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Reverberant Elastography for the Elastic
Characterization of Anisotropic Tissues
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Abstract—We derive closed-form solutions for reverberant elas-
tography in anisotropic elastic media by adapting the framework
used in electromagnetic theory to treat transverse isotropic mate-
rials. Different sample-setup geometries are analyzed, highlighting
their relevance for both optical coherence elastography (OCE) and
ultrasound elastography (USE). Numerical simulations using finite
elements are used to validate the proposed solutions in practical
cases. OCE experiments are conducted in ex vivo chicken muscle
samples for the characterization of in-plane and out-of-plane shear
modulus assuming a transverse isotropic elastic model. Addition-
ally, we obtained a generalized geometry-independent solution for
the isotropic media case, thus unifying previous results for rever-
berant elastography.

Index Terms—Anisotropic media, elastography, finite elements,
OCE, reverberant shear waves, transverse isotropic material, USE.

I. INTRODUCTION

IN THE field of wave-based elastography, shear waves are
used to characterize biomechanical properties of tissues [1].

While isotropy is a common assumption, tissues (e.g. muscle,
heart, tendon, kidney, and possibly the brain) have an underlying
principal direction of structures. Such principal direction is
also known as the axis-of-symmetry in a transverse isotropic
model of elasticity in solids [2], [3], or crystal/optic axis for
electromagnetic wave propagation in anisotropic crystals [4],
[5]. Therefore, the study of anisotropy of tissues in elastography
is important and continues to be an emerging field.

Historically, contributions in the measurement of tissue
anisotropy have been made for transient mechanical wave prop-
agation in ultrasound elastography (USE) [6]–[8], magnetic
resonance elastography (MRE) [9], [10], and optical coherence
elastography (OCE) [11], [12]. Recently, developments in re-
verberant elastography have been conducted in USE [13]–[15]
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and OCE [16]. A reverberant shear wave (RSW) field is a
limiting case of a statistically uniform distribution of plane shear
waves propagating in all directions within a 3D elastic medium.
Although reverberant elastography has been proven to be very
effective in the biomechanical characterization of tissues with
complex boundary conditions [16], and highly attenuating me-
dia [15], the theoretical derivation still relies on the assumption
of an isotropic media.

In this paper, we present, for the first time, closed-form
solutions to the case of RSW in anisotropic media using key
concepts in the analysis of anisotropic crystals with electromag-
netic waves. We derive analytical expressions to the complex au-
tocorrelation of RSW fields in materials exhibiting a transverse
isotropic model of elasticity for variable directions of: (1) the
material’s axis-of-symmetry, (2) the motion measurement vector
direction (sensor), and (3) the complex autocorrelation function.
Moreover, we develop a general solution for the isotropic model
which includes the previous specific solutions derived in [16].
Analytical results are compared with finite element simulations
for further validation. Finally, experimental results in chicken
tibialis muscle are conducted using an optical coherence to-
mography (OCT) acquisition system for the characterization
of degree of anisotropy using RSW fields and the proposed
analytical solutions.

A different approach to random waves in media is passive elas-
tography, [17]–[20] also known as time reversal elastography.
This is a fundamentally separate method: the autocorrelation
used in RSW is a complex autocorrelation in both time and
space derived from the limiting case of a distribution of waves
across all directions, rather than a real autocorrelation only in
time. In both cases, passive and RSW elastography, anisotropy
has not been considered before.

The organization of this paper is as follows. In Section 2, we
recall the theory behind electromagnetic waves in anisotropic
media and its direct extension to mechanical shear waves in
the reverberant case. In Section 3, the different combinations of
shear wave polarizations, the material’s axis-of-symmetry, and
sensor directivity are examined, leading to a general treatment
of the complex autocorrelation of RSW fields and the estimators
that can characterize the anisotropy of tissues. In Section 4,
numerical simulation results using finite elements are compared
to the analytical equations for validation. In Section 5, OCE
experiments are conducted in ex vivo chicken muscle sam-
ples for the characterization of the shear modulus along the
plane-of-isotropy (in-plane) and in the transverse plane parallel
to the axis-of-symmetry (out-of-plane), assuming a transverse
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isotropic elastic model. Finally, in Section 6, we summarize the
contributions of this paper to the field of reverberant elastogra-
phy and, more generally, the elastography of anisotropic tissues.

II. ELECTROMAGNETIC WAVES IN ANISOTROPIC MEDIA

A. Introduction

The behavior and propagation of electromagnetic waves, as
well as mechanical waves, differs strongly from isotropic to
anisotropic materials. In isotropic media, the wave encounters
the same response from the material, no matter its propaga-
tion and polarization (oscillation or perturbation) directions,
resulting in a homogeneous and singular speed of propagation.
However, in anisotropic media the response will depend on the
direction of the perturbation, which is linked to the propagation
direction in the case of shear waves. Hence, the propagation
speed or effective optical index perceived by the wave will vary
within a range depending on its characteristics.

The treatment of light in anisotropic crystals has long been
a subject of interest [21], [22], and modern theories include a
formal dielectric tensor and an ellipsoid of wave normals [4], [5],
[23], [24]. In such crystals, a given plane transversal wave can be
decomposed in two eigenmodes of propagation, generally called
in uniaxial materials ordinary and extraordinary. These have
orthogonal polarization states, however not necessarily the same
speed of propagation. We use plane waves since any field can be
expressed using plane-wave decomposition and because they are
compatible with the reverberant studies done previously [13]–
[16]. The following approach concerns electromagnetic waves,
and it will be extended directly to mechanical shear waves in
Section 3.

B. Theory

We will assume an homogeneous and non-magnetic (or at
least magnetically isotropic) medium without free charges or
currents. Given these assumptions, we can focus only on the
electric field E = E0e

i(k·r−ωt), where k is the wave vector, r is
the 3D position vector, and ω its frequency. For light, we have
that k = ωneff

c ĝ, in which c is the speed of light in vacuum, neff

is the effective refractive index perceived by the wave inside the
medium, and ĝ is the unitary wave vector direction. Besides
Maxwell’s equations, the constitutive relations describe how
media responds to electromagnetic fields, in our case the electric
field produces an electric displacement field inside the material
of D = ε ·E, where ε is the dielectric tensor, a second order
tensor. As opposed to isotropic materials, D ∦ E, which leads to
a walk-off angle [4], [24] between the Poynting vector (energy
propagation direction) and the wave vector (phase acquisition
direction).

In general there exists a coordinate system such that the
dielectric tensor becomes a diagonal matrix where the entries
are the principal dielectric responses:

ε =

⎛
⎜⎝
εx 0 0

0 εy 0

0 0 εz

⎞
⎟⎠ . (1)

Another expression for non-magnetic media is given in terms
of the principal optical indices and the electric permittivity in a
vacuum, ε0, using n2i = εi/ε0, so the tensor becomes εon = ε,
where ni stands for the corresponding principal optic indexes.

Both principal directions and its values depend on the struc-
ture of the media, and so dielectric materials can be grouped in
three different categories:
� Isotropic, where εx = εy = εz , so ε can be reduced to a

scalar and D ‖ E.
� Uniaxial birefringent, where two principal dielectric re-

sponses are equal, meaning that there is a plane in which all
the directions of perturbation are equivalent. In literature,
the two terms that are repeated correspond to the ordinary
index no, and the extraordinary index ne. For these ma-
terials there is one unique propagation direction in which
the optical index is independent of porlarization, hence the
name uniaxial. This direction is referred to as the crystal
axis direction [5] (we refrain from the term optic axis [4] to
avoid confusion with the system’s optical axis), which we
indicate as A. For example, if the crystal axis were in the
z direction, then the coefficients would be εx = εy = ε0n

2
o

and εz = ε0n
2
e.

� Biaxial birefringent, where εx �= εy �= εz . Here there are
two directions of propagation in which the optical index is
independent of the polarization, hence the name biaxial.

Nevertheless the experiment’s geometry doesn’t generally
correspond to this very specific coordinate system in which ε
is diagonal, and we are interested in what happens when light
does not oscillate/propagate in any of the principal directions.
To address this condition, in both an analytical and graphical
way, we need to use the wave equation, which in the k-domain
(or using our plane-wave assumption) is

k× (k×E) = −ω2μεE, (2)

where μ is the magnetic permeability of the material. Then,
using c2 ≈ 1/(με0) since we are assuming non-magnetic mate-
rials [4], [24], the equation is reduced to a homogeneous system(

(ĝĝ)− I +
1

n2eff
n

)
E = 0, (3)

where I is the identity matrix, and (ĝĝ) is the dyadic product
(i.e. the tensor whose entries are of the form gigj , where gi is
the components of the normalized wave vector). Note that the
determinant of Eq. (3) must vanish in order to obtain non-trivial
solutions. Hence we obtain

G :

∣∣∣∣∣∣∣∣

n2
x

n2
eff
− (1− g2x) gxgy gxgz

gygx
n2
y

n2
eff
− (1− g2y) gygz

gzgx gzgy
n2
z

n2
eff
− (1− g2z)

∣∣∣∣∣∣∣∣
= 0. (4)

The surfaces defined by this equation consist of two shells
in k-space, also called normal-surfaces, which have a nice
interpretation: they are the surfaces made by all the eigenvectors
of the material, meaning that in any direction there are two
eigenmodes of wave propagation that have different wave vector
magnitudes and have orthogonal polarizations with respect to
each other. In other words, a plane wave propagating inside
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Fig. 1. Hypothetical normal-surfaces with their respective crystal axes shown
as thick black lines. (a) Biaxial case, here nx < ny < nz , so the crystal axes lie
in thex-z plane. The surfaces cannot be expressed in terms of simple geometrical
objects. (b) Uniaxial case with no = nx = ny and nx < nz = ne. One of the
surfaces is always a sphere, while the other is an ellipsoid that touches the sphere
along the crystal axis. (c) Isotropic case, for which both shells become one single
sphere and there is no definite crystal axis.

the material in a given direction will be decomposed in to two
parallel-propagating plane waves which perceive, in general,
different effective optical indices. Commonly, these two shells
have four points in common (biaxial materials have four points,
while uniaxial only two), and the lines that pass through them
and the origin define the crystal axes previously discussed, see
Fig. 1.

To determine the polarization (oscillation or perturbation)
direction of each propagating plane wave eigenmode, one needs
to solve the full eigenvalue/eigenvector problem, i.e. solve the
wave equation given by Eq. (3). This problem can also be
handled via the Fresnel equations [24]. In the following subsec-
tions isotropic and uniaxial scenarios are discussed, and their
polarization states are described. The biaxial case is far more
cumbersome, nevertheless, as expected,the eigenmodes are or-
thogonally polarized, i.e. D1 ·D2 = 0, where the subscripts 1
and 2 are their corresponding labels.

1) Isotropic Media: As shown in Fig. 1 c, in isotropic ma-
terials the normal surface becomes a single sphere centered at
the origin, so in each direction of propagation the wave vector
will have the same magnitude, i.e., perceive the same effective
index. Additionally, since the eigenmode problem is degenerate,
any plane wave with a given polarization can be regarded as an
eigenmode of propagation.

2) Uniaxial Media: Uniaxial birefringent materials (anal-
ogous to cornea and muscles for mechanical waves) can be
described by a crystal axis direction Â and two optical indices:
the ordinary no and the extraordinary ne indices. It follows that
Eq. (4) simplifies to

G :

(
n2eff

n2o
− 1

)(
n2eff sin

2 ψ

n2e
+
n2eff cos

2 ψ

n2o
− 1

)
= 0, (5)

where ψ is the angle between the wave vector and the crystal
axis, i.e. cosψ = ĝ · Â. The normal-surfaces correspond to a
sphere (first term) and an ellipsoid (second term), both centered
at the origin and that touch along the crystal axis direction.
Note that the ellipsoid is symmetric with respect to the crys-
tal axis. According to Eq. (5), one of the two eigenmodes of
wave-propagation perceives the same effective index no matter
its direction of propagation, while for the other eigenmode, n2,
it depends on the angle of the wave vector with respect to the
crystal axis, varying within the two extremae values no and ne.

Explicitly, defining keff = 2πneff/λ, we have

keff,1 = ko, keff,2 =
koke√

k2o sin
2 ψ + k2e cos

2 ψ
, (6)

which is shown for two hypothetical ko and ke in Fig. 1 b.
As mentioned previously, the effective index will vary de-

pending on the wave propagation direction, and also on its
polarization state, which can be obtained from solving the eigen-
value/eigenvector problem in Eq. (3). The resulting polarization
directions (normalized) [4] are

D̂1 =
ĝ × Â

|ĝ × Â| =
ĝ × Â

sinψ
,

D̂2 =
(ĝ × Â)× ĝ

|ĝ × (ĝ × Â)| =
Â− ĝ cosψ

sinψ
, (7)

meaning that an ordinary mode does not have any component
along the crystal axis direction.

III. REVERBERANT ELASTOGRAPHY IN ANISOTROPIC MEDIA

A. Introduction

The generalization of the case involving mechanical waves
is far more complicated than the electromagnetic case (Section
2). While in electromagnetism waves are only transversal, in
the mechanical case, the elastic media support the propagation
of three types of waves: two shear waves with orthogonal and
transversal motion polarization, and one compression wave with
longitudinal motion polarization. Furthermore, the role of the
3× 3 electromagnetic tensor is now played by the stiffness
tensor c, a 3× 3× 3× 3 tensor. Fortunately instead of 81 coef-
ficients, given symmetry and energy conservation conditions, c
only has 21 independent elements [25] – compared with ε that
has three independent elements.

In this section, the reverberant theory is extended to
anisotropic materials, specifically to uniaxial birefringent media
which, in elastic solids, is equivalent to the transverse isotropic
model [2]. The expressions for wave-number k (equivalent
to effective index for electromagnetic waves), and the motion
direction (polarization states for electromagnetic waves) of the
mechanical wave perturbation need to be defined from Section
2 since they transit from electromagnetic to mechanical shear
waves. We are extending the transversal wave dynamics of
light into elastic bodies, ignoring completely the compression
waves, which in any case propagate at much higher speeds and
are not considered in this paper. In Section 3.2, we revisit the
isotropic reverberant case providing a generalization of equa-
tions provided in previous works [13]–[16] for specific cases,
and finalizing with the derivation for the anisotropic case in
Section 3.3.

B. Isotropic Media

A spatio-temporal particle velocity (motion) reverberant field
is defined as V(r, t), where r represents the 3D position vector
and t is time. This field is the superposition of all possible plane

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on May 11,2021 at 18:50:06 UTC from IEEE Xplore.  Restrictions apply. 



7201312 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 27, NO. 4, JULY/AUGUST 2021

Fig. 2. Mode decomposition for any shear wave with direction given by ĝq

(radial direction, defined by the angles θ and ϕ). Any perturbation direction
V̂ql, since it is transversal, can be expressed in terms of its θ̂ and ϕ̂ com-
ponents. Therefore, instead of sampling randomly this perturbation direction
and obtaining the projections, we sample each mode independently, i.e. sample
V̂q1,l1 and V̂q2,l2 .

shear waves traveling in random directions with the same wave-
number, k = |k|, and frequency, ω0,

V(r, t) =
∑
q,l

V̂qlvqle
i(kĝq ·r−ω0t). (8)

The subscript q specifies a realization of ĝq , a random unit vector
indicating the direction of wave propagation, and the index l
indicates a realization of V̂ql, the random vector describing the
direction of perturbation (particle velocity for mechanic waves,
corresponding to polarization of light for the field D̂). Since we
are dealing with transversal waves, V̂ql · ĝq = 0. Lastly, vql is an
independent, identically-distributed random variable describing
the magnitude of the particle velocity within a realization. The
summation over q is understood to be taken over the 4π solid
angle, while over l it is taken over a 2π angle within a disk
perpendicular to the wave direction given by ĝq .

Here we proceed differently than in previous works [13]–
[16] using the fact that any oscillation can be decomposed in
a vector basis consisting of two directions orthogonal to the
wave propagation, ĝ. Thus our sampling consists of independent
realizations of these two directions, instead of sampling overall
possible directions of oscillation. These two approaches are
equivalent and arrive at the same expressions, nevertheless we
opt for the decomposition method since it can be extended
directly to tackle the anisotropic problem.

Let us use spherical coordinates to express the direction of
wave propagation. For simplicity we choose the following basis,
note the resemblance to Eq. (7),

V̂1 =
ĝ × ẑ√

1− (ĝ · ẑ)2 = ϕ̂,

V̂2 =
(ĝ × ẑ)× ĝ√
1− (ĝ · ẑ)2 = θ̂, (9)

where θ̂ = cos(θ) cos(ϕ)x̂+ cos(θ) sin(ϕ)ŷ − sin(θ)ẑ and
ϕ̂ = cos(ϕ)ŷ − sin(ϕ)x̂ are the unit vectors in the polar and
azimuthal directions at (θ, ϕ), respectively, and consequently
x̂, ˜ŷ and ẑ are the unitary Cartesian coordinate vectors, see

Fig. 2. Therefore we have

V(r, t) =
∑
q1,l1

V̂q1,l1vq1,l1e
i(k1ĝq1

·r−ω0t)

+
∑
q2,l2

V̂q2l2vq2l2e
i(k2ĝq2

·r−ω0t), (10)

where both contributions come from independent realizations.
Given that ultrasound and OCT systems typically measure

the particle velocity in one direction, which we denote as the
sensor axis, ês, we will project this resulting particle velocity,
Vs(r, t) = V(r, t) · ês, according to the desired geometry,

Vs(r, t) =
∑
q1,l1

Vq1,l1˜svq1,l1e
i(kĝq1

·r−ω0t)

+
∑
q2,l2

Vq2l2svq2l2e
i(kĝq2

·r−ω0t), (11)

where Vqls = V̂ql · ês becomes a scalar random variable. We
are interested in the autocorrelation function of Eq. (11) in both
space and time, which we denote as BVsVs

, and is defined as

BVsVs
(Δr,Δt) = E {Vs(r, t)V ∗

s (r+Δr, t+Δt)} (12)

where E represents an ensemble average and the asterisk repre-
sents conjugation. Many of the terms correspond to cross terms
which will vanish given that they correspond to independent
realizations, so Eq. (12) simplifies to

BVsVs
(Δr,Δt) =

v2

2
eiω0Δt

× E

⎧⎨
⎩
∑
q1,l1

V 2
q1l1s

e−ikĝq1
·Δr +

∑
q2,l2

V 2
q2l2s

e−ikĝq2
·Δr

⎫⎬
⎭ ,

(13)

in which we renamed the expected value of the squared velocity
of the particle in each direction, i.e. 〈v2q1l1〉q1l1 = 〈v2q2l2〉q2l2 =

v2/2, assuming that each component has half the energy. Note
that we could factor Eq. (13) out given the independence between
vql and {ĝq, Vqls}. In an ideal reverberant field this ensemble
average becomes the average over all possible directions of wave
propagation (over 4π), specified in spherical coordinates with
(θ, ϕ). Therefore, renaming BVsVs

:= Biso, we have

Biso(Δr,Δt) =
v2

8π
eiω0Δt

∫ 2π

0

∫ π

0

[
V 2
1,s(θ, ϕ)

+ V 2
2,s(θ, ϕ)

]
e−ikĝ·Δr sin θdθdϕ. (14)

To solve this integral, we choose the direction of correlation
that results in the greatest simplification, i.e. along the z-axis,
Δr = (Δz)ẑ, so

ĝ · (Δz)ẑ = kΔz cos θ. (15)

We must set the direction along which the particle velocity will
be measured (also called sensor axis), and, given the symmetry
around the z-axis, we choose it to be somewhere along the xz
plane, so ês = cos θsẑ+ sin θsx̂, where θs is the angle of the
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Fig. 3. Autocorrelation functions for an isotropic material. The functions are
normalized, and the actual maximum at the origin is 1/3. (a) 2D autocorrelation
map. The sensor direction corresponding to the z′ axis. (b) 1D profiles for
different correlation directions, with an angle θs with respect the sensor axis.
Only one half of the plots are shown given that they are symmetric.

sensor with respect the z axis:

V1,s(θ, ϕ) = − sinϕ sin θs,

V2,s(θ, ϕ) = cosϕ cos θ sin θs − sin θ cos θs. (16)

