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Abstract: The speckle statistics of optical coherence tomography images of biological tissue
have been studied using several historical probability density functions. Here, we propose a new
theoretical framework based on power-law functions, where we hypothesize that an underlying
power-law distribution governs scattering from tissues. Thus, multi-scale scattering sites
including the fractal branching vasculature will contribute to power-law probability distributions
of speckle statistics. Specifically, these are the Burr type XII distribution for speckle amplitude,
the Lomax distribution for intensity, and the generalized logistic distribution for log amplitude.
Experimentally, these three distributions are fitted to histogram data from nine optical coherence
tomography scans of various samples and biological tissues, in vivo and ex vivo. The distributions
are also compared with classical models such as the Rayleigh, K, and gamma distributions.
The results indicate that across OCT datasets of various tissue types, the proposed power-law
distributions are more appropriate models yielding novel parameters for characterizing the
physics of scattering from biological tissue. Thus, the overall framework brings to the field new
biomarkers from OCT measures of speckle in tissues, grounded in basic biophysics and with
wide applications to diagnostic imaging in clinical use.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Speckle is a granular pattern seen in signals or images that is caused by the interference of
coherent waves with random phases and known or random amplitudes. [1] The study of speckle
phenomena has a long history dating back to the time of Isaac Newton, with an increasing
multitude of recent applications in optics, radar, and ultrasound. Optical coherence tomography
(OCT) and ultrasound are two medical imaging modalities with prominent speckle. For some
applications such as high-resolution imaging, speckle is considered to be undesirable noise and
many studies attempt to eliminate its presence. [2–10] Other studies choose to utilize speckle for
physical modeling or characterization of tissue samples. [11–16] Studies of speckle amplitude
statistics in acoustics and optics have led to the usage of various probability density functions
(PDFs) such as the Rayleigh distribution, the K distribution, the Rice distribution, gamma
distributions, and many others. [17–22]

Although OCT is an interferometric technique and ultrasound utilizes time-of-flight measure-
ments, the mathematics describing wave propagation and wave phenomena such as speckle
can be applicable to both acoustical and optical imaging modalities. Recently, a new model
hypothesized that in normal soft tissue, the dominant scattering elements are cylinders from
fractal branching vasculature. [23–26] The results apply generally to multi-scale distributions
of scattererers and three new and distinct probability distributions were found to characterize

#422765 https://doi.org/10.1364/BOE.422765
Journal © 2021 Received 17 Feb 2021; revised 2 May 2021; accepted 11 Jun 2021; published 17 Jun 2021

https://orcid.org/0000-0001-9765-8076
https://orcid.org/0000-0003-2747-4022
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.422765&amp;domain=pdf&amp;date_stamp=2021-06-17


Research Article Vol. 12, No. 7 / 1 July 2021 / Biomedical Optics Express 4180

ultrasound speckle in biological tissue. These were the Burr type XII distribution, the Lomax
distribution, and the generalized logistic distribution.

In this paper, this novel framework for speckle is extended to OCT scans of various biological
tissues. Metrics for assessing appropriate regions of interest (ROIs) and evaluating the statistical
validity of the distributions are also presented. A comparison of the new distributions with
distributions found in the literature are presented based on clinically relevant ex vivo and in vivo
samples, and the power-law distributions are shown to provide a superior description of the
speckle statistics. Finally, the key power-law parameter estimated from speckle is capable of
discriminating between tissues and thus introduces a new biomarker for clinical use.

2. Theory

2.1. Modeling of biological tissue

Parker et al. [26] recently derived the first order speckle statistics of biological tissue in ultrasound
imaging under the assumptions of weak scattering (using the Born approximation) originating
from fractal branching of vasculature represented by cylinders. This derivation leads to power-law
functions that dictate the PDFs for the echo amplitude and intensity histograms. One of the
properties about power laws is their invariance to scale, which allows us to bridge between
ultrasound and OCT, two modalities of different resolutions. The framework for the derivation is
also directly applicable to multi-scale optical scattering within OCT and is summarized here.

First, consider a distribution of scattering structures, from large to small, within the volume.
We assume the distribution follows a power-law distribution in size, with relatively fewer larger
scatterers. A power-law distribution and spatial correlation function are also consistent with
generalized fractal models. [27] Thus, in scanning a volume, the probability of encountering a
scatterer of characteristic dimension a is given as [26,28]

p(a) =
b − 1
amin

(︃
a

amin

)︃−b
(1)

where b is the power-law coefficient representing the multi-scale nature of the tissue structures,
and amin represents the minimum size or lower limit of dimensions of the scattering structures
that are detectable. Previous studies have shown that variations in the index of refraction within
tissues obey a power law down to the sub-micron scale. [29] Thus, this model is appropriate for
tissues.

Secondly, we assume each scatterer of dimension a produces a detected amplitude A or intensity
I according to the theory of backscattered waves. In general, canonical scattering elements
such as spheres and cylinders have been characterized by power series solutions. [30–32] The
dependence of backscatter on frequency and dimension is complicated, but can be characterized
by well-known long-wavelength, short-wavelength, and transition or Mie scattering regimes.
[33] However, in the sub-resolvable regime where the scatterer is smaller than a wavelength,
backscatter models exhibit similar trends as scatterer size increases from the lower limit (long
wavelength or Rayleigh backscatter regime) towards larger sizes approaching the wavelength.
Across this sub-resolvable range, the scattering versus size curves increase progressively until
the Mie scattering regime is reached. As a first-order approximation to this behavior, we have
employed a linear offset model covering the sub-resolvable regime where

I(a) = I0(a − amin) (2)

where both I0 and amin are dependent on system parameters such as wavelength and gain, and
the lower limit of system detectability, including quantization and noise floor. With this linear
monotonic function, the probability of occurrence can be simply mapped into the probability of
amplitude or intensity using the probability transformation rule. [24,26]



Research Article Vol. 12, No. 7 / 1 July 2021 / Biomedical Optics Express 4181

2.2. Probability distributions for amplitude, intensity, and log of amplitude

The PDF for the histogram of amplitudes x is derived by Parker et al. [26] and is given by

p(x; d, b) =
2x(b − 1)

d2
[︂ (︁ x

d
)︁2
+ 1

]︂b , x>0 (3)

which is a special case of the Burr type XII distribution as a two-parameter fit. The parameters
are the power-law exponent b and a scale factor d. When using this PDF for fitting OCT speckle
amplitude, it is convenient to normalize by setting x = A√

⟨A2 ⟩
, where the denominator represents

the root mean square (RMS) value. [18,21] Otherwise, the normalization constant can be
incorporated into the d parameter.

The PDF for the histogram of intensities is given by

p(x; d, b) =
(b − 1)db−1

(x + d)b
, x>0 (4)

which is the Lomax distribution or Pareto type II distribution. When using this PDF for fitting
OCT speckle intensity I = |A|2, it is convenient to normalize by setting x = I

⟨I ⟩ , where ⟨I⟩ is the
mean intensity.

Finally, the PDF for the histogram of log amplitude defined by y = log(A) is given by

p(y; d, b) =
2(b − 1) exp (2y)

d2
[︂

exp (2y)
d2 + 1

]︂b , −∞<y<∞ (5)

which is a transformed version of the generalized logistic type I distribution. Typically, in OCT,
it is beneficial to display an image of the log of the amplitude or intensity to better visualize the
dynamic range. Thus, this distribution is useful in capturing the histograms of most conventional
display values. Furthermore, these three PDFs are all well characterized in the statistics and
econometrics literature, with known cumulative distribution functions and moments. [34]

2.3. Theoretical importance of the exponent parameter

The above three PDFs all contain a power-law or exponent parameter b. In power-law and related
functions, the exponent parameter is a valuable parameter of interest in many applications. [28]
In this paper’s context, the exponent parameter b is important in tissue characterization.

According to Carroll-Nellenback, et al., [35] a simple fractal distribution of vessels within
normal tissues would provide a value of approximately b = 2.7. However, the number of scatterers
per sample volume and the index of refraction can increase the exponent parameter. Thus, the
exponent parameter provides information about the tissue’s scattering properties and structure,
and acts as a biomarker for differentiating different tissues.

2.4. Historical probability distributions for comparison

In the literature, there are other PDFs used to model OCT speckle amplitudes and intensities
based on consideration of random point scatterers or more complex distributions from radar and
other fields. The most prevalent of these is the Rayleigh distribution for speckle amplitude and
the exponential distribution for speckle intensity, which are given by: [18,20]

p(A) =
2A√︁
⟨A2⟩

exp
(︃
−

A2

⟨A2⟩

)︃
, A>0

p(I) =
1
⟨I⟩

exp
(︃
−

I
⟨I⟩

)︃
, I>0

(6)

The Rayleigh distribution is suitable for the case of a large number of scatterers in a homogeneous
medium.
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Another distribution used by Weatherbee et al. is the K distribution, which has also been
explored in ultrasound and radar. [18,21] The K distribution is modeled for the case of a small
number of scatterers, and the PDFs for the amplitudes and intensities are given by

p(A;α) =
4
Γ(α)

√︃
α

⟨A2⟩

(︃
αA2

⟨A2⟩

)︃α/2
Kα−1

⎛⎜⎝2

√︄
αA2

⟨A2⟩

⎞⎟⎠ , A>0

p(I;α) =
2
Γ(α)

√︃
α

I⟨I⟩

(︃
αI
⟨I⟩

)︃α/2
Kα−1

(︄
2

√︄
αI
⟨I⟩

)︄
, I>0

(7)

where Γ(·) is the gamma function and K(·) is a modified Bessel function of the second kind, and
α is the shape parameter.

A third distribution for comparison is the gamma distribution, as used by Kirillin et al. for
modeling speckle amplitude, and is given by [16]

p(A;α, β) =
1
Γ(α)

βαAα−1 exp (−βA), A>0

p(I;α, β) =
1

2Γ(α)
βαI

α
2 −1 exp

(︂
−β

√
I
)︂
, I>0

(8)

where α and β are two shape parameters.

3. Methods

3.1. OCT scans of various biological tissues

A swept source OCT (SS-OCT) system is used to scan various biological tissue. It is implemented
with a swept source laser (HSL-2100-WR, Santec, Aichi, Japan) with a center wavelength of
1310 nm and full-width half-maximum (FWHM) bandwidth of 170 nm. The lateral resolution is
20 µm and the FWHM of the axial point spread function after dispersion compensation is 8 µm
in air. The maximum sensitivity of the system was measured to be 120 dB. The imaging depth
was measured to be 5 mm in air (-10 dB sensitivity roll-off). The scanning lens has an f -number
of f /9. The SS-OCT system is controlled with LabVIEW (Version 14, National Instruments,
Austin, Texas, USA).

The following tissues were scanned and analyzed with the SS-OCT system: mouse brain and
liver, pig brain and cornea, and chicken muscle all ex vivo as well as human hand (skin) in vivo.
In addition, two gelatin phantoms (5% with and without milk for optical scattering) were also
scanned and analyzed. Milk in the form of coffee creamer was added as 0.2% of phantom weight.
Additional scans of three pig corneas were performed to assess reproducibility. The number of
A-lines for each scan was either 100, 500, or 1000. Variations in the number of A-lines do not
change the speckle statistics, as long as an adequate number of pixels are used (e.g. greater than
1,000 pixels, which is easily covered by a 10 × 100 ROI) over an appropriate field of view (e.g.
5-10 mm). A-lines were not averaged for analysis to preserve the statistics of power-law related
tail behaviors. Focal planes were set at approximately 0.2 mm below the surface of the sample
apex. Amplitude, intensity, and log amplitude histograms are generated from specific ROIs in
these samples.

3.2. Fitting distributions using maximum likelihood estimation

The distributions specified in Sections 2.2 and 2.4 are fitted to respective amplitude and intensity
histograms using maximum likelihood estimation (MLE). This technique estimates the parameters
of a PDF by maximizing a known likelihood or log-likelihood function. [36] The iterative
maximization algorithm for MLE and all other analysis aspects were conducted in MATLAB
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2020b (MathWorks, Natick, Massachusetts, USA). Curve fitting using an alternative least-squares
approach or related methods can result in systemic errors, especially when estimating a power-law
or exponent parameter. [37] This is due to a combination of factors such as violations of the
underlying assumptions when using these curve fitting methods and variability from histogram
binning methods. Therefore, MLE is a more accurate approach to this paper’s studies.

3.3. Metric for specifying an appropriate region of interest

Relative uniformity across the ROI is an important, yet difficult to quantify, requirement for
assessing appropriate speckle statistics. Attenuation along depth and shadowing effects are two
examples of phenomena that would reduce the validity of an ROI for appropriate speckle statistics.
Within a region of macroscopically similar tissue, we assume spatial stationarity and ergodicity
of speckle statistics, and therefore the average along any projection line would have an identical
expected value. This forms the basis of our following ad hoc metric for accepting or rejecting an
ROI for analysis.

Simulations were performed to obtain a threshold for selecting an ROI with acceptably uniform
statistics. In Fig. 1(a), a simulated OCT B-mode image (500 × 500 pixels) using a Burr type XII
distribution with parameters d = 10 and b = 3 is shown with attenuation and shadowing effects.
Figure 1(b) shows how spatial integration profiles vary along the axial and lateral directions,
which can be visually correlated to the B-mode image. Specifically, integrations of speckle
amplitude are performed along the two directions using intervals of 5 pixels and are normalized
so that the two profiles can be displayed on the same scale. Using a Monte Carlo method, 10,000
ROIs of the B-mode image are randomly generated with a minimal size of 15 × 15 pixels to ensure
adequate statistics. The resulting speckle statistics were fitted to a Burr type XII distribution
using MLE. The ROIs were quantified by the maximum percent change (i.e. ratio of maximum
difference over minimum value) in their spatial integration profiles, ∆. Figure 1(c) shows how the
estimated parameter b̂ varies as a function of the ROI’s ∆. Using this simulation, we established
an ad hoc requirement that any appropriate ROI’s ∆ should not exceed a 50% change in their
spatial integration profiles laterally and axially.

Fig. 1. Determining an ROI metric. (a) Simulated B-mode image using a Burr type XII
distribution (d = 10, b = 3) with attenuation and shadowing. (b) Depth and lateral profiles
based on spatial integration laterally and along depth, respectively. (c) Multiple ROIs and
MLE fitting were used to calculate b̂ as a function of maximum percent change in profiles, ∆.

In addition, the estimated attenuation coefficient, denoted as µ̂, is estimated using a depth-
resolved approach, as demonstrated by Vermeer, et al. [38]

µ̂ =
1

2 dz
log

(︃
1 +

I[i]∑︁∞
i+1 I[i]

)︃
(9)
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where i denotes the ith pixel, I is the intensity, and dz is the pixel size along depth. The
average attenuation coefficient, denoted as µ̂avg, along with the standard deviation are computed
for each sample ROI. The attenuation coefficient provides an additional parameter for tissue
characterization. The Pearson correlation coefficient r between the attenuation coefficient and
the exponent parameter is also reported as r(degrees of freedom) = r statistic, p value.

3.4. Comparing multiple distributions

There are numerous methods for direct comparison of models. These methods include the
Kolmogorov-Smirnov (KS) test, the Anderson-Darling (AD) test, the likelihood ratio test (LRT),
and the Akaike information criterion (AIC). [37,39,40] The KS and AD test statistics provide
p-values and indicate which models are best rejected while simultaneously indicating which
model is the best fit. The AD test is similar to the KS test but gives more weight to distribution
tails. However, it can be too conservative with estimates of power-law functions and requires
customized tests for the PDFs described in Sections 2.2 and 2.4. Instead, we follow the rapid KS
procedure as outlined in Clauset et al. [37] By performing the KS test on the sample data and
simulated sample distributions from the MLE fit, a p-value can be estimated by using a Monte
Carlo method. In this case, a very large p-value (> 0.9) indicates a good fit, while a small value
indicates that the model is not an appropriate one. When comparing models, the one with the
largest KS p-value can be considered the best, although the best model may still not be a good fit.

The second test used is the LRT. The LRT generates a ratio of the log likelihoods of two
models for comparison, which we denote by R. [37,39] In this case, the LRT is used to compare
the distributions in Section 2.4 (Rayleigh/Exponential, K, and Gamma distributions) with the
Burr/Lomax distributions. The sign of R indicates which distribution is the better fit: if R<0,
then the Burr/Lomax distribution is the preferred distribution. A p-value is also estimated with R
to acknowledge that a true R = 0 may fluctuate either positively or negatively. If the p-value is
small, then the sign of R is a good indicator of which distribution is the better fit. Otherwise for a
non-small p-value (> 0.1), the LRT is inconclusive.

The final metric used is the AIC, which is defined as

AIC = 2k − 2 log
(︂
L̂
)︂

(10)

where k is the number of estimated parameters and L̂ is the model’s likelihood. The AIC provides
a relative measure of a model when compared to other models, where a smaller value indicates a
better model. [40] These three methods (KS test, LRT, and AIC) are used to determine which
distribution fits best for speckle amplitude (Burr type XII, Rayleigh, K, or Gamma) and intensity
(Lomax, Exponential, K, or Gamma).

4. Results

4.1. Evaluating the Burr type XII, Lomax, and generalized logistic distributions

Figure 2 demonstrates the speckle analysis performed for a mouse brain sample. Figure 2(a)
shows the B-mode image and the ROI used for the speckle statistics, and Fig. 2(b) verifies that
this ROI is appropriate using the metric defined in Section 3.3. The MLE fits for the amplitude
values using the Burr type XII distribution are shown in Fig. 2(c)-(d), on both a linear and
logarithmic scale. Figure 2(e)-(f) reports the MLE fits for the intensity values using the Lomax
distribution, and Fig. 2(g)-(h) shows the MLE fits for the log of amplitude values using the
generalized logistic distribution. All MLE fits to the prescribed PDFs result in a consistent
exponent parameter estimate b̂ = 6.06 (95% Confidence Interval: [5.83, 6.28]) for mouse brain.
Figure 3 demonstrates the same type of analysis performed for mouse liver, which results in
a consistent estimate of b̂ = 5.95 (95% Confidence Interval: [5.70, 6.21]). Visual inspection
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indicates that the Burr type XII, the Lomax, and the generalized logistic distributions are good
fits to the data, but statistical analyses of these distributions are further investigated in the next
section.

Fig. 2. Mouse brain with cranial window. (a) Single unfiltered and unaveraged B-mode
frame with the ROI shaded green. (b) The ROI’s normalized spatial integration profiles
demonstrating that the maximum percent change ∆ does not exceed 50%. (c) MLE fit to
the Burr type XII distribution in a linear scale with linear binning of amplitude histogram
data. (d) Same as (c) but in a log-log scale with logarithmic binning for visualization of
tail behavior. (e) MLE fit to the Lomax distribution in a linear scale with linear binning of
intensity histogram data. (f) Same as (d) but in a log-log scale with logarithmic binning to
visualize tail behavior. (g) MLE fit to the generalized logistic distribution in a linear scale
with linear binning of log amplitude histogram data. (h) Same as (g) but in log-log scale
with logarithmic binning. All MLE fits result in an exponent parameter of b̂ = 6.06 (95%
Confidence Interval: [5.83, 6.28]) for mouse brain.

4.2. Comparing multiple distributions

Figure 4 demonstrates multiple distribution fits for a pig cornea sample. Figure 4(a) shows the
B-mode frame for the pig cornea with an appropriate ROI as quantified in Fig. 4(b). Figure 4(c)-(d)
depicts the MLE fits for amplitude histogram data using the Burr type XII, the Rayleigh, the K,
and the gamma distributions as specified in Section 2.4 in both a linear and logarithmic scale.
The intensity histogram data and the Lomax, exponential, K, and gamma distribution MLE fits
are shown in Fig. 4(e)-(f). All respective MLE fits for amplitude and intensity result in consistent
parameter estimates (e.g. α̂ and β̂ are the same for the gamma distributions for both amplitude
and intensity). Figure 5 shows the sample analysis done for a human hand’s back. Once again,
the MLE parameter estimates are consistent between amplitude and intensity fits for each pair of
distributions (Burr/Lomax, Rayleigh/exponential, K, or gamma). The complete set of data for all
tissue or phantom samples taken can be found in Supplemental Fig. S1-S9. In some cases, on
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Fig. 3. Excised mouse liver in phosphate-buffered saline. (a) Single unfiltered and
unaveraged B-mode frame with the ROI shaded green. (b) The ROI’s normalized spatial
integration profiles demonstrating that the maximum percent change ∆ does not exceed
50%. (c) MLE fit to the Burr type XII distribution in a linear scale with linear binning of
amplitude histogram data. (d) Same as (c) but in a log-log scale with logarithmic binning
for visualization of tail behavior. (e) MLE fit to the Lomax distribution in a linear scale
with linear binning of intensity histogram data. (f) Same as (d) but in a log-log scale
with logarithmic binning to visualize tail behavior. (g) MLE fit to the generalized logistic
distribution in a linear scale with linear binning of log amplitude histogram data. (h) Same
as (g) but in log-log scale with logarithmic binning. All MLE fits result in an exponent
parameter of b̂ = 5.95 (95% Confidence Interval: [5.70, 6.21]) for mouse liver.

the logarithmic scale, there are slight deviations between the data points and the estimated Burr
and Lomax distributions. Since there are a finite number of pixels in a single ROI, there is a
minimum probability estimate that can be captured by histogram data. Additionally, the bins
in the tail carry a small number of samples, and so statistical fluctuations account for a larger
proportion of these samples. Hence, results in the tail become noisy, and deviations from the
estimated distributions are expected.

The next step is to perform the statistical tests and metrics for comparing multiple distributions
described in Section 3.4. The results of all data samples are detailed in Supplemental Tables
S1-S9, but a summary table of the comparison outcomes is provided in Supplemental Table S10.
In all samples except for one, the best model for amplitude was the Burr type XII distribution and
the best model for intensity was the Lomax distribution. The one exception is for pig brain, in
which the K distribution was the best fit for both amplitude and intensity data.

4.3. Estimating the exponent parameter of multiple types of biological tissues

The Burr type XII, Lomax, and generalized logistic distributions all have two parameters: d and
b. d can be seen as a system-dependent (and gain-dependent) normalization parameter, but the
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Fig. 4. Pig cornea. (a) Single unfiltered and unaveraged B-mode image with the ROI shaded
green. (b) The ROI’s normalized spatial integration profiles that do not exceed a ∆ of 50%.
(c) MLE fits to normalized amplitude with the Burr, Rayleigh, K, and Gamma distributions
on a linear scale with linear binning. (d) Same as part (c) except on a log-log scale with
logarithmic binning to visualize tail behavior. (e) MLE fits to normalized intensity with the
Lomax, Exponential, K, and Gamma distributions on a linear scale with linear binning. (f)
Same as part (e) except on a log-log scale with logarithmic binning to visualize tail behavior.

exponent parameter b is of interest for tissue characterization. For all samples, b̂ and its 95%
confidence interval were obtained via MLE in Supplemental Fig. S1-S9. A summary of the
exponent values for various samples types are shown in Table 1, in order of increasing b̂, along with
average attenuation coefficients. Note that for all samples except the pig brain, the Burr/Lomax
distribution was determined to be the best model in the previous section. Reproducibility of the
method is demonstrated in Supplemental Figures S10-S12 and Supplemental Tables S11-S14.

Table 1. Estimated exponent parameter values along with the 95% confidence interval for all
samples. The average attenuation coefficient µ̂avg in the ROI is also reported with the standard

deviation. CI - confidence interval.

Sample b̂ 95% CI µ̂avg (mm−1)

Human Hand (Back) 2.99 [2.94, 3.05] 7.39 ± 0.35

Pig Cornea 3.02 [2.98, 3.06] 4.91 ± 0.35

Human Hand (Palm) 3.12 [3.09, 3.16] 4.63 ± 0.24

5% Gelatin Phantom 3.54 [3.44, 3.64] 3.57 ± 0.33

Chicken Muscle 4.59 [4.38, 4.80] 4.76 ± 0.25

5% Gelatin Phantom (+Milk) 5.83 [5.70, 5.97] 4.54 ± 0.21

Pig Brain 5.91 [5.18, 6.64] 8.95 ± 0.34

Mouse Liver 5.95 [5.70, 6.21] 10.66 ± 0.38

Mouse Brain 6.06 [5.83, 6.28] 6.91 ± 0.30
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Fig. 5. Human hand (back side). (a) Single unfiltered and unaveraged B-mode image with
the ROI shaded green. (b) The ROI’s normalized spatial integration profiles that do not
exceed a ∆ of 50%. (c) MLE fits to normalized amplitude with the Burr, Rayleigh, K, and
Gamma distributions on a linear scale with linear binning. (d) Same as part (c) except on a
log-log scale with logarithmic binning to visualize tail behavior. (e) MLE fits to normalized
intensity with the Lomax, Exponential, K, and Gamma distributions on a linear scale with
linear binning. (f) Same as part (e) except on a log-log scale with logarithmic binning to
visualize tail behavior.

Using the three extra pig corneas and the one presented above, the average and standard deviation
of the exponent parameter was 3.00 ± 0.04 with a combined 95% confidence interval range of
[2.92, 3.10].

5. Discussion and conclusion

In Section 4.1, MLE fits to the Burr type XII, Lomax, and generalized logistic distributions show
that these three PDFs fit well to the amplitude, intensity, and log amplitude histogram data for two
sample tissues (mouse brain and liver). The estimated exponential parameter b̂ is also universally
consistent due to the framework of MLE. Thus, any one of the three PDFs can be reasonably
used to estimate the exponential parameter b. In Section 4.2, we further demonstrate the merits
of using these PDFs (Burr/Lomax), as they are statistically compared with conventional PDFs
described in the literature (Rayleigh/exponential, K, and gamma). Out of nine total samples, eight
of them demonstrated that Burr/Lomax are indeed the best fits for the amplitude and intensity
histogram data. In the one exception (pig brain), the differences between the Burr/Lomax fits
and the K fits were statistically significant but relatively small. Another trend that was noticed
was the fact that if the Burr/Lomax estimated a relatively high b̂ ∼ 6, then the K and gamma fits
were relatively closer to the Burr/Lomax fits, and they are reasonable fits to the data (this can be
verified by checking that the KS p-values are large). On the other hand, if the Burr/Lomax’s
exponent parameter was small, e.g. b̂ ∼ 3, then the K and gamma distributions were poorer fits to
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the data (small KS p-values). Overall, the Burr/Lomax distributions indicate that they are reliable
and generalizable to characterizing the speckle statistics of various biological tissue in OCT.

