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Abstract—The study of ultrasound tissue interactions in fatty livers has a long history with strong clinical poten-
tial for assessing steatosis. Recently we proposed alternative measures of first- and second-order statistics of ech-
oes from soft tissues, namely, the H-scan, which is based on a matched filter approach, to quantify scattering
transfer functions and the Burr distribution to model speckle patterns. Taken together, these approaches pro-
duce a multiparameter set that is directly related to the fundamentals of ultrasound propagation in tissue. To
apply this approach to the problem of assessing steatotic livers, these analyses were applied to in vivo rat livers
(N ¼ 21) under normal feeding conditions or after receiving a methionine- and choline-deficient diet that produ-
ces steatosis within a few weeks. Ultrasound data were acquired at baseline and again at weeks 2 and 6 before
applying the H-scan and Burr analyses. Furthermore, a classification technique known as the support vector
machine was then used to find clusters of the five parameters that are characteristic of the different steatotic liver
conditions as confirmed by histologic processing of excised liver tissue samples. With the in vivo multiparametric
ultrasound measurement approach and determination of clusters, steatotic can be discriminated from normal liv-
ers with 100% accuracy in a rat animal model. (E-mail: kevin.parker@rochester.edu) © 2021 World
Federation for Ultrasound in Medicine & Biology. All rights reserved.
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INTRODUCTION

The non-invasive quantification of liver fat is an emerg-

ing imperative as fatty liver diseases continue to increase

around the world (Jennings et al. 2018). Measures of

steatosis that can be incorporated into imaging platforms

are desirable and have received extensive attention

(Goceri et al. 2016; Ozturk et al. 2018). Ultrasound tech-

niques are attractive because they could provide a rela-

tively inexpensive, rapid and widely available means for

assessing liver steatosis. There is not yet a consensus

agreement on the change in ultrasound propagation and

scattering from normal to steatotic livers, even as more

parameters can now be measured in clinical settings. In

parallel, there remains some uncertainty as to the most
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appropriate physical and mathematical models of scatter-

ing from the normal and diseased tissues. Nonetheless,

earlier pioneering work on the use of multiparametric

clusters of ultrasound-related measurements have shown

promise (Momenan et al. 1987, 1994).

Recent published results are reasonably aligned with a

longstanding hypothesis that the accumulation of fat in liver

will increase the viscous (lossy) attenuation and decrease

the speed of both ultrasound waves (longitudinal) and shear

waves (Freese and Lyons 1977; Narayana and Ophir 1983;

Maklad et al. 1984; Lin et al. 1987; Parker et al. 1988,

2018; Lu et al. 1999; Ghoshal et al. 2012; Barry et al. 2014,

2015; Sharma et al. 2019; Wernberg et al. 2020;

Jeon et al. 2021). Related to this, the accumulation of fat-

filled vesicles increases the scattering. Thus, as fat increases

within an otherwise normal liver, we would expect to see

attenuation increase, along with some measures of ultra-

sound scattering (Maklad et al. 1984; Taylor et al. 1986;
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Parker et al. 1988). An overview of different strategies for

characterizing steatosis with ultrasound systems is found in

Pirmoazen et al. (2020).

Traditional measures of scattering include the fre-

quency dependence of scattering and the first-order statis-

tics of speckle formed by the returning ultrasound echoes.

There are a variety of approaches to these, but recently a

re-examination of the physics of pulse-echo ultrasound

scattering from tissues has resulted in the emergence of

H-scan (Parker 2016; Parker and Baek 2020) and the Burr

speckle analysis (Parker 2019a, 2019b; Parker and Poul

2020a, 2020b). These approaches extract key metrics

from the returning ultrasound echoes and are tied directly

to models of scattering dominated by the fractal branching

vasculature in normal tissues. In a recent study of H-scan

and Burr analyses applied to animal models of primarily

fibrosis and inflammation, the multiparametric clusters

representing normal and pathological states were found to

be well separated with a resulting 94% classification accu-

racy (Baek et al. 2020b). The potential usefulness of the

multiparametric clusters for steatosis as a distinct clinical

problem motivates this study.

In parallel with the growth of ultrasound metrics,

there have been recent machine learning results classify-

ing liver states. These focus more on utilizing learning

tools with log-compressed B-scan ultrasound images and

employ image processing measures as the input to the

classifiers, which are not specific to ultrasound signals.

