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Abstract

Purpose: The study of speckle from imaging systems has a rich history, and recently it was
proposed that a fractal or power law distribution of scatterers in vascularized tissue will lead
to a form of the Burr probability distribution functions for speckle amplitudes. This hypothesis
is generalized and tested in theory, simulations, and experiments.

Approach: We argue that two broadly applicable conjectures are sufficient to justify the appli-
cability of the Burr distribution for speckle from a number of acoustical, optical, and other pulse-
echo systems. The first requirement is a multiscale power law distribution of weak scatterers, and
the second is a linear approximation for the increase in echo intensity with size over some range
of applicability.

Results: The Burr distribution for speckle emerges under a wide variety of conditions and sys-
tem parameters, and from this one can estimate the governing power law parameter, commonly
in the range of 2 to 6. However, system effects including the imaging point spread function and
the degree of focusing will influence the Burr parameters.

Conclusions: A generalized pair of conditions is sufficient for producing Burr distributions
across a number of imaging systems. Simulations and some theoretical considerations indicate
that the estimated Burr power law parameter will increase with increasing density of scatters. For
studies of speckle from living tissue or multiscale natural structures, the Burr distribution should
be considered as a long tail alternative to classical distributions.
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1 Introduction

For more than 100 years, the random interference pattern from coherent illumination, which is
called speckle, has been intensively studied. Originally, prisms were used in isolating narrow
bands to investigate the phenomena in early work in light.1 Even then, von Laue stated, “The
theme of our investigation is an old one.” Studies of optical speckle intensified during the growth
era of radar and lasers.2–8 Approximately 40 years ago, classical models were applied to speckle
patterns in medical ultrasound.9 This work has significantly evolved and well-established
statistical models now exist for the backscattered echoes from tissues.10

Over the past three decades, the study of ultrasound speckle from scatterers in normal (soft)
tissue—and how the speckle changes in diseased tissue—has advanced, resulting in numerous
models of ultrasound speckle. These advancements were influenced by prior work in the areas of
electromagnetics. Specifically, the applied models include the following distributions and their
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closely related modifications: the Rayleigh,9,11–13 the K,14–20 the Rician,6,21,22 the Nakagami,23–27

and the “marked model”28,29 as well as the comparison of distributions.30,31

Other advanced models have been suggested,32,33 along with applications to a variety of clini-
cal objectives.34–37

A comprehensive review of speckle in acoustics including the key mathematical operations
on probability density functions (PDFs) and distributions was recently published by Stanton
et al.38 This review also highlighted the interplay of the scattering types and their distributions
with the beampattern used to illuminate the medium. More recently, a new hypothesis emphasiz-
ing weak scattering from tissue vasculature in medical ultrasound was developed.39–42 The scat-
tering results were derived under the assumption that the branching vasculature can be modeled
as a fractal branching set of cylinders. These were also considered to be a set of Born scatterers
governed by a power law distribution of radii. This framework is separate from earlier work in a
number of ways: the assumption of many identical scatterers contributing so as to approach the
central limit theorem is replaced by consideration of few or individual scatterers, but those are
distributed with a long tail distribution governed by a power law. This led to a surprising result—
that ultrasound speckle amplitudes from tissue were plausibly modeled by a two-parameter Burr
distribution, which was first formulated in the 1940s in the context of general functions for
statistics research,43 and to our knowledge was not been considered for speckle statistics. A key
feature separating the Burr PDF from classical speckle models is its long power law tail. Some
preliminary results from in vivo ultrasound have demonstrated the plausibility of the Burr PDF
for medical ultrasound scans of the liver.40,42

In this paper, we re-examine a more generalized set of conjectures, not limited to cylindrical
models of the vasculature, but ultimately leading to distributions that are well approximated by
the simple two-parameter Burr distribution. This implies that multiscale or fractal structures in
medical ultrasound, underwater acoustics, optical coherence tomography (OCT), and possibly
radar can be effectively studied or classified under a framework that emphasized power law
behaviors and consequently a Burr distribution of speckle amplitudes.

2 Theory

2.1 Conjecture 1

Let the size distribution of any set of subresolved scatterers be given by a power law PDF of
characteristic dimension a. In this context, subresolved scatterers are smaller than the resolution
sample volume of the imaging system, so their exact shape and size are not resolved. Note that a
power law PDF is consistent with a fractal distribution of scattering shapes,44 which are found in
many settings in the natural world.45 The probability P of encountering or interrogating a
scatterer of dimension a within the ensemble is given by

EQ-TARGET;temp:intralink-;e001;116;273PðaÞ ¼
�
b − 1

amin

��
amin

a

�
b
; (1)

where amin is some minimum value of dimension, and b is the key power law parameter
governing the distribution of scattering size. For 3D fractal objects such as tree structures,
b is typically found to be between 2 and 3.44,46 We assume that the multiscale nature of this
distribution extends from small radii compared to the wavenumber k, where k · amin ≪ 1

(Rayleigh scattering) up to the resolution scale of the imaging system. Above this limit, targets
begin to appear as discrete objects in broadband imaging systems and are typically excluded
from the region of interest (ROI) analyzed as “speckle.”

2.2 Conjecture 2

The backscatter intensity from a plane wave of unit amplitude is assumed to be a linear function
of a in the subresolved range, above some minimum level set by the system and by Rayleigh
scattering lower limits. Consequently, the amplitude A is a square root mapping function:
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EQ-TARGET;temp:intralink-;e002;116;513AðaÞ ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − amin

p
: (2)

To determine the probability of echo amplitude A given the probability distribution of scat-
terer size a, we apply the probability transformation mapping rule.38,42,47 Using the mapping
function of Eq. (2) with the PDF of Eq. (1) directly yields the two-parameter Burr distribution:42

EQ-TARGET;temp:intralink-;e003;116;454BurrPðAÞ ¼ 2Aðb − 1Þ
l2
��

A
l

�
2 þ 1

�
b ; (3)

where l is a scale factor and the range of validity is A > 0, l > 0 and b > 1. An example Burr
distribution is shown in Fig. 1, both in linear and log–log plots, compared with the Rayleigh
distribution (as the classical speckle distribution for random point scatterers), which has the same
mode. The Rayleigh distribution appears more compact than the Burr distribution, highlighting
the power law asymptotic behavior of the Burr distribution at higher amplitudes and, therefore,
for larger scatterers.

The mean value of A is given by

EQ-TARGET;temp:intralink-;e004;116;312Ā ¼
ð−1þ bÞl ffiffiffi

π
p

Γ
h
− 3

2
þ b

i
2Γ½b� if b >

3

2
: (4)

Thus the mean or expected value of this distribution is proportional to the scale factor l, and
for b ¼ 2.5, which is typical for liver tissue, the mean is exactly equal to l.

Now let us re-examine conjecture 2, where we assume that the backscatter intensity from
a plane wave of unit amplitude has a range where a first-order linear approximation can be
employed. The general theory for backscattered intensity under the weak scattering or Born
approximation would be k4 times a form factor, which is related to the 3D spatial Fourier trans-
form of the scattering shape or autocorrelation factor.48,49 Common treatments for discrete scat-
terers include spheres and cylinders. Furthermore, models for random media include Gaussian,
modified Gaussian, exponential, and power law autocorrelation functions. Fractal structures,
self-similar over a range of spatial scales, have a power law autocorrelation function.44,46

The backscattered intensity versus frequency trends for all these models are typically dominated
by the k4 behavior at long wavelengths (generally called Rayleigh scattering) and then leveling
off as the influence of the form factor dominates when ka > 1 (the Mie scattering regime). Our
first-order approximation generally applies to the transition region, between the ranges where the
scattering is too weak to be captured in a limited dynamic range system with a noise floor, and at
the other end where the object is so large as to be resolvable in imaging systems from the analysis

Fig. 1 The Burr PDF for scale factor l ¼ 1 and power law b ¼ 2.5, a typical value of b for 3D
space-filling structures, compared with the Rayleigh distribution with the same mode value as the
Burr distribution. (a) The Burr and Rayleigh PDFs are plotted in linear scale. (b) The same PDFs
are shown in log–log scales.

Parker and Poul: Generalized formulations producing a Burr distribution of speckle statistics

Journal of Medical Imaging 023501-3 Mar∕Apr 2022 • Vol. 9(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 05 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



of speckle. As an example, the classical solution for a weak spherical scatterer is examined,
where the backscattered intensity is related to a spherical Bessel function (related to the 3D
Fourier transform of a spherical shape) and is proportional to kðkaÞ3ðj1½2 ka�∕ð2 kaÞÞ2.48,50
This is shown in Fig. 2 along with a linear approximation in the transition zone, lying between
the low ka region (Rayleigh scattering) and the Mies scattering region where ka > 1. The first-
order approximation is a limited fit but captures a general relationship among the strongest scat-
tering objects within the distribution of Eq. (1) and is consistent with a Taylor series expansion of
a real function.51 Other general shapes, such as shells, Gaussian distributions,50 and prolate
spheroids52 possess similar trends, so the increasing scattering as a function of size, approxi-
mated as a first-order (linear) function over some limited range, can be seen to fit several models.
Cylindrical scattering distributions have also been treated in this framework previously, both as
isotropic distributions39,41 and considering only the perpendicular orientation.53

2.3 Additional Factors: Beampattern Effects

The aforementioned conjectures lead directly to the Burr distribution, however, the simple prob-
ability transformation involving Eqs. (1) and (2), then Eq. (3) pertain to echoes considered indi-
vidually from a uniform incident source irradiation. In the case of random location of small
scatterers within a beampattern, one can formulate the ensemble of results as a product the ran-
dom incident beam amplitude (formed by a random location within a prescribed beampattern)
times the random scattering transfer function. The product rule for probability functions is used
to derive the final, overall distribution of echoes.54 This model is most appropriate for small
scatterers within a broad unfocussed beampattern since the model tacitly assumes that each scat-
terer is exposed to a single value of incident wave amplitude within the beampattern. For the case
of larger scatterers within a tightly focused beam, this assumption would be questionable, and so
other forms of simulations or models are then required. However, considering larger scatterers
within a tightly focused beam, this assumption would be questionable, and so other forms of
simulations or models are then required.30,40,55 Specifically for OCT, a physics-based computa-
tional model encompassing system parameters has been developed.55 This will be reconsidered
in Secs. 3 and 4.

For the purpose of examining the product of probabilities model, let us assume the scatterers
are sparse (noninteracting) within a circularly symmetric beampattern. The probability distribu-
tion for a random sampling point for conventional beampatterns has been shown to be in the form
of a power law (see Appendix A of Ref. 54 and Sec. VII of Ref. 38) such that for a Gaussian,
the beampattern PDF is proportional to 1∕d, where d is the amplitude within the beampattern,
dmin < d < 1 extending from some minimum value to a maximum of unity.

Fig. 2 Backscattered intensity (Born approximation or weak scattering) from a fluid sphere (blue)
compared with a linear approximation covering the transition zone (orange) fromapproximately ka ¼
0.2 to 1.2. Vertical axis is in arbitrary units, horizontal axis is dimensionless ka, wavenumber ×
spherical radius.
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Specifically for a Gaussian beampattern of amplitude dmin < d < 1, the PDF of amplitude for
a randomly located uniformly distributed scatterer is given by PDF ¼ −1∕½log½dmin�d�. Using
the formula for the product of two independent random variables [Eq. (36b) from Ref. 38] and
using x as the dummy variable of integration, we have56

EQ-TARGET;temp:intralink-;e005;116;485

PðecÞ ¼
Z

1

dmin

�
1

x

��
−1

log½dmin� · x
�� 2ðb − 1Þ

�
ec
x

�
l2½ðecx ∕lÞ2 þ 1�b

�
dx

¼
�
1þ ec2

l2

�
−bðec2 þ l2Þ −

�
1þ ec2

l2d2
min

�−b
ðec2þl2d2

min
Þ

d2
min

ecl2 log½dmin�
: (5)

This solution actually can be similar in shape to a Burr distribution but with a reduced scale
and b parameter, as a result of the beampattern effects. An example is shown in Fig. 3.

2.4 Additional Factors: Summation of Multiple Scatterers Within
the Resolution Cell

If two or more scatterers are included within the spatial resolution volume of a pulse-echo sys-
tem, then a complex summation of their amplitudes is received, and the mathematics of phasor
addition must be considered. When the phasors have PDFs, the summation of independent ran-
dom variables is considered using convolution or related techniques (see Sec. IVof Ref. 38). The
summation of Burr and related distributions leads to complicated series solutions,57–63 however
for the case of two Burr phasors, we demonstrated that the leading term contained a higher power
law of bþ 1∕2, increasing for additional phasors.42 Practically speaking, this means that higher
numbers of scatterers per sample volume will produce echo PDFs where the estimate of Burr b
parameter will exceed the inherent b of Eq. (1). In general, as the number of scatterers exceeds
eight,28,29 the statistical result will approach the central limit theorem, leading to a Rayleigh PDF
in amplitude,64 however, the convergence of heavy-tailed power law distributions is notoriously
slow, and in many applications with high-resolution imaging configurations we anticipate only
a few scatterers per sample volume.

In summary, there are numerous imaging system effects that can influence the reflections
from natural fractal structures. Importantly, in highly focused imaging beampatterns, some scat-
terers in Eq. (1) will become large with respect to the beampattern, rendering the derivation of
Eq. (5) as an oversimplification. Also the number of scatterers within an imaging point spread
function, along with practical limits on scatterer sizes, will modify results. With these issues in
mind, some simulations are examined next for comparison.

Fig. 3 Burr-in-Gaussian beampattern PDF for scale factor l ¼ 1 and scatterer power law b ¼ 2.5.
(a) The resulting PDF is plotted in linear scale in blue, with a simple Burr distribution using
l ¼ 0.009 and b ¼ 1.07 in orange, showing a reasonable match of the modified (in beampattern)
to the theoretical Burr distributions. (b) The same two PDFs are shown in log–log scales.
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3 Methods

To numerically study the relationships of the scatterer distributions with the resulting speckle
statistics and the underlying statistical Burr parameters, a series of 3D simulations are performed
using the k-Wave toolbox in MATLAB (The Mathworks, Inc., Natick, MA, USA).53,65 Here we
focus on sets of simulation cases with different scatterer distributions that all mutually obey the
power law behavior with the scatterers’ radii. The background material has a speed of sound of
c ¼ 1540 m∕s and with a low attenuation of 0.004 dB/cm/MHz to simplify the comparison
across different depths. The scatterers are all modