imag-
ing approach that closely links the mathematics of Gaussian-weighted Hermite (GH) functions to the physics 
of scattering and reflection from different tissue  structures25–29. Specific integer orders, termed GHn, are related 
to the nth derivative of a Hermite function. After attenuation  correction30, matched filters employing specific 
orders of GHn functions can be used to quickly analyze the spectral content of backscattered US signals and to 
colorize the display, providing pixel-level discrimination between different-sized US scatterers. In general, low 
frequency spectral content is generated from larger scattering structures whereas high frequency signal content 
is produced by an US wave interacting with smaller scatterer aggregates of scale below the wavelength of the 
US transmit pulse. We envision that progressive formation of diffuse fat vacuoles (macrovesicular steatosis) 
throughout early NAFLD progression will alter both the B-scan and H-scan US signal and reflect liver pathology.

Given the spectrum of NAFLD ranges from simple steatosis, through stages of liver cell injury (steatohepa-
titis), to fibrosis, and eventually to cirrhosis, it is appropriate to ask whether biomechanical imaging of the liver 
has a complementary role in NAFLD management. Shear wave elastography (SWE) is a noninvasive technique 
that uses both US and low-frequency elastic waves to quantify select biomechanical parameters related to the 
tissue environment. In short, SWE uses an US pulse to create shear waves that travel perpendicular to, and much 
slower than the longitudinal US waves, making it possible to accurately track and measure them within a lim-
ited  distance31. From the spatial analysis of shear wave propagation patterns, shear wave speed and attenuation 
parameters can be estimated. These tissue biomechanical properties have been shown to be intimately related to 
fat during the development of  steatosis32,33 and collagen content with increased  fibrosis34,35.

While SWE measurements can be difficult to obtain in overweight and obese subjects, coupling this data with 
complementary US-based image findings to form a composite metric (i.e., virtual NAFLD activity score) may 
help increase the clinical value. Towards this, we introduce a new multiparametric US (mpUS) imaging approach 
and image-derived biomarkers of liver tissue using an animal model of NAFLD. This method combines CEUS to 
quantify liver tissue perfusion, SWE to measure viscoelasticity, and H-scan US imaging to estimate US scatterer 
size and organization. The mpUS imaging was performed at 0 (baseline), 2, and 6 weeks using Sprague–Dawley 
rats that were fed either a control or a methionine and choline deficient (MCD) diet. These mpUS measurements 
were used as feature inputs for a support vector machine (SVM) and principal component analysis (PCA) to find 
a decision plane that classifies normal versus steatotic liver. Histology imaging was performed from the excised 
liver tissue after 6 weeks of experimentation.

Figure 1.  Spectrum of nonalcoholic fatty liver disease (NAFLD) ranging from simple steatosis through stages 
of hepatocyte injury (inflammation, nonalcoholic steatohepatitis or NASH), and eventually to end stage liver 
cirrhosis and increase likelihood of hepatocellular carcinoma (HCC) development.
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Results
The overarching goal of our preclinical research was to evaluate the use of in vivo mpUS imaging for classifying 
normal from steatotic liver. Starting with SWE measurements, Fig. 2 illustrates a temporal sequence of propagat-
ing shear waves (0.2–3.2 ms after pulsed US excitation) in control and MCD diet liver. Inspection of these SWE 
images reveals that shear waves exhibit a slightly lower speed and are more attenuated at distance in MCD diet 
fed animals at 6 weeks compared to the age-matched controls. From these example cases, the shear wave speed 
was estimated to be 1.52 and 1.36 m/s for control and MCD diet animals, respectively, whereas the shear wave 
attenuation was found to be 94.8 and 113.9 Np/m.

B-scan and H-scan US imaging gives insight into backscattered signals from tissue. Representative B-scan US 
images with an H-scan US colored overlay from the liver parenchyma is presented in Fig. 3. Note the blue color 
describes local backscattered US signals from smaller sized or less compacted structures and the red color from 
relatively larger objects. Given the MCD diet fed animals exhibited a notable bluer hue at 6 weeks compared to 
the time and tissue depth-matched control H-scan US images, this could indicate the presence of macrovesicular 
steatosis from diffuse fatty infiltration.