A support vector machine (SVM) classifier for liver

(Virmani et al. 2013) used a 2-D wavelet packet trans-

form for the log-compressed data to generate the inputs

that were standard deviation, mean and energy. A liver

classifier using texture analysis (Singh et al. 2014) used

the gray-scale images to extract features based on con-

trast, roughness, homogeneity and so on. A steatosis

classifier (Byra et al. 2018) used SVM for classification,

but to extract features for the classifier’s input, a deep

convolutional neural network was employed with log-

compressed B-scan ultrasound images. A steatosis clas-

sification study (Andrade et al. 2012) compared the per-

formance of three different classifiers: artificial neural

network, SVM and k-nearest neighbors. The study con-

cluded that SVM had the best performance in terms of

accuracy. However, the study also used B-scan ultra-

sound images to extract input features, which can char-

acterize the echogenicity, including a gray-level run

length matrix, co-occurrence, texture energy and other

measures of image statistics. Therefore, liver classifica-

tion research often relies on B-scan ultrasound images to

extract different features and then employs the more

recently developed machine learning techniques for

decision making. However, B-scan ultrasound images

are easily changed by users because of their preference

of scan settings; the textures of these images also vary
depending on post-processing methods, and the envelope

contains much less information than the raw radiofre-

quency (RF) ultrasound signals.

Our study employs principal component analysis

(PCA) and SVM as a state-of-art machine learning

approach. PCA provides a well-established framework

for linear combinations of multiple parameters (Pear-

son 1901) and is useful for clustering and reducing the

dimensionality of the data set. The SVM is a robust

supervised learning classification technique that has the

ability to define non-linear classification boundaries on

multidimensional measurements (Vapnik 1999). In our

case, measurements are based on features from RF sig-

nals derived from recent models that are intimately

related to the physics of ultrasound.

To apply these to the detection of liver steatosis, we

first examine relevant theoretical models of scattering

that are likely to be dominant in cases of normal and

steatotic liver tissues. Second, the effect of these scatter-

ing models on the returning ultrasound echoes are exam-

ined in terms of their first-order statistics (i.e., histogram

of echo amplitudes) and second-order statistics (i.e.,

backscatter vs. frequency). Third, using animals fed a

normal or special diet that results in a progressive accu-

mulation of liver fat, we examine echoes from rat livers

using a high-frequency ultrasound scanner. Finally, an

SVM is implemented on principal components (PCs) of

the ultrasound scattering measurements to classify clus-

ters in multiparametric space.

Together, these elements work toward a mathemati-

cal framework for determining multiparametric signatures

of ultrasound echoes from the normal liver as compared

with those from increasingly steatotic liver conditions.
THEORY

Scattering models for normal and steatotic livers

Early studies on ultrasound scattering from normal

livers established some consistent results (Chivers and Hill

1975; Gramiak et al. 1976; Bamber 1979;

Zagzebski et al. 1993). Backscatter was found to increase

with frequency, an f 1:4 power law behavior (Campbell and

Waag 1984) over the low-megahertz imaging band. The

first-order statistics of liver echo amplitudes were found to

resemble optical speckle patterns (Burckhardt 1978).

Some established theories postulated scattering from

spheres or spherical correlation functions, usually corre-

lated to cell size and shapes (Lizzi et al. 1983;

Insana et al. 1990). As a recent alternative, we postulated

that normal tissue scattering is influenced by the imped-

ance mismatch between the fractal branching vascular tree

and the parenchyma comprised of mostly close-packed

hepatocytes in the case of the liver. Within this model the

mathematics of speckle and scattering are not attributed to



Fig. 1. Schematic of a first-order approximation for superposition of scattering sites in simple steatosis. At the right side
are the dominant scattering structures from the normal liver rendered from a micro-computed tomography contrast-
enhanced 3-D rendering of the vasculature within a liver. In normal liver, the weak ultrasound scattering from the fluid-
filled vasculature is a major source of returning echoes. Accumulating fat vesicles add to the scattering and produce a

change in received echoes as compared with the normal liver.
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random points or spheres, but rather to the scattering from

cylinders and fractal branching structures (Parker 2019a,

2019b; Parker et al. 2019), as depicted in Figure 1. Impor-

tantly, the frequency dependence of ultrasound backscatter

and the probability distribution function for speckle ampli-

tudes from the fractal branching vasculature are dominated

by a power law relationship related to the fractal dimen-

sion D.

In early stages of fat accumulation in the liver,

microvesicles and macrovesicles appear as small ran-

domly positioned spheres (many are below 40 mm)

and, because these have a different acoustic imped-

ance compared with the surrounding hepatocytes, are

a source of scattering. Traditional long-wavelength

(Rayleigh scattering) models would predict ultrasound

backscatter intensity increasing as f 4 power from ran-

dom small spheres, which in the simplest model would

be additive to the baseline scattering found in the

normal liver. However, this simplified model depicted

in Figure 1 may not apply to advanced stages where

the distribution of fat can become zonal, concentrat-

ing in periportal patterns (Schwen et al. 2016). Also,

the chemical composition of fat in later stages can be

altered (Peng et al. 2015; Chiappini et al. 2017), so

both the size distribution and the scattering strength

may vary with advanced stages beyond simple steato-

sis. In these cases, pronounced clustering across dif-

ferent length scales from the smallest microvesicles

to the larger portal structures could then resemble a

fractal clustering structure (Javanaud 1989; Sha-

piro 1992), which then would approach a lower
power law compared with a Rayleigh scattering

model.
Assessment with H-scan and Burr parameters

In this study, we explore ultrasound scattering met-

rics derived from the H-scan (a matched filter approach)

images along with histograms of speckle amplitude. Fur-

ther details of these approaches are described in the

Methods section, and the combined analyses produce

five measured parameters related to ultrasound scattering

structures. Under our hypothesis of additive scattering

(Fig. 1), most parameters are expected to increase as a

consequence of the addition of Rayleigh scattering sites,

producing multiparametric clusters that are separated

from normal values. The degree of separation can be

visualized and quantified using PCA and the SVM.

These steps are detailed in later sections.
METHODS

Study design and animals

This protocol was approved by the Institutional

Animal Care and Use Committee at the University of

Texas at Dallas. As illustrated in Figure 2, an in vivo

study with 21 Sprague-Dawley rats (Charles River Labo-

ratories, Wilmington, MA, USA) was designed to inves-

tigate fat accumulation in the liver. The methionine- and

choline-deficient (MCD) diet, which is a common die-

tary model for non-alcoholic fatty liver disease

(NAFLD), induced steatosis. The enrolled animals were

randomly divided into two groups, namely, control



Fig. 2. Study design: A liver steatosis diagnosing tool with support vector machine (SVM) and H-scan imaging. The
SVM was trained by using the five measured parameters from B-scan, H-scan, attenuation estimation and Burr analysis,
resulting in the SVM classifier for liver diagnosis. Principal component analysis (PCA) using the parameters provided a
reduced dimensionality view of clusters of normal, low-fat and high-fat livers. H-scan imaging provides colors represent-
ing liver states, and the SVM provides the category of the input liver data. We note that the SVM could also be used on
the reduced parameter space defined by PCA, with lower dimensionality. RF = radiofrequency; ROI = region of interest.
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(N = 9) and diet (N = 12). The diet group was fed the

MCD diet (MP Biomedicals, Solon, OH, USA); it is

high in sucrose and fat (40% sucrose and 10% fat), but

deficient in methionine and choline. All animals had free

access to water and food under a 12-h day�night cycle

and were tracked for 6 wk.

Although the MCD diet is known to cause steatosis

within weeks, three different types of histological stains

were performed at the end of this study to detect the pres-

ence of steatosis and fibrosis, which can be induced during

the various stages of NAFLD. The staining methods were

Picro-Sirius red and hematoxylin and eosin (H&E).

All rats were scanned by using a high-frequency

ultrasound scanner (Vevo 3100, FUJIFILM VisualSon-

ics, Toronto, ON, Canada), equipped with a 15-MHz

center frequency linear array transducer (MX 201). Liver

scans were performed at weeks 0, 2 and 6, and RF data

were acquired at a 240-MHz sampling rate from conven-

tional line-by-line single-focus scanning at 53 frames/s.

All ultrasound scanning parameters and conditions were

kept consistent, including the gain, focal depth and trans-

mit power throughout the study. Furthermore, all ultra-

sound RF data used for the H-scan and Burr analysis

were acquired after time gain compensation, which was

also held consistent throughout the study.

A square region-of-interest (ROI) was consistently

set over time within the depth between 6 and 12 mm
(size of ROI). We tried to include a lateral width with

more scanlines; however, areas with artifacts, vessels

or cysts were excluded. Within the ROIs, ultrasound

measurements for B-scan, H-scan, attenuation estima-

tion and histogram Burr analysis were performed. The

signal processing resulted in five parameters that were

used to characterize liver states. After data normaliza-

tion (feature scaling), parameters were assigned as

inputs of a SVM classifier and were also used to visual-

ize clusters representing three liver classes. Liver states

were divided into the three classes of normal (baseline),

low fatty and high fatty livers. The normal group

includes all control cases at all three study time points,

and the diet group, at week 0. This normal group is

hereafter referred to as “baseline.” The low and high

classes are defined as MCD diet rats at 2 and 6 wk,

respectively.
H-scan ultrasound analysis

H-scan ultrasound has been designed to classify

scattering transfer functions of tissues. (Parker and Baek

2020) and is based on the different power law transfer

functions that influence frequency components in ultra-

sound echoes. In this H-scan implementation the

received signals, rðtÞ, are processed through a bank of

matched filters by using a 256 Gaussian bandpass filter

set for convolution with rðtÞ
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max
n

= �1 = r tð Þð Þ ¢Gn fð Þf g� � ð1Þ

where Gnðf Þ is each Gaussian bandpass filter in the fre-

quency domain, equally spaced over the bandwidth of

the imaging system. By choosing the matched filter

indexed by n that maximizes eqn (1), the peak frequency

of Gnðf Þ becomes the estimated frequency at time t of

rðtÞ and is mapped into specific colors, meaning that H-

scan is displayed as a pseudo-color mapping. However,

ultrasound propagation accumulates frequency-depen-

dent attenuation over depth, biasing the H-scan colors

from more blue at near depth to more red at far depth.

To avoid this bias, the attenuation-dependent color shift

needs to be compensated.
Attenuation estimation and correction within the H-scan

analysis

An ultrasound transmission pulse can be modeled

by a bandpass Gaussian function of exp(�(f � f0)
2/2s2))

with a center frequency of f0 and bandwidth s. A fre-

quency- and depth-dependent attenuation term e�afz is

then included to account for losses, whereby the fre-

quency spectrum Sðf Þ of the pulse can be written as

S fð Þ ¼ e
� f�f0ð Þ2

2s2 ¢ e�afz ð2Þ
where f is the frequency (in MHz), a is the attenuation

coefficient (in Np/cm/MHz) and z is depth in centi-

meters. The attenuation of an ultrasound signal causes a

decrease in the peak frequency, which can be estimated

by taking the first partial derivative with respect to f and

finding its zero at peak frequency fp resulting in

â zð Þ ¼ � fp zð Þ � f0

z ¢ s2
ð3Þ

where fpðzÞ is the peak frequency measured using H-scan

ultrasound and is averaged over all scan lines within the

ROI, as illustrated in Figure 3.

The time gain compensation applies a broadband

gain (preset by an experienced operator for the animal
Fig. 3. Schematic for H-scan. For each frame, the attenuation c
tion correction was performed. The corrected radiofrequency

was assigned as an input of H-sca
livers) that increases with depth, but this is not sufficient

to compensate for the frequency dependence of attenua-

tion, which is most pronounced at the higher frequencies

within the transmit pulse’s spectrum. The estimated â
from eqn (3) was input to a digital inverse filter that is

applied for frequency-dependent attenuation correction

at increasing depths. The inverse filter simply boosts the

higher frequencies relative to the lower (less attenuated)

frequencies over varying depths; more details for the

correction can be found in Baek et al. (2020a, 2020b)

and Parker and Baek (2020). Consequently, corrected

RF signals compensated for attenuation effects were

used to produce the H-scan ultrasound images.

The final parameters that were evaluated within each

liver ROI included echogenicity or brightness (dB) for B-

scan, a reported herein with a conversion to the more com-

monly used units for attenuation (dB/cm/MHz) and percent-

age of blue for H-scan. B-Scan ultrasound echogenicity was

calculated from log-compressed data where 0 dB is set to

the same brightness level for all scans. The attenuation was

measured by averaging eqn (3) over depth. Two hundred

fifty-six color levels were used for the H-scan image format,

which changes from red to black to blue in sequence, repre-

sented by a color bar. Red and blue pixels are equally

divided into the pixels with color levels Ci of [1, 128] and

[129, 256], respectively, which can be converted into nor-

malized color intensity Ii:

Ii ¼ jCi � 128:5j
127:5

ð4Þ

where i is the index of each pixel. The numbers of red

and blue pixels are written as nR and nB, respectively,

and then the percentage of blue is defined by

% of blue ¼ nB

nR þ nB
� 100% ð5Þ
First-order statistics of speckle and the Burr distribution

The histogram of ultrasound echo amplitude A for

the normal liver speckle pattern is governed by a two-

parameter probability density function, NnðAÞ; according
oefficient is estimated, and using this coefficient, attenua-
(RF) data without frequency shift caused by attenuation
n. ROI = region of interest.



Fig. 4. Histology images of liver sections stained with Picro-Sirius red for steatosis. Object scale (a�c) and 10 £ object
virtual magnification (d�f) are shown. (a, d) Control case. (b, e) Six-week diet case. (c, f) Another 6-wk diet liver. Fat
accumulation can be seen in methionine- and choline-deficient diet cases. An analysis of fat is provided in the bottom
row. For the case in (e), a box ROI was selected as illustrated in (g), depicting the detected fat vesicles in green. The

ROI of (g) is magnified into (h) and (i). (h) Histology image before fat detection. (i) Detected fat with green color.
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to a novel framework proposed by Parker (2019a, 2019b)

and employed in (Baek et al. 2020b; Parker and Poul

2020a, 2020b). On the basis of this new framework,

speckle patterns of the normal liver stem from the fractal

network of fluid-filled vessels with a size distribution

following a power law function as NðaÞ ¼ N0=a
b, where

N0 is the number density of vessels within the organ, a is

vessel radius and b is the key fractal power law parame-

ter. Within reasonable approximations concerning pulse

echo imaging of the vascular beds, the probability den-

sity function for echo amplitudes A is given by

Nn A½ � ¼ 2A b� 1ð Þ
λ2 A

λ

� �2 þ 1
h ib ð6Þ

where λ is related to system factors such as amplifier gain

and a minimum vessel size of the fractal network, and b is
related to the fractal vessel network. Equation (6) is derived

by using a 3-D convolution model and happens to be a Burr

type XII distribution proposed for general applications unre-

lated to medical imaging in the 1940s (Burr 1942). More

detail on the derivation is found in Parker (2019a).

Variation in scattering structures and spacing within

soft tissues produces changes in the value of Burr param-

eters b and λ, which are estimated by fitting a Burr distri-

bution to the normalized histogram of tissue speckle

amplitude. Thus, the two Burr parameters are estimated

for liver tissues of control and diet groups of rats in the

present study at three different weeks. The ROI for

obtaining the speckle amplitude distribution in each rat

liver is selected in a uniform region devoid of large

anechoic vessel areas.

Histogram fitting is done in MATLAB (The Math-

Works, Inc., Natick, MA, USA) using a non-linear least-
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squares minimization of error. By using additional esti-

mates of the two parameters from the mode and median

equations, some bounds are placed on the Burr fitting

parameters. The results give the smallest set of b and λ
as estimated parameters, consistent with eqn (6) and

with an R2 value higher than 99.8% for each frame of

each liver scan.
The SVM classifier

The SVM is one of the supervised learning

approaches to construction of hyperplanes that classify

multidimensional data into several classes (Cortes and

Vapnik 1995; Vapnik 1999; Bishop 2006), which is a

convex optimization problem given by

minimize
1

2
k~w k 2 þ C

XN

n¼1
ξn

� �
ð7Þ

where ~w is the vector describing the hyperplane of data

points xn represented as ~w ¢ xn þ b, and ξn is the penalty for

misclassified points. To construct a SVM, the box constraint

C and s of a Gaussian kernel were optimized. The first term

of eqn (7) denotes maximizing the margins between the clas-

ses during training; subsets of data near the class boundaries

are used as support vectors whose index are n in eqn (7). The

training allows misclassified points with the penalty of ξn,
and therefore, more robust classification with smooth hyper-

planes can be performed preventing overfitting. As this for-

mulation is a convex optimization problem with an optimal

solution, the SVM can avoid local minima.Moreover, Gauss-

ian kernels enable SVM to set non-linear hyperplanes, with

the shape of the hyperplane dependent on the setting parame-

ter of s. Because of the advantages, an SVM with Gaussian

kernels was used to classify liver states based on the ultra-

sound scattering signatures characterized by H-scan, B-scan,

attenuation and the Burr analysis. The study design in

Figure 2 illustrates the proposed SVM training and prediction

procedures that were implemented in MATLAB. The SVM

classifier was trained first with parameters from a total of

1877 data sets, including 1175 normal, 342 low-fatty liver

and 360 high-fatty-liver cases. These parameters were esti-

mated from the raw ultrasound RF echoes acquired from the

21 rats and with approximately 30 frames for each liver scan.

Every case has the five parameters of: percentage of

blue from H-scan a from attenuation, decibel scale inten-

sity from B-scan, b, and decibel scale λ from the Burr

analysis. However, these parameters have different data

ranges and scales, which could have different impacts on

processing; the larger the scale of a feature, the more

weight it can carry compared with other smaller-scale

features. Thus, data normalization was performed before

the features were put into the SVM training. Z-Score nor-

malization (Jayalakshmi and Santhakumaran 2011) was

used as the most commonly used data normalization
technique, of which normalized data z is given by

z ¼ x� mbaseline

sbaseline

ð8Þ

where x is raw data from the measurements, and mbaseline and

sbaseline are the average and standard deviation of baseline

data for each input feature, respectively. In other words, this

study used only baseline cases to set zero mean and unit var-

iance, whereby the data distribution can show how the data

of disease cases differ from those of normal.

The five normalized features were set to the inputs

for the SVM training, and each data set has its tag among

the three classes: normal, low-fatty and high-fatty liver.

Then, SVM training can construct hyperplanes, which can

be used as decision planes for any other input with the

five features. Thus, the trained SVM can classify liver

states for unknown new inputs. Further details for imple-

mentation of the SVM classifier can be found in

Baek et al. (2020b). In addition to SVM, PCA was per-

formed to investigate the relative importance of the contri-

bution from each parameter for classification.

Furthermore, PCA is a useful tool to reduce the

dimensionality of parameter space (from 5-D in our case)

to visualize the clusters and hyperplanes in 2-D or 3-D

space. To examine the hyperplanes in 2-D and 3-D space,

the first two and three PCs were used as inputs to con-

struct SVM classifiers exclusively for visualization,

respectively. Note that the liver classification of this study

in Figure 2 used the five features without first applying

PCA, because we only have five parameters and those are

treated as essentially independent parameters. Generally,

PCA as a pre-processing of machine learning is useful

when the number of inputs is large and there is depen-

dency between the input data; more than 20 parameters is

reported as a large set that benefits from PCA

(Howley et al. 2006). Otherwise, PCA can cause informa-

tion loss with a drop in classification performance.
RESULTS

Histological sections confirmed that high-grade stea-

tosis was induced only in the MCD diet group. These liv-

ers had significant amounts of accumulated fats, with

minimal inflammation and no evidence of other diseases.

Examples of histology are provided in Figure 4. We

scored the percentage of fat area to the entire tissue area

in selected histology images; three control and six diet

cases were enrolled. The histology images were binarized,

and then the bright areas were counted as fat. The detected

fat areas are illustrated in green in Figure 4(g, i). The per-

centages of fat area were measured as 0.06 § 0.07%

(mean § standard deviation) and 29.93 § 8.82% for the

control and diet groups, respectively (p value = 0.008). A

steatosis quantifying study (Munsterman et al. 2019)



Fig. 5. Scans of one rat in the methionine- and choline-deficient diet group. Top row: B-scan; second row: H-scan
images; third row: percentage of blue or red profile. The bottom row illustrates Burr fitting to histogram at weeks (a) 0,
(b) 2 and (c) 6, with the vertical axis representing the probability P of amplitude A (horizontal axis A in arbitrary units).
The images and histograms are all from the same rat in the diet group. With the accumulation of fat, the H-scan blue

channel (high frequency, corresponding to small scatterers) output increases, as do the Burr b and λ parameters.
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revealed the positive correlation between steatosis grade

and the percentage, reporting that grade 3 steatosis corre-

sponds to 16% fat in human liver, which is lower than in

this study. Therefore, we confirmed that week 6 rats have

severe steatosis.

The 21 enrolled rats were scanned by ultrasound

at 0, 2 and 6 wk. Figure 5 provides examples of B-
scan, H-scan percentage of blue profile and Burr-fit-

ting results from one rat in the diet group, highlight-

ing the progression of fat accumulation. ROIs for

processing are indicated by the red boxes on top of

the B-scan ultrasound images, of which depth ranges

from 6�12 mm. Additionally, Figure 6 illustrates the

progression of the measurements over time and



Fig. 6. Progression of fat accumulation over time (left column) and statistics (right column) of the five measurements: B-
scan intensity, H-scan percentage of blue (indicating a shift to smaller scatterers), attenuation, Burr λ and Burr b.
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statistical plots between the three groups: normal,

low-fatty (week 2 diet) and high-fatty (week 6 diet)

liver. The following statistical notations were

employed: ns (no significance), p > 0.05; *p < 0.05;

**p < 0.01; ***p < 0.001; and ****p < 0.0001.
B-Scan, H-scan and Burr parameters

As fat accumulated in the animal livers over time, B-

scan and H-scan ultrasound images in Figure 5 illustrate the

changes in brightness and color, respectively. The B-scans at

6 wk are brighter than those at 0 and 2 wk; otherwise, the
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early-stage fatty case at 2 wk has brightness comparable with

that with normal. However, H-scan ultrasound imaging

results indicate that the blue increases more steadily over

time compared with color changes for early-stage liver stea-

tosis at 2 wk. These trends are consistently shown for the

quantitative measurements in Figures 6 (a, c). The third row

in Figure 5 represents the percentage of blue profiles, which

were acquired after attenuation correction. The attenuation

estimates used were 0.55, 0.61 and 0.70 dB/MHz/cm for the

representative cases at weeks 0, 2 and 6, respectively.

The measurements obtained from the control group

remained essentially unchanged, but those from the diet

group increased over time, indicating fat accumulation

in the liver. Moreover, the estimates of the attenuation

coefficient in Figure 6e have similar progression to the

H-scan; the estimated attenuation coefficient of the con-

trol group remains constant (approximately 0.5 dB/

MHz/cm), while that of the diet group continues increas-

ing over time without any delay within the early-stage

growth of fat. Accordingly, H-Scan ultrasound and atten-

uation estimation as frequency-dependent analyses mon-

itor the progression of fat accumulation in liver over

time and appear to be more sensitive than the echo inten-

sity-dependent analyses, including B-scan ultrasound

and the Burr analysis.

Figure 6 (b, d, f) illustrates the statistical results for

B-scan intensity, H-scan and attenuation estimation,

respectively. The three groups were included: normal,

low-fatty liver and high-fatty liver. There is a statistical

difference between the three groups (p < 0.0001), mean-

ing that three different liver states’ distributions can be

discriminated by these measurements. Considering the

data distribution based on the half-violin and boxplots,

the H-scan ultrasound has the least overlap area between

the liver states among the five measurements. Quantita-

tively, the H-scan percentage of blue for the diet group

at 6 wk is 79.2% within the range of 100%, and the con-

trol group has a value of 50.6%, whereby this measure-

ment can also explain the fat accumulation clearly.

Similarly, the attenuation coefficient for the diet group at

6 wk is 0.74 dB/MHz/cm, and the average for the control

group is 0.50 dB/MHz/cm. Moreover, to evaluate the

data distribution, the coefficient of variation (s=jmj;
where s and m are the standard deviation and mean,

respectively) was calculated: 0.024 and 0.050 for H-scan

and attenuation for the diet group at 6 wk, respectively.

Larger values of 0.894, 0.725 and 0.138 were obtained

for the other three measurements of B-scan, Burr λ and

b, respectively.

Finally, the Burr parameters are illustrated in

Figure 6 (g, j), revealing a trending increase in both

the b and λ parameters with time in the MCD diet

group, whereas the control group remains relatively

unchanged.
Multidimensional clusters and the SVM-based classifier

The SVM-based liver state classifier was imple-

mented, and consequently the decision planes for pre-

dicting liver states were produced with 100%

classification accuracy, as illustrated in Figure 7. The

two optimized parameters of the classifier are 1 and 10

for the box constraint C and s; respectively. The parame-

ters were decided according to their accuracy and the

shape of hyperplanes. Although any SVMs can allow

misclassified data points near the boundaries of classes

to set more robust hyperplanes, the proposed SVM of

this study does not need to include wrong-placed data

because this study’s features provide well-separated

clusters in Figure 7 (c, d). Therefore, C was minimized

within the C range in MATLAB options, meaning that

the training almost only maximizes the margin between

the classes while SVMs are designed to maximize the

margin and minimize the penalty of wrong-placed data.

With a C of 1, s of the Gaussian kernel was optimized

within the range of 1�50 by investigating hyperplanes

and accuracy. The smaller values of s near 1 caused

overfitting with 100% accuracy, but the larger values

near 50 resulted in inaccurate hyperplanes that were

close to linear shaped surfaces with 95% accuracy, indi-

cating underfitting. Thus, s of 10 was selected to provide

smooth hyperplanes and 100% accuracy, as illustrated in

Figure 7e. Additional details of the SVM optimization

procedure are found in Baek et al. (2020b).

To visually examine the hyperplane shapes or clus-

ters of data set, reduced dimensions were considered

because the employed features have five dimensions that

cannot be visualized in 3-D space. The five dimensions

were reduced into two or three dimensions using PCA,

as depicted in Figure 7 (c, d). Data normalization steps

for PCA from the raw data are given in Figure 8.

Figure 8a presents raw data of the five features in this

study with different scales, and the feature scaling step

of Z-score resulted in the normalized data in Figure 8b.

The consistent distributions for normal data over the five

features were obtained, and relative data positions of

fatty cases can be compared between the features, indi-

cating an increase in the measurements. H-scan ultra-

sound provided the highest measurement values for the

6-wk diet group and the lowest overlaps between the

three classes. The estimated attenuation coefficients indi-

cate a steady increase along with fat accumulation,

although there are more overlaps than H-scan, but less

than the other three features. Regarding the other three

features from echo intensity, the measurements cannot

sensitively track the fat accumulation, showing

severely overlapped distributions. Finally, as illus-

trated in Figure 8c, PCA was performed to access the

combination of the five features, whereby the first PC

results in the best separation of the classes compared



Fig. 7. View of clusters and classification. (a, b) Clusters in 2-D space from selected parameters from Burr and H-scan analyses.
(c) Two-dimensional view of clusters obtained by using the first and second principal components obtained from the five meas-
urements: Burr λ and Burr b, H-scan, attenuation and B-scan. (d) Three-dimensional view of clusters from the first three principal
components. (e, f) Support vector machine (SVM) classification results in 2-D and 3-D space, respectively. (e) and (f) add the
decision hyperplanes generated by SVM. The SVM results with 2-D and 3-D input have 100% classification accuracy, which

indicates this study’s measurements can provide clear discrimination between normal, low-fatty and high-fatty liver.
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with any other measured features. The individual con-

tributions for each PC are illustrated in Figure 8d,

and the total contributions for all PCs, in Figure 8e.

H-scan ultrasound contributed the most with 28.2%,

which is approximately 10% higher than any other

features.
DISCUSSION

This study implemented the two different approaches

used to characterize and quantify liver conditions, which are

the Burr and H-scan analyses corresponding to ultrasound

echo- and frequency-dependent investigations, respectively.



Fig. 8. Feature scaling and principal component analysis (PCA) results. (a) Raw data from the five measurements. (b)
Normalized data after Z-score feature scaling. (c) Principal components (PCs) after PCA. (d) Contribution for each PC
from the five measurements. (e) Contribution for all PCs: The H-scan contributes the most at 28.2% compared with the

other four methods.
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The analyses derived the five parameters, whereby the pro-

posed SVM liver classifier reached 100% accuracy without

any misclassified cases and overfitting, meaning that the

clusters from the three groups are well separated. As illus-

trated in Figure 7 (c, d), the view of clusters in 2-D and 3-D

space already provided three clearly distinguished clusters.

To visualize the clusters and hyperplanes, only two

and three PCs were used, of which PCA caused some

loss of information when comparing the reduced param-

eters to 5-D input parameters; the 2-D and 3-D clusters

solely contain 93.8% and 97.0% of variance retained,

respectively, as described in Figure 8c. Despite the loss

of information, the classification accuracies of SVM are

still 100% because the combined measurements are sen-

sitive to the accumulation of fat. However, the extension

of these techniques to human clinical liver studies will

encounter additional challenges, including varying

abdominal wall thicknesses, deeper tissue ROIs and

lower frequencies. The attenuation correction at greater

depths may suffer from poor signal-to-noise conditions.

Furthermore, diseases can simultaneously exhibit more

complicated conditions, including inflammation, fibrosis

and lesions, likely resulting in less perfect classification

results. In these cases, the higher-dimensional parameter

spaces should be useful for identifying combinations of

these pathologies. We expect that this study’s clear

description for simple steatosis will help in discriminat-

ing the presence or absence of fat within complex liver

pathology.

Figure 7 (a, b) illustrates clusters produced by scat-

tering models from analysis of echo amplitudes and fre-

quency, respectively: (a) Burr analysis; (b) H-scan and
attenuation. Figure 7a from the Burr analysis indicates

that the clusters gradually moved from bottom left to top

right because of fat accumulation. Therefore, normal and

high-fat cases are separable, and normal and low-fat

cases have mild overlaps, but almost all regions for low

and high fat overlap. However, the analysis from H-scan

and attenuation in Figure 7b obviously differentiates all

clusters with adequate separation, using only two param-

eters to differentiate the three groups of livers. Extending

the analysis further, Figure 7 (c, d) provides clearly sepa-

rable clusters, although the Burr analysis by itself con-

tains overlap between the three groups. Including more

information from independent approaches helps to track

the changes in ultrasound signal.

When considering all of the assessment metrics in

this study, including statistics, time progression, PCA

and machine learning, the H-scan parameters resulted in

the best performance compared with the other features.

However, the fusion of the five particular methods

enhances performance, whereby the margins between

classes increased and clusters in multidimensional space

exhibited better separation than those of only H-scan. In

this sense, all the parameters contribute globally to the

staging of steatosis, as presented in Figure 8d. Further-

more, this approach using PCA and SVM can be

extended to additional diagnostic measures as these

become available.

The contributions for all PCs in Figure 8e from

attenuation and Burr analysis are comparable near

approximately 19% of contributions, but according to

the data distribution in Figure 8 (a, b), attenuation has

better discrimination with less overlap. Hence, the
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contribution percentages did not fully explain the results

because the Z-score normalization considers only data

distribution from all the given inputs without including

class information. For instance, when a given data set

has two input features with the same data distribution,

but different overlaps between their classes, PCA consid-

ers them as the same input. Accordingly, as a future

study, employing weights for better classified input fea-

tures before PCA would help to discriminate the given

classes with higher accuracies.

In summary, this study applies a unique combina-

tion of parameters related to scattering, attenuation and

first-order statistics within the framework of the H-scan

analysis, applied to steatosis using multiparametric clus-

tering analyses. This extends the assessment of steatosis

beyond emerging clinical ultrasound measures recently

reviewed by Pirmoazen et al. (2020). We find that com-

binations of parameters enable better characterization

and separation of normal livers from those with two pro-

gressive levels of fat accumulation, although any one

measurement by itself is not sufficient. This multipara-

metric framework including H-scan, PCA and SVM

analyses creates an effective means to combine the dif-

ferent metrics for assessment of liver steatosis.
CONCLUSIONS

We applied the multiparametric H-scan and the Burr

distribution analyses to study the steatosis in an animal

model of NAFLD. These analyses derived five measured

parameters that are directly linked to recent models of ultra-

sound�tissue interaction in normal and steatotic livers. We

found that the H-scan ultrasound images and Burr parame-

ters are individually sensitive to the accumulation of fat

within the liver, with some degree of overlap found between

different groups. However, when taken jointly, the measured

parameters formed well-separated clusters in 5-D spaces and

made possible a robust discrimination between controls,

steatotic livers at 2 wk and steatotic livers at 6 wk. A PC and

SVM classification approach was capable of discriminating

between groups with a 100% accuracy. These strong results

indicate potential use of this multiparametric approach in

clinical studies of steatosis and its progression in humans.
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