In Section 4.3, the exponent parameter b̂ is tabulated and compared across multiple biological
tissues. The range for b̂ is from 3 ∼ 6. There may be some reasonable explanations for the
general trend of these values. The samples with lower values of b̂ ∼ 3 are all tissues that are
relatively transparent to light (eye, skin, gelatin), whereas the samples with higher values of
b̂ ∼ 6 are considered optically denser tissues (liver, brain). The differences between the phantom
studies also supports this concept. The gelatin phantom with milk (an added optical scatterer)
has a higher b̂ value. Furthermore, since the Burr/Lomax distributions are much better fits to the
speckle statistics than Rayleigh/K/gamma distributions for tissues with low values of b̂, then the
Burr/Lomax may be even more important in characterizing these types of tissues. OCT currently
has strong clinical applications in ophthalmology and dermatology, and so a framework involving
b̂ would provide a useful biomarker for pathology or disease.

In addition, there is a moderate positive correlation between the estimated exponent parameter
b̂ and the average attenuation coefficient µ̂avg, r(7) = 0.52, p = 0.274. The high p-value is due
to the small sample size. The reported attenuation coefficients are consistent with some other
values reported in the literature. [38,41–46] Attenuation is contributed by both scattering and
absorption, and thus one would expect that optically denser tissues with high absorption and/or
scattering would lead to an increased exponent parameter b as well as a higher attenuation
coefficient µ. This can be seen in Table 1 generally, with the human hand (back) sample as a
notable outlier. Furthermore, future studies would be needed to correlate the speckle parameter b
with other common scattering parameters such as the mean free path and transport mean free
path. Further insight on these new PDFs may also allow for characterization of wave transport
and light scattering in the context of disordered systems.

Our test for spatial uniformity does not guarantee stationary statistics within the ROI, and so
we have also examined the distribution of local second moments as proposed by Bromberg and
Cao, in their supplemental material. [47] In this examination, the local contrast is defined as
C =

√︁
⟨I2⟩/⟨I⟩2 − 1 which would be everywhere close to unity for a stationary Rayleigh process.

We found that in our samples of mouse brain, mouse liver, pig cornea, and human hand (back),
the local contrast C as a function of the number of data points or speckles in the ROI converges
to the following values: 1.28, 1.29, 2.00, and 1.84, respectively. These were also found to have
small (less than 10%) local variations within the ROI for sub-regions (with at least 10 speckle
areas) and together these results imply stationarity, and that the processes are super-Rayleigh.

Another potential concern that has been investigated is the effect of correcting the image for
the confocal point spread function and sensitivity roll-off function. When applying the estimates
for these corrections using the methods demonstrated by Fiske, et al., [46] it was found that
these system corrections typically alter the Burr/Lomax exponent parameters by less than 0.01
and the attenuation coefficients by less than 0.1. The magnitudes of these changes are well
within the 95% confidence intervals of the exponent parameters and the standard deviations
of the average attenuation coefficients for all samples. Furthermore, we have shown that the
ad hoc test ensures that depth-dependent effects of attenuation are limited, and also that local
statistics are not spatially varying. Thus, the estimates of attenuation within the selected ROIs
are dominated by tissue attenuation, as opposed to the confocal point spread function and the
sensitivity roll-off function. In addition, these corrections are only approximate and not exact.
However, detailed analysis of these effects on estimating the power-law parameter b in larger
ROIs should be conducted in future research.

In summary, this study has presented three new PDFs for fitting speckle statistics in various
biological tissues: the Burr type XII distribution for amplitude, the Lomax distribution for
intensity, and the generalized logistic distribution for log of amplitude. Furthermore, an ad
hoc metric for verifying an appropriate ROI, the MLE fitting technique, and methodology
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for statistical comparison of multiple distributions are also presented. Future work is needed
to closely link the speckle parameter b with spatial measures of tissue microstructure in 3D.
[29,35,48] In addition, the b parameter relates to power-law models of scattering from tissues,
which have been explored previously, but future studies are needed to relate b to other common
scattering parameters. [49,50] These independent measures on a larger set of tissues will be
needed to verify that the results of this study are reproducible across tissues, and to determine the
importance of the exponent parameter b in multiple biological and clinical applications.
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