CEUS imaging provides insight into liver tissue perfusion and properties of blood flow. To that end, co-
registered B-scan US images and a series of CEUS images from control and MCD diet animals were acquired. A 

Figure 2.  (A) Principle of shear wave elastography (SWE) and in vivo ultrasound (US) images detailing shear 
wave propagation in liver parenchyma from animals fed either a standard chow (control) or a methionine and 
choline deficient (MCD) diet for 6 weeks. After shear wave excitation (0 ms), the matched series of US images 
depict differential progression and attenuation at times of (B) 0.2, (C) 2.2, and (D) 3.2 ms afterwards.

Figure 3.  Co-registered B-scan US images with colored H-scan US overlays. Overlapped US images are from 
(A,C) control and (B,D) MCD diet fed animals at (A,B) 0 (baseline) and (C,D) 6 weeks. The local H-scan US 
color display represents (relative) aggregate scatterer size from the liver parenchyma.
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typical TIC describes US image intensity values over time in a ROI. As the MB contrast agent was administered 
via a tail vein catheter, CEUS image enhancement first occured in the IVC, aorta, porta vein, and then the liver 
parenchyma, Fig. 4. Note that the TIC analysis was limited to the wash-in phase to help minimize recirculation 
interference after the first pass.

A summary of all in vivo mpUS image-based group measurements are presented in Fig. 5. Collectively, this 
data details the progression of mpUS parameters in rat livers at 0 (baseline), 2, and 6 weeks after animals were 
placed on a standard chow or MCD diet. While no differences were found at baseline (P > 0.25) or 2 weeks 
(P > 0.06), all mpUS parameters from the control and MCD diet animal groups at week 6 were found to be 
significantly different (P < 0.05).

After the final mpUS imaging session at week 6, all animals were humanely euthanized and livers excised 
for histological processing. Example liver tissue sections from the control and MCD diet group animals are 
shown in Fig. 6. These histology images reveal that high grade steatosis was only found in animals fed the MCD 
diet. This condition is marked by a significant extent of macrovesicular steatosis with little or no inflammatory 
changes. Instances of focal fibrosis were rare and found with similar likelihood in both animal groups. From 
binarized H&E images that segmented the diffuse fat deposits, a fat fraction score was calculated. The mean fat 
fraction from the MCD diet and control group animals was 39.4 ± 1.3% and 0.4 ± 0.1% (P < 0.001), respectively. 
Lastly, while control animals on average got heavier throughout this 6 week study, the animals fed the MCD diet 
maintained a near constant weight despite the progression of marked steatotic liver disease.

SVM is a supervised machine learning model used to solve classification problems. Herein the mpUS data 
was used to create an SVM classifier, where mpUS parameters were considered as features in the SVM learning 
model. Additionally, to visualize hyperplanes in 3D space, PCA reduced the 6 mpUS features into 3 principal 
components, and its coefficients calculated the contributions from these six features. Figure 7A,B show the 
contributions of all principal components for three- and two-category learning, respectively. The corresponding 
decision planes from the SVM classifier are shown in Fig. 7C,D from the first three principal components. In 
both analyses, H-scan US image measures contributed the highest percentage (> 35%) among the other mpUS 
data. It is evident from the two-category decision plane that control livers can be separated from high fat livers 
with near 100% accuracy. The classification accuracy for the three-category decision plane was 89% when only 
first 3 principal components were used. This accuracy was improved to 92% when all principal components were 

Figure 4.  Matched (A) B-scan US and (B) series of contrast-enhanced US (CEUS) images from a rat liver 
after administration of a microbubble (MB) contrast agent via tail vein injection. Individual (C) time-intensity 
curves (TICs) describe MB arrival in the major vessels, namely, inferior vena cava (IVC), aorta, and portal 
vein, in addition to the liver parenchyma from which the peak enhancement (PE) and wash-in rate (WIR) can 
be calculated. A maximum intentesity projection (MIP) image highlights the spatial distribution of vascular 
structures. Illustration of basic rat anatomy and indication of the US imaging transverse plane (top left) was 
generated using commercial software (3D Rat Anatomy v1.30b, Biosphera, São Carlos, Brazil).
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utilized, which is not shown since 6 features cannot be visualized. To validate the classificiation, when dividing 
the features into training and testing sets, classification accuracies were 100% and 99%, respectively, for the 
two-category approach. For the three-category classification, the accuracies were 93% and 82%, respectively.