Note that whenever θs = 0 the sensor is parallel to the corre-
lation direction, while when θs = π/2 the sensor and correlation
directions become perpendicular. These canonical scenarios are
the two cases that have been studied previously [13]–[16].
Substituting Eqs. (15-16) into Eq. (14) and solving the integral
leads to

Biso(Δz,Δt) = v2eiω0Δt

{
sin2 θs

2
[j0(kΔz)

−j1(kΔz)
kΔz

]
+ cos2 θs

j1(kΔz)

kΔz

}
, (17)

where jn(x) are the spherical Bessel functions of order n.
Analogously, considering the setup frame in which the sensor
is generally fixed, we can define the sensor axis to be the z′

axis and interpret θs as the autocorrelation direction angle with
respect to z′ (sensor axis). Then, note that Eq. (17) is a linear
combination of the two canonical cases: correlation parallel or
perpendicular to the sensor reported in [13], [16]. It follows that
the width of the central region is related to the wave-number, k,
and so its value can be estimated by fitting the measurements,
see Fig. 3.

C. Anisotropic Media: Uniaxial Case

Unlike the isotropic case, for uniaxial materials we cannot
select any two vectors to decompose the oscillation, but instead
we have to use the natural decomposition in ordinary and ex-
traordinary modes. Our assumption is that both eigenmodes are
equally represented and that each carries half of the energy, given
the reverberant chamber condition. Therefore, the reverberant
field is given by the summation of ordinary and extraordinary
waves,

V(r, t) =
∑
q1,l1

V̂q1l1vq1l1e
i(k1ĝq1

·r−ω0t)

+
∑
q2,l2

V̂q2l2vq2l2e
i(k2ĝq2

·r−ω0t), (18)

Fig. 4. The polarization eigenmodes are shown in k-space, all extraordinary
modes do not have any component along the axis-of-symmetry (black arrow).

where the labels 1 and 2 stand for ordinary and extraordinary
modes, respectively. Similarly to the isotropic case, both contri-
butions are independent from each other and random, so cross
terms vanish. Consequently, the autocorrelation ends up being
the average of both ordinary and extraordinary contributions
over 4π, so

Baniso(Δr,Δt) =
v2

8π
eiω0Δt

∫ 2π

0

∫ π

0

(
V 2
1,se

−ik1ĝ·Δr

+V 2
2,se

−ik2ĝ·Δr
)
sin θdθdϕ. (19)

Before proceeding, we need to revisit the corresponding oscil-
lation directions for each eigenmode. Unlike the electromagnetic
case, in which the electric field E may oscillate along any
arbitrary direction and the dielectric tensor responds differently
to each direction, for mechanical shear waves the stiffness tensor
and the stress are defined in planes rather than directions. Let
us consider only the shearing dynamics of a transverse isotropic
elastic model of a linear-elastic medium and write the corre-
sponding part of the stiffness tensor in the coordinate system
which diagonalizes it [25],⎛

⎜⎝
γX ′Y ′

γX ′Z ′

γY ′Z ′

⎞
⎟⎠ =

⎛
⎜⎝
1/Ge 0 0

0 1/Go 0

0 0 1/Go

⎞
⎟⎠

⎛
⎜⎝
σX ′Y ′

σX ′Z ′

σY ′Z ′

⎞
⎟⎠ . (20)

Since it is still a 3× 3 tensor, the mathematics remain the
same as in the electromagnetic case, however, the physical
interpretation changes dramatically. Here the eigenvalue cor-
responding to the extraordinary mode (multiplicity of one) is
related to shear deformations along the plane perpendicular to
the axis-of-symmetry, Â (ẑ′). However, the ordinary eigenvalue
is related to components that include this axis. Therefore, the
oscillation of each eigenmode propagating along ĝ are swapped
with respect to the electromagnetic case, i.e.

V̂1 =
(ĝ × Â)× ĝ√
1− (ĝ · Â)2

, V̂2 =
ĝ × Â√

1− (ĝ · Â)2
. (21)

Additionally, when considering anisotropy not only do calcu-
lations get convoluted, but more cases appear since the axis-of-
symmetry (crystal axis in optics) Â has to be considered along
with the correlation direction and the sensor axis. Nevertheless,
there is an immediate conclusion obtained from Eq. (21): the
extraordinary mode oscillation doesn’t have any component
along the axis-of-symmetry, see Fig. 4. As a result, whenever
the sensor is along Â, only the ordinary contribution will be
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measured, and so we expect k to be related only to ko. In the rest
of the cases we expect the extraordinary contribution to spread
the range of values of k within ko and ke.

In order to solve analytically the integral in Eq. (19), an
approximation must be made about the amount of anisotropy:
we assume that it is small. In other words,

|δe| =
∣∣∣∣k

2
e − k2o
k2e

∣∣∣∣ 	 1, (22)

such that the exponential can be expanded as a Taylor series
around ko and with respect to δe, i.e.

e−ik2ĝ·Δr ≈ e−ikoĝ·Δr

(
1− i

koδe
2

(ĝ ·Δr)

×
[
1− (ĝ · Â)2

])
. (23)

Given the expansion, the autocorrelation can be rearranged
such that the resulting expressions can be regarded as adding
corrections to the isotropic results derived in Eq. (17). Explicitly:

Baniso(Δr,Δt; ko, ke) = Biso(Δr,Δt; ko)

+ δB(Δr,Δt; ko, ke), (24)

where the anisotropic correction, assuming ês as sensor axis,
becomes

δB = −ikoδe
2

v2

8π
eiω0Δt

∫ 2π

0

∫ π

0

(ĝq ·Δr)

(ês · [ĝ × Â])2e−ik2ĝq ·Δr sin θdθdϕ, (25)

and in which the explicit dependency of δB with respect Δr
and Δt was dropped.

There are several studies characterizing anisotropic samples
such as muscles [3], [8] and tendons [26], [27]. Although assum-
ing small anisotropy is acceptable in many optical materials [4],
for mechanical waves it may not be, e.g. muscles with weight
loads. In these mechanical cases, it may be safer to define
km = (ko + ke)/2 and kd = (ke − ko)/2, so the expansion can
be done around km and with respect to the relative anisotropy
δ = kd/km. However, the resulting expressions become longer
since the zeroth order terms cannot be grouped to retrieve the
known isotropic results.

Finally we only have to proceed with the calculation of the
anisotropic correction. As in the isotropic case, we choose the
correlation direction along z to simplify the integration. We con-
sider two cases: correlation perpendicular to the sensor direction,
and correlation parallel to it. For both cases, an arbitrary axis-
of-symmetry of the medium is given by its spherical coordinates
(θA, ϕA) or in Cartesian coordinates by Â = αx̂+ βŷ + γẑ =
sin θA cosϕAx̂+ sin θA sinϕAŷ + cos θAẑ.

(1) Perpendicular correlation and sensor directions, i.e.
θs = π/2. Given that the correlation direction is along
z, for θs = π/2, we choose the sensor axis to lie along x̂.
Then, for an arbitrary axis-of-symmetry direction Â, the
integration of Eq. (25) leads to

δB⊥ = − δe
4

{
β2 [2j2(koΔz)− j0(koΔz)

+ cos(koΔz)] + γ2j2(koΔz)
}
. (26)

Fig. 5. Autocorrelation function obtained with sensor perpendicular to correla-
tion direction. Comparison of different axis-of-symmetry directions (θA, ϕA),
and with a normalized anisotropy constant δe ≈ 0.23. Scaling factor of 3 is used
for all the curves.

There is a harmonic term which does not decay with
correlation distance, as would be expected. This is not a
contradiction, but rather an artifact from the Taylor expan-
sion: we are expanding the exponential and as correlation
distance increases this first order approximation fails and
more terms are needed.
Note that the component of the axis-of-symmetry along
the sensor direction doesn’t appear explicitly. This was
expected since along the sensor axis the correction van-
ishes (extraordinary contribution becomes zero). There-
fore varying α changes the magnitude of the correction,
but doesn’t alter its shape, which depends solely on the
ratio between β and γ. The complete autocorrelation
function becomes

BVsVs

=
1

2

(
j0(koΔz)− j1(koΔz)

koΔz

)
− δe

4

{
cos2 θAj2(koΔz)

− sin2 θA sin2 ϕA [2j2(koΔz)− j0(koΔz)

+ cos(koΔz)]

}
. (27)

Fig. 5 shows the anisotropic result for different axis-
of-symmetry orientations. When the axis-of-symmetry
lies in the yz-plane (ϕA = π/2), i.e. Â = sin θAŷ +
cos θAẑ, the sensor is perpendicular to both the axis-
of-symmetry and correlation directions. This case cor-
responds to the maximum anisotropic contribution given
any θA. Even if departure of central lobes is not pro-
nounced, their difference becomes significant after the
first zero. On the other hand, whenever ϕA = 0, the
axis-of-symmetry lies in the xz-plane as Â = sin θAx̂+
cos θAẑ, and the anisotropic contribution is the smallest
(since the axis-of-symmetry projection on the sensor
direction is the highest given a certain θA). As seen in
Fig. 5, the autocorrelation function does not vary strongly
for weak anisotropy in this configuration.

(2) Parallel correlation and sensor directions, i.e. θs = 0.
In this case, both the sensor and the correlation directions
are along z; then ês = ẑ and the integration of Eq. (25)
leads to

δB‖ = −δe
4
(1− γ2)j2(koΔz). (28)
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Fig. 6. Autocorrelation function obtained for sensor parallel to both correlation
directions. Comparison of three different θA when δe ≈ 0.23. Scaling factor of
3 used for all the curves.

Fig. 7. (a-c) Comparison between three different sample-sensor geometries
having the sensor axis fixed along x′. Material’s axis-of-symmetry: (a) parallel
to z′; (b) at 45◦ from both z′ and y′; (c) along the sensor axis. (d)-(f) Resulting 2D
autocorrelation maps in the y′z’-plane using the same scaling factor and δe ≈
0.55, corresponding to each geometry (a)-(c), i.e. axis-of-symmetry pointing at:
(d) z′; (e) 45◦ from both z′ and y′; (f) parallel to x′.

Hence the complete expression of the autocorrelation
becomes

BVsVs
=
j1(koΔz)

koΔz
− δe

4
sin2(θA)j2(koΔz), (29)

where, again, θA is the angle between the axis-of-
symmetry and the correlation direction. Fig. 6 shows the
resulting autocorrelation for three different θA values, and
δe ≈ 0.23. The central lobe width, given by the first zero
position, exhibits a small but noticeable change, greater
than those in Fig. 5.

D. Practical Cases in USE and OCE

In reverberant OCE [16], the motion measurement (sensor)
direction is typically fixed along an axis, let us say the x′ axis,
and 2D autocorrelations are taken along a plane perpendicular
to it, the y′z′-plane. Then, Case A for ϕA = π/2, is of partic-
ular interest when the axis-of-symmetry of the material (e.g.,
orientation of fibers in muscle tissue) lies in the Y ′ Z′ plane at
a certain θA angle. Here, θA is interpreted as the angle between
the axis-of-symmetry and the correlation direction when the
axis-of-symmetry is fixed to the z′ axis. Then, when θA = 0,
the correlation direction corresponds to the z′ axis (Δz′), and
when θA = π/2, the correlation direction corresponds to the y′

axis (Δy′).

Fig. 8. Comparison of Eq. (27) (θs = π/2, ϕA = π/2) for two canonical
cases of axis-of-symmetry angles: θA = 0, and θA = π/2 when the material
has three different levels of anisotropy δe. Curves are compared to the isotropic
case using ko.

Fig. 9. Comparison of three isotropic functions using ko, ke, and km, and the
anisotropic expression up to first order. Here δe ≈ 0.23 and θA = π/2. Same
scaling factor used for all the curves. Here the fitting by km has a broader region
of validity.

In Figs. 7.a, and 7.b, the full 2D autocorrelation maps are
shown for two different axis-of-symmetry angles: parallel to
z′ axis, and at 45◦ from both the z′ and the x′ axes. Then, by
detecting the major and minor axes of the ellipses, not only
the direction of fibers in muscle can be detected, but also their
corresponding ordinary and extraordinary wave-numbers which
are related to the shear modulus parallel, and perpendicular to the
fibers, respectively. When the axis-of-symmetry of the material
is parallel to the sensor along x′ axis and 2D autocorrelations are
taken along the y′z′-plane, Case A for ϕA = 0 and θA = π/2 is
useful. As expected, in Fig. 7.c, the autocorrelation obtained is
rotationally symmetric since plane y′z′, in this case, is the plane
of isotropy in the transverse isotropic model of elasticity.

We have derived the autocorrelation function for two cases,
(A) correlation perpendicular to the sensor, and (B) correlation
parallel to the sensor, given by Eqs. (27) and (29), respectively.
Nevertheless, it is of interest to compare our results to earlier
isotropic equations, since that has been the strategy used in
previous work [14], [16]. Fig. 8 shows the case for the sensor
perpendicular to the axis-of-symmetry and correlation directions
as in Figs. 7.a, and 7.b. The comparison is made for the orthog-
onal cases θA = 0 (along fibers), and θA = π/2 (perpendicular
to fibers) for different values of anisotropy δe including the
isotropic case using ko. As shown, for a constant ko, the larger
the anisotropy, the larger the separation of the second lobe in the
θA = 0 case with respect to the θA = π/2 case.

In reverberant USE [14], when the motion measurement
direction is typically located along the x axis, due to USE
capabilities in imaging larger depths, 2D autocorrelations are
taken along the XY or XZ plane. Then, Case B is relevant.
Fig. 9 shows the comparison between the anisotropic result and
three isotropic equations using ko, ke, and km = (k0 + ke)/2
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Fig. 10. Numerical simulation of a reverberant shear wave field in anisotropic
media. (a) Dimensions and boundary conditions of a 3D solid subjected to
multiple shear sources vibrating at 2700 Hz. (b) Displacement magnitude field
(color bar in μm) measured along the x axis after simulation. (c) Cases of
axis-of-symmetry orientation of the material along the z axis (left), and x axis
(right).

for parallel sensor and correlation directions, and orthogonal
axis-of-symmetry. Here, the isotropic equation using km fits
very well the central and side lobe. Therefore, km in conjunction
with the estimation of ko in Case A of Fig. 8, allows for the
calculation of ke.

Thus, as seen, the central region of the autocorrelation func-
tion can be fitted quite well using the isotropic expression. If
birefringence is small, a more extended range is required to
observe stronger differences, both in the zero positions and in the
relative magnitude of side lobes. This explains why the isotropic
theory was used successfully in the past for cornea [16], although
it is not isotropic [11], [28].

To fully implement the derived anisotropic autocorrelation,
for example, one must first select the geometry of sensor-
correlation (which in principle can always be chosen, although
in practice may be restricted) and then fit the expression using
4 parameters: ko, δe, θA, and ϕA. One measurement grants
access to three different correlation directions (ideally many
more since the correlation is done in 3D and interpolation could
be employed to obtain profiles at other angles) which can be
used together to determine the anisotropy of the system as well
as the axis orientation without any a priori assumption of the
axis-of-symmetry direction.

IV. NUMERICAL SIMULATIONS

A. Simulation Setup

Numerical simulations of a reverberant shear wave field
produced by multiple shear-displacement contacts applied to
the surface of a 3D solid volume were conducted using finite
elements in Abaqus/CAE version 6.14-1 (Dassault Systems,
Velizy-Villacoublay, France). The 3D solid of 30 × 30× 30 mm
is subjected to spatially-uniform (square shape) and temporal-
harmonic (2700 Hz) displacement field at different surface lo-
cations as shown in Fig. 10 a. Zero displacement and rotation
were applied at the base of the cube. The solid was meshed
with an approximate grid size of 0.1 mm and using linear
hexahedral dominant elements (C3D8R). The type of simula-
tion was selected to be steady-state dynamic direct. After the
simulation, a 3D complex-valued displacement field along the
x axis (sensor axis) is extracted as shown in Fig. 10 b. Finally,
the complex autocorrelation is evaluated in regions of interest

TABLE I
MATERIAL PARAMETERS USING THE TRANSVERSE ISOTROPIC MODEL DEFINED

IN ABAQUS/CAE VERSION 6.14-1. ELASTOGRAPHY PARAMETERS ARE ALSO

CALCULATED FOR FURTHER COMPARISON

(ROI) of 18 mm × 18 mm along the YZ plane throughout the
3D displacement volume.

B. Material Properties

The solid material is represented using a linear and transverse
isotropic model of elasticity with a density of ρ = 1000 kg/m3

and parameters defined in Table I. In this model, the material
properties are symmetric within the plane-of-isotropy (p), which
is perpendicular to the axis-of-symmetry (t) direction (also
called direction of fibers in muscle). The compliance tensor of
a transverse isotropic material can be represented with the fol-
lowing 7 parameters: Ep, and Et, corresponding to the Young’s
moduli in the plane-of-isotropy and along the axis-of-symmetry,
respectively; Gp, and Gt, corresponding to shear moduli in
the plane-of-isotropy, and in a transverse plane parallel to the
axis-of-symmetry, respectively; and νp, νpt (and νtp), corre-
sponding the the Poisson’s ratios in the plane-of-isotropy, and
two transverse planes parallel to the axis-of-symmetry, respec-
tively. Finally, these variables can be reduced to 3 independent
parameters if the material is considered incompressible (such as
soft tissues) [29].

In dynamic elastography, we are interested in the propagation
of shear waves, leaving Gp and Gt as the most important
parameters since they can be related to shear wave speeds cp
and ct, using cp =

√
Gp/ρ and ct =

√
Gt/ρ, respectively [7].

On the other hand, in reverberant elastography [14], [16], for
a vibration frequency f , wave-numbers are typically estimated.
Then, Gp and Gt can be related to the extraordinary ke and
ordinary ko wave-numbers using ke = 2πf/

√
Gp/ρ and ko =

2πf/
√
Gt/ρ, respectively. Calculations of these wave-numbers

for f = 2700 Hz, and shear wave speeds, based on the simulation
parameters, are also reported in Table I. In reverberant OCE [16],
the sensor is usually fixed in one axis, and autocorrelations are
taken along a plane perpendicular to the sensor. Then, we define
the x axis as the sensor direction, and the YZ plane as the
autocorrelation plane. Two cases are explored: (Case 1) when
the axis-of-symmetry is oriented along the z axis (Fig. 10 c-left),
and (Case 2) when the axis-of-symmetry is oriented along the
x axis (Fig. 10 c-right in which the autocorrelation plane is also
the plane-of-symmetry).

C. Results and Discussion

In Case 1, the average 2D autocorrelation calculated from
ROIs along the YZ plane of the 3D displacement volume is fitted
to Eq. (27) (θs = π/2) when ϕA = π/2 (Fig. 11 a). Here, θA is
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Fig. 11. Fitting of Eq. (27) with simulation results in Case 1. (a) 2D average
autocorrelation along the YZ plane, obtained from the simulated 3D displace-
ment volume, is fitted to Eq. (27) for θs = π/2 and ϕA = π/2 (discontinuous
red line representing the zeros of Eq. (27)). Colorbar represents normalized
autocorrelation in arbitrary units. (b) Major and minor axes of the ellipse
corresponding to Δz and Δy autocorrelation axes, respectively, are compared
against simulation results. Fitting parameters ko = 2147.7 rd/m and δe = 0.334
were estimated providing a close match to the ground truth.

TABLE II
ESTIMATED ORDINARY AND EXTRAORDINARY WAVE-NUMBERS BASED ON THE

FITTING PARAMETERS ko, AND δe IN CASE 1 AND 2. AVERAGE PARAMETERS

ARE COMPARED AGAINST GROUND TRUTH PARAMETERS SET IN THE

SIMULATION (TABLE I)

interpreted as the angle between the axis-of-symmetry and the
correlation direction when the axis-of-symmetry is fixed to the z
axis. Then, when θA = 0, the correlation direction corresponds
to the z axis (Δz), and when θA = π/2, the correlation direction
corresponds to the y axis (Δy). An elliptical shape in the plot
is clearly observed in Fig. 11 a indicating that the anisotropic
properties of the material are different parallel (Δz) and perpen-
dicular (Δy) to the axis-of-symmetry. The major and minor axes
of the ellipse corresponding to the Δz and Δy autocorrelation
axes, respectively, are shown with Eq. (27) (θs = π/2) curve
fittings in Fig. 11 b. Fitting parameters ko and δe are shown and
compared against simulation ground truth parameters in Table II.

Similarly, in Case 2, the average 2D autocorrelation is taken
along the YZ plane when the axis-of-symmetry is oriented along
the x axis and fitted to Eq. (27) (θs = π/2) when ϕA = 0 and
θA = π/2 (Fig. 12 a). Here, the interpretation of θA is the same
as in Section 3.3. As expected, the plot shape is circular and
symmetric as Eq. (27) in this case is the same for any correlation
direction perpendicular to the sensor and axis-of-symmetry di-
rections. Autocorrelation axes along Δz and Δy are shown with
Eq. (27) (θs = π/2, ϕA = 0, and θA = π/2) curve fittings in
Fig. 12 b. Fitting parameters ko and δe are shown and compared
against simulation ground truth parameters in Table II.

Estimations of ko and δe are used in Eq. (22) for the cal-
culation of ke in each case as reported in Table II. Average
estimations are compared against ground truth parameters set in
the simulation (Table I). We found a maximum accuracy error
of 3.54% and a minimum of 0.06%, validating the effectiveness
of the anisotropic derivation in reverberant shear wave fields.
This has important implications in the elastography of transverse
isotropic elastic tissues: (1) the axis-of-symmetry of tissues

Fig. 12. Fitting of Eq. (27) with simulation results in Case 2. (a) 2D average au-
tocorrelation along the YZ plane, obtained from the simulated 3D displacement
volume, is fitted to Eq. (27) for θs = π/2, ϕA = 0, and θA = π/2 (discontin-
uous red line representing the zeros of Eq. (27)). Colorbar represents normalized
autocorrelation in arbitrary units. (b) Autocorrelation axes Δz and Δy are
compared against simulation results. Fitting parametersko=2091.2 rd/m and δe
= 0.320 were estimated, providing a good assessment of the material properties
used in the simulation.

(for example the fiber direction in muscle) can be estimated
by finding the major axis of the elliptical plot of Eq. (27) in
Case 1; (2) the complete characterization of shear moduli in
every direction (Gp, and Gt) can estimated based on ko and δe
provided by Eq. (27) in Cases 1 and 2; and (3) more complex
situations in which the axis-of-symmetry of the tissue is not
parallel to one of the axes can be fully characterized by building
libraries of cases using Equations (27) and (29) and machine
learning tools.

V. REVERBERANT OCE EXPERIMENTS

A. Sample Preparation

Using a surgical scalpel, three (n = 3) cubical samples
(2 × 2 × 2 cm) were dissected from a fresh roaster chicken
tibialis anterior muscle. Each cubical sectioning was conducted
so that the fiber orientation of the muscle is parallel to one
of the axes of the cube. The epithelium was removed from all
sides of the cubic sample since OCE measurements are usually
constrained to the surface of the sample. During experiments, the
OCT laser was oriented towards thex axis, and two measurement
cases were conducted: case A, and case B. In case A, the side
of the cubical sample containing all fibers was oriented parallel
to the z axis; while in case B, the cubical sample was oriented
with the fibers parallel to the x axis (Fig. 13 a). The muscle was
not subjected to any external force in order to prevent a passive
muscle resistance effect.

B. Experimental Setup and Processing Scheme

The experimental setup consists of a phase-sensitive optical
coherence tomography (PhS-OCT) system implemented with
a swept source laser (HSL-2100-WR, Santec, Aichi, Japan) of
a center wavelength of 1318 nm and a bandwidth of 125 nm
(Fig. 13 b). The frequency sweep rate of the light source
was 20 kHz, and the optical resolution was measured to be
30 μm laterally, and 10 μ m axially. The system was used
to acquire 3D motion frames of the chicken samples within a
ROI of 9 × 9 mm in the YZ-plane. The mechanical excitation
system begins with a function generator (AFG320, Tektronix,
Beaverton, OR, USA) output signal connected to an ultra-low
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Fig. 13. Experimental opto-mechanical setup for the generation and measure-
ments of reverberant shear wave fields in chicken muscle tissue. (a) Orientation
of the chicken muscle sample with respect to the OCT scanning probe. Average
orientation of fibers was aligned along the z axis (case A), and x axis (case B),
while the motion measurement (sensor) was oriented along thex axis (depth). (b)
Phase-sensitive OCT system based on a swept source laser. A 2 kHz mechanical
excitation was generated in the sample using a 3D printed pronged ring allowing
for motion measurement along the yz-plane within the ROI (9 mm × 9 mm).

noise power amplifier (PDu150, PiezoDrive, Callaghan, NSW,
Australia) feeding a piezoelectric bender poled in a parallel
configuration of 10 × 45 mm surface dimensions (BA4510,
PiezoDrive, Callaghan, NSW, Australia). A 3D printed pronged
ring containing eight vertical equidistant and circular distributed
rods is attached to one of the ends of the piezoelectric bender
(Fig. 13 b). The rods are lightly touching the sample surface
in a concentric configuration and produce a reverberant field
when the piezoelectric bender is excited at 2 kHz. The ring
shape allows the imaging of the cornea using the OCT system,
while the rods introduce mechanical excitation. Reverberant
particle velocity (motion) fields along the x axis (sensor axis)
were analyzed in the yz-plane in order to calculate complex 2D
autocorrelations for further fitting with Eq. (27). Anisotropic
properties of the n = 3 chicken muscle samples were character-
ized by estimating parameters ko and δe as conducted in Section
4.3 for the simulated case.

C. Results and Discussion

Fig. 14 a shows the 3D structural OCT volume of one of
the chicken sample for case A. The average direction of the
muscle fibers is aligned toward the z axis as shown in the en
face structural image of Fig. 14 b taken along the yz-plane. A
motion snapshot (normalized particle velocity in arbitrary units)
of the 2 kHz reverberant field produced in the chicken sample is
shown in Fig. 14 c. Here, a 6 × 6 mm region was selected for
the calculation of the 2D autocorrelation (normalized units) and
fitted to Eq. (27) (θs = π/2) when ϕA = π/2 (Fig. 14 d). An
elliptical shape in Fig. 14 d highlights the anisotropic properties
of muscle tissue when comparing autocorrelation plots parallel
(Δz) and perpendicular (Δy) to the z axis. The major and minor
axes of the ellipse corresponding to Δz and Δy autocorrelation
axes, respectively, are fitted to Eq. (27) in Fig. 14 e. Fitting
parameters ko and δe are estimated and shown for all samples
in Table III.

Similarly, Fig. 15 shows OCE results for the case B when the
average orientation of the fibers is parallel to the sensor axis. In

Fig. 14. Case A: Experimental reverberant OCE results in chicken muscle
when fibers are oriented along the z axis. (a) 3D structural OCT volume of one
of the muscle samples. (b) Structural en face OCT image of the muscle along the
yz-plane. Color map represents normalized intensity. (c) Motion snapshot of a
2 kHz reverberant field measured at the surface of the muscle sample at t0 = 2 ms
instant. Color bar represents normalized particle velocity in arbitrary units. (d)
2D autocorrelation of the reverberant field extracted from a 6 mm× 6 mm region
(white discontinuous line) in (c). Color bar represents the normalized real part of
the complex autocorrelation in arbitrary units. Discontinuous red line represents
the zeros of Eq.(27) for θs = π/2 and ϕA = π/2. (e) Major (Δz) and minor
(Δy) autocorrelation axis of the ellipse in (d) fitted to Eq. (27) for cases θA = 0
and θA = π/2, respectively. Fitting parameters ko = 2512.3 rd/m and δe =
0.42 were estimated for muscle sample 1. Fitting quality: r2 = 0.962.

TABLE III
ESTIMATED SHEAR MODULI IN THE PLANE-OF-ISOTROPY (XY-PLANE) Gp AND

IN THE TRANSVERSE PLANE PARALLEL TO THE AXIS-OF-SYMMETRY (z AXIS)
Gt, BASED ON THE FITTING PARAMETERS ko, AND δe IN n = 3 CHICKEN

MUSCLE SAMPLES FOR CASES A AND B. SHEAR WAVE SPEED WAS ALSO

CALCULATED ALONG THE SAME DIRECTIONS FOR FURTHER COMPARISON. SE:
STANDARD ERROR

this case, autocorrelation plots parallel (Δz) and perpendicular
(Δy) to the z axis are symmetrical and follow Eq.(27) for θs =
π/2,ϕA = 0, and θA = π/2 as expected in the plane-of-isotropy
of a transverse isotropic tissue. Fitting parameters ko and δe are
estimated in both Δz and Δy autocorrelation directions and
shown for all samples in Table III.

Autocorrelation profiles obtained in cases A (Fig. 14 e) and
B (Fig. 15 e) show two ideal orientations to characterize a
transverse isotropic tissue which are the plane-of-isotropy, and
any plane parallel to the axis-of-symmetry, respectively. In both
cases, Eq.(27) can fairly describe the behaviour of the auto-
correlation of a reverberant shear wave field with important
implications for the elastography of this type of tissues. As
explained in Section 4.2, for a transverse isotropic medium, the
shear moduli in the plane-of-isotropy Gp and in the transverse
plane parallel to the axis-of-symmetry (direction of the fibers)
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Fig. 15. Case B: Experimental reverberant OCE results in chicken muscle
fibers are oriented along the x axis. (a) 3D structural OCT volume of one of
the muscle samples. (b) Structural en face OCT image of the muscle along the
yz-plane. Color map represents normalized intensity. (c) Motion snapshot of a
2 kHz reverberant field measured at the surface of the muscle sample at t0 =
2 ms instant. Color bar represents normalized particle velocity in arbitrary units.
(d) 2D autocorrelation of the reverberant field extracted from a 6 mm × 6 mm
region (white discontinuous line) in (c). Color bar represents the normalized
real part of the complex autocorrelation in arbitrary units. Discontinuous red
line represents the zeros of Eq.(27) for θs = π/2, ϕA = 0, and θA = π/2 (e)
Autocorrelation along axes Δz and Δy in (d) fitted to Eq. (27) for θA = π/2.
Fitting parameters ko and δe were estimated for both autocorrelation directions
of muscle sample 1. Fitting quality: r2 = 0.98.

Gt can be calculated from shear speed cp and ct, respectively,
using ko and δe parameters. Table III shows cp, ct, Gp, and Gt

for all chicken samples in cases A and B, indicating a marked
anisotropy in agreement with other studies [30], [31]. Note that
results for sample 3 are different from those of samples 1 and 2.
Nevertheless, this difference is consistent in both cases A and
B, and it may be a signature of tissue inhomogenity.

The fitting quality of Eq. (27) to autocorrelation plots tends to
degrade as sample points are further away from the center of the
autocorrelation (Fig. 14 e, and Fig. 15 e). This is explained as
Eq. (27) comes from a theoretical formulation of autocorrelation
considering an infinite space field (numerous spatial waves
within a region). In practice, due to the attenuation of waves
in tissues, a limited number of cycles can be captured within a
ROI as shown in Fig. 14 c, constraining the effectiveness of the
fitting of Eq. (27) to the center of the autocorrelation map in
Fig. 14 d.

The size of the tissue sample was chosen to be greater than
5 and no more than 7 times the excitation wavelength (≈ 3 mm
in this experiment) in order to minimize the presence of Lamb
waves and prevent strong attenuation of waves. Autocorrelation
estimations where conducted in a ROI centered at the samples
surface in order to avoid the reflection and wave conversion
effect at the borders. The effect of tissue inhomogeneity, vis-
coelasticity, and tissue thickness was not explored in this study as
the proposed estimator assumes an infinite-type, pure elastic, and
homogeneous medium. In [32], the propagation of Lamb waves
was explored in transverse isotropic and viscoelastic tissues.
Future work may focus in the extension of the reverberant
technique for the study on thin-layer type tissues such as the
cornea.

Finally, this study demonstrates that reverberant elastography
can be used in practical cases for the characterization of trans-
verse isotropic tissues such as muscle. The current method is
limited to estimation of Gp, and Gt with a spatial resolution of
6 × 6 mm (autocorrelation window size) and precision error of
<7% and <12% for Gt, and Gp, respectively, in all (n = 3)
muscle samples. A possible path to improve the OCE resolution
for the generation of elasticity maps without compromising the
accuracy of the estimations include the reduction of the autocor-
relation windows size by increasing the excitation frequency in
order to reduce the mechanical wavelength.

VI. CONCLUSION

The major concepts from electromagnetic fields in anisotropic
media are reviewed and found to be helpful in deriving closed-
form solutions to the problem of reverberant elastography in
anisotropic media. We found Equations (27) and (29) describing
the complex autocorrelation of reverberant fields in materials
exhibiting a transverse isotropic model of elasticity for variable
directions of: (1) the material’s axis-of-symmetry, (2) the di-
rection of motion measurement (sensor), and (3) complex auto-
correlation. Results were validated with numerical simulations
using finite elements achieving accuracy within 4%. Moreover,
Equation (27) was used for the anisotropic characterization of
chicken tibialis anterior muscle in OCE experiments, demon-
strating its use in the non-destructive elastography of tissues. Fi-
nally, we developed a general solution for the isotropic model in
Eq. (17) consistent with previous reported results for particular
configurations. Limitations of this work include the assumption
of small anisotropic ratios and the consequent simplification of
terms within the complex autocorrelation function.
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