Discussion
Quantitative detection of liver fat and fibrosis content is of great importance in the evaluation and staging of 
NAFLD. The two most prevalent imaging techniques to examine NAFLD patients include magnetic resonance 
elastography (MRE) and magnetic resonance imaging (MRI)-based proton density fat fraction (PDFF). The 
former is a technique that builds upon MRI to determine liver stiffness, which is related to the degree of fibrosis. 
Alternatively, PDFF can accurately determine the amount of fat content in the  liver36. In a study of 72 patients 
with biopsy-proven NASH and fibrosis, MRE-based liver stiffness measurements were strongly correlated with 
fibrosis  stage37. In this same patient population, MRI-PDFF was shown to have good predictive accuracy for 
individual grades of steatosis. In a more recent analysis of 370 patients with NAFLD or NASH, PDFF values 
were also shown to correlate with steatosis  grade38. Although MRI-PDFF is a useful tool for the noninvasive 
detection of NAFLD and the quantification of steatosis, MRE is needed to help distinguish between NAFLD and 
NASH with fibrosis. While promising, one of the major criticisms of MRE and MRI-based PDFF assessments is 
the equipment and cost associated with MRI scanners, along with the technical expertise required to perform 
and interpret readings. Hence, MRI may not a suitable candidate for the pharmaceutical industry that aims to 
develop drugs to treat NAFLD.

Conventional abdominal US is a common imaging modality for subjective evaluation of hepatic steato-
sis, with good sensitivity and specificity in detecting moderate to severe levels of steatotis (84.8% and 93.6%, 
 respectively39. As confirmed by our in vivo data, fat vacuoles within the hepatocytes increase the backscattered 
US signals, resulting in a brighter (more echogenic) appearance of the liver. Due in part to poor interobserver 

Figure 5.  Summary of in vivo mpUS measurements in rat livers at 0 (baseline), 2, and 6 weeks after animals 
were placed on a control or MCD diet. Boxplots are shown for the following mpUS parameters: (A) shear wave 
speed (SWS), (B) shear wave attenuation (SWA), (C) B-scan US image intensity, (D) H-scan US image intensity, 
(E) CEUS-derived PE, and (F) CEUS-derived WIR in the liver parenchyma normalized by co-registered 
measures from the IVC. A * denotes a p-value < 0.05 vs control data.
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agreement and the subjective nature of traditional US  imaging40, more quantitative US-based measurements have 
been explored. More specifically, several elastography studies have reported sensitivity to identifying NASH with 
fibrosis in patients with biopsy-proven  NAFLD41–43. However, recent reports have shown that the sensitivity is 
improved considerably when SWE information is combined with quantitative US measures of tissue  scattering44. 
Franceschini et al. combined spectral-based quantities with SWE to improve classification  performance45. It was 
also been shown that the combination of three US parameters (stiffness, effective scatterer size, and acoustic 
concentration) provides the best classification performance when compared to classifications obtained from 
the spectral-quantitative US or stiffness parameters alone. However, this study was conducted on ex vivo liver 
samples and did not demonstrate the ability to distinguish NASH from fibrotic tissue. In another study, it was 
demonstrated that the classification of NASH can be improved when SWE is combined with quantitative US 
 parameters44. The area under the receiver-operating characteristic curve (AUROC) increased from 0.63 for SWE 
alone to 0.72 for a model that combined elastographic and quantitative US techniques.

Figure 6.  Representative histology images of (A,B) hematoxylin and eosin (H&E) and (C,D) Mason’s trichrome 
stained liver tissue from animals fed (A,C) control (standard chow) or (B,D) an MCD diet (bottom) for 6 weeks. 
Presented are the original H&E histology images and example binarized sub images used to quantify the (E) fat 
fraction score. Note in the H&E the presence of macrovesicular steatosis (white fat deposits) in the MCD diet 
fed animal livers. (F) Summary of tempoeral changes in animal weight.
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Herein we introduced an in vivo mpUS imaging approach that incorporated shear wave parameters to deter-
mine viscoelasticity, CEUS to evaluate liver vascularity and perfusion, and H-scan US to estimate tissue micro-
structural information. The formation of steatosis leads to a decrease in liver tissue shear wave speed measures 
and an increase in  attenuation32,46. However, the shear wave speed also increases with increasing stiffness, where 
this can be observed from control measures where the liver appeared to stiffen with  age47,48. H-scan US imaging 
was used to obtain the microstructure properties of liver tissue by analyzing backscattered US signals. Progressive 
accumulation of fatty deposits in the liver altered the spectral content, leading to a significant blue shift in the 
H-scan US image intensity in the MCD diet animals. With increasing liver fat content, it has been shown that 
the effective scatterer diameter and density tends to  decrease49. Lastly, CEUS imaging is sensitive to fatty liver 
disease progression and can accurately detect vascular features of  NASH20. It was shown that the CEUS-based 
PE and WIR parameters decreased in fatty livers and consistent with previous  studies20,23. Fat accumulation in 
the liver parenchyma can produce microvascular constriction and blood flow resistance during the pathologic 
progression of NAFLD disease. As the liver is up to 30% blood by  volume50, the longitudinal increases in PE and 
parameters in the control livers were presumably due in part to natural organ growth. This assumes that larger 
blood vessels contributed to a higher blood volume and lower vascular resistance. These physical changes in 
vascular size may have also contributed to the observed changes in the H-scan US  images51.

Our results demonstrated that mpUS measurements between control and MCD diet fed animal groups 
were all significantly different at 6 weeks (P < 0.05). Consequently, the decision plane from the SVM classifier 
efficiently separated the data clusters, leading to a 100% classification accuracy after two-category training. We 
processed the features with Z-score normalization and PCA, to find the individual mpUS parameter contribu-
tions. The PCA results showed that the H-scan US image features contributed the most among the six mpUS 
measurements evaluated. This was attributed to the large proportion of fat deposits that accumulated in the liver, 
which was confirmed by histology images and the fat fraction score. However, the classification accuracy was 
reduced to 92% in three-category training, where it classified normal, low fat (2 weeks), and high fat (6 weeks) 
livers. In this case, the mpUS measurements fail to reach the highest accuracy as there is overlap between the 
normal and low fat livers. Further studies will include advanced processing algorithms to improve the H-scan 
US and SWE parametric estimations. Repeat CEUS studies will also help minimize measurement variance. 
Collectively, these advances should help improve the classification accuracy and detection of early stage NASH. 
Also, experiments will be repeated and additional histology will be performed at 2 weeks for comparison to the 
in vivo mpUS findings. This is a noted limitation of the current study. This confirmation might provide more 

Figure 7.  Summary results from principal component analysis (PCA) and support vector machine (SVM) data 
learning models. Data summarizes the percent contribution from all principal components using PCA for both 
(A) three-category and (B) two-category learning. Also shown is the decision plane from the first three principal 
components using the SVM learning model for (C) three-category and (D) two-category learning. The low and 
high fat livers represent the 2 and 6 weeks MCD diet measurements, respectively.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2655  | https://doi.org/10.1038/s41598-021-82153-z

www.nature.com/scientificreports/

insight into the NAFLD spectrum and the effectiveness of mpUS parameters at different stages of liver disease 
progression. Further, we will examine the mpUS data classification accuracy with a more detailed comparison 
to time-matched histology samples. This work may also necessitate use of a different animal model that more 
closely recapitulates human disease and exhibits the spectrum of NAFLD ranging from simple steatosis through 
NASH and late-stage fibrosis.

The proposed mpUS image-derived biomarkers of liver tissue appear to be a promising approach for the early 
assessment of NAFLD. This study showed the effectiveness of mpUS imaging measurements for monitoring the 
progression of steatosis, thereby introducing the potential for the early detection of NASH. Overall, we envi-
sion that noninvasive mpUS imaging could evolve to be used as a surrogate biomarker for the current clinical 
standard of the invasive liver biopsy.

Methods
Animal model of NAFLD. All procedures were carried out in accordance with relevant guidelines and 
regulations. Animal experiments were performed based on a protocol approved by the Institutional Animal Care 
and Use Committee (IACUC) at the University of Texas at Dallas. This manuscript complies with the ARRIVE 
guidelines for reporting animal  research52. The MCD diet is a classic dietary model for studying NAFLD. This 
diet is high in sucrose and fat and is deficient in methionine and choline, which results in increased fat accu-
mulation in the liver. A population of 12-week-old Sprague–Dawley rats (N = 21; Charles River Laboratories, 
Wilmington, MA) were randomly divided into two groups, namely, control (N = 9) and MCD (N = 12). Control 
animals were fed standard chow, whereas the MCD group received a special diet (MP Biomedicals, Solon, OH). 
Animals were kept under a 12-h day/night rhythm with free access to food and water.

Liver imaging protocol. Animals were anesthetized with 1–2% isoflurane in oxygen (V3000PK, Parkland 
Scientific, Coral Springs, FL) and placed on a temperature-controlled heating pad to maintain core levels (Rodent 
Surgical Monitor, AnimaLab, Poznan, Poland). Prior to mpUS imaging, a catheter was placed and secured in the 
tail vein as was needed for MB dosing during CEUS imaging. To acquire the sequence of mpUS measurements, 
CEUS and H-scan US scans were performed by a Vevo 3100 system (FUJIFILM VisualSonics Inc, Toronto, 
Canada) equipped with an MX201 linear array transducer, and SWE was performed using a Vantage 256 US 
system (Verasonics Inc, Kirkland, WA) equipped with an L11-4v probe. For each animal, the US transducer was 
positioned and fixed in the transverse plane after co-visualization of major blood vessels, including the aorta, 
inferior vena cava (IVC), and portal vein. Identifying and imaging at the level of these anatomical landmarks 
helps in the acquisition of information from similar planes, particular during the repeat mpUS imaging sessions.

A custom SWE imaging sequence was implemented on the programmable Vantage 256 US system. The 
focused US push pulse frequency (5.2 MHz) were set within the lower -6 dB of the transducer bandwidth to 
broaden the push beam while maintaining high transmit power  efficiency53. The push beam used an aperture 
size of 64 elements. Our sequencing involved three focused US pulses at varying levels of tissue depth (2 mm 
spacing between pulses, pulse length of 1200 cycles or 230 µs) to create a series of propagating shear waves that 
interfere constructively to create two intense shear  waves54. The use of ultrafast plane wave US imaging permit-
ted displacement tracking of these shear wave propagation patterns. A 2-dimensional (2D) algorithm estimated 
tissue displacements from the beamformed in-phase quadrature (IQ)  data55. Thereafter, a 2D Fourier transform 
was applied on the tissue displacements to estimate the shear wave speed and attenuation  parameters56. During 
SWE, the US push pulse focuses were positioned in the bulk liver parenchyma and a collection of four measure-
ments (repeated 10 times) per subject were taken at slightly different locations.

H-scan US images were reconstructed from radiofrequency (RF) data collected using the Vevo 3100 scanner 
(center frequency = 15 MHz). The RF data were corrected for signal attenuation using a global scaling value of 
0.3 dB/cm/MHz. Two parallel convolution filters were applied to the raw data sequences to measure the relative 
strength of the received signals relative to GH2 and GH8. Signals were then normalized by the signal energy 

√

En 
before bandpass filtering (5–18 MHz), and calculation of the signal envelope using a Hilbert transform. The 
relative strength of these filter outputs were color coded whereby the lower frequency (GH2) backscattered US 
signals were assigned to a red (R) channel and the higher frequency (GH8) components to a blue (B) channel. 
The envelope of the original unfiltered data was used to generate the B-scan US image. H-scan US image recon-
structions were performed on at least 100 frames of data and region-of-interest (ROI) analysis yielded a mean 
measurement of relative scatterer  size26. H-scan US image intensity was calculated as a ratio of the B channel to 
the sum of the R and B channel components.

Lastly, a controlled bolus injection of a MB contrast agent (Definity, Lantheus Medical Imaging) was slowly 
administered (50 µL over a 10 s period using a syringe pump). CEUS images were then collected using the Vevo 
3100 system with a nonlinear contrast imaging mode (center frequency = 12.5 MHz). Imaging was performed 
immediately before and after MB injection for at least 30 s to capture blood perfusion kinetics throughout the 
liver cross-section. Note that CEUS occurred last as the presence of any residual MBs in circulation can induce 
considerable bioeffects when exposed to SWE and high-intensity US. The temporal sequence of CEUS images 
were processed using commercial software (Vevo Lab v3.2.5, FUJIFILM VisualSonics, Inc). After ROI placement 
around the IVC and liver parenchyma, a time-intensity curve (TIC) for each was generated after model fitting and 
used to extract the peak enhancement (PE) and wash-in rate (WIR) parameters, which are surrogate measures of 
blood volume and flow rate, respectively. PE and WIR estimates from the liver parenchyma were normalized by 
the measures from the IVC to obtain normalized PE (PE-nLP) and WIR (WIR-nLP) parameters. Additionally, 
TIC data was exported as a delimited text format and plotted using Excel (Microsoft Office Professional Plus 
2019, Microsoft Corp, Redmond, WA) and Visio (Microsoft Visio Professional 2019, Microsoft Corp) software 
for display purposes only.
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Data classification. Using MATLAB R2020b (MathWorks Inc, Natick, MA), we analyzed six mpUS meas-
urements using PCA and SVM to predict fatty liver conditions. Since each mpUS measurement has a different 
scale that causes a different weight, a Z-score normalization was performed prior to classification. The nor-
malized mpUS measurements were used by an SVM model that uses a Gaussian kernel function to construct 
non-linear hyperplanes. The model was trained and tested using 80% and 20% of the dataset, respectively. More 
details for implementing the classifier and optimizing the SVM parameters can be found  in57. Here, we trained 
the SVM classifier with two different input datasets. First, learning (three-category) included all measurements 
at 0, 2, and 6 weeks to classify normal, low fat, and high fat livers, whereas the other learning (two-category) 
only included measures at 0 and 6 weeks to classify normal and high fat livers. Herein, the normal group refers 
to measurements at 0 week and control at 2 and 6 weeks. The low and high fat livers refer to MCD diet meas-
urements from 2 and 6 weeks, respectively. In each training, the SVM model constructed decision planes to 
differentiate the liver conditions. For visualization of decision planes, we used PCA to reduce the number of 
parameters, and then the first three prinicpal components were assigned as SVM inputs.

Histological processing of liver tissue. After the last mpUS imaging session at 6 weeks, animals were 
euthanized and livers excised. The right medial and left lateral lobes of the liver (≥ 50% of each lobe) were fixed 
in 10% neutral-buffered formalin for at least 7 days at room temperature. Liver tissue was then embedded in 
paraffin, sectioned (5 μm), and mounted. Hematoxylin and eosin (H&E) stains were used for morphological 
analyses, and Masson’s trichrome stain (Sigma-Aldrich, St Louis, MO) for assessment of hepatic fibrosis. Digital 
images were acquired with a microscope at a magnification of 40–100 × (Axio Scope.A1, Carl Zeiss, Thornwood, 
NY). H&E images were binarized and processed with morphological operations before quantification of the 
percent fat fraction.

Statistical analysis. Parametric group measurements were summarized as mean ± SD. Longitudinal 
changes were assessed using a repeated measures analysis of variance (ANOVA) test. A comparison of control 
and MCD diet group parameters were evaluated using a Mann–Whitney U test. A P-value less than 0.05 was 
considered statistically significant. All statistical analyses were performed using Prism 9 (GraphPad Software, 
San Diego, CA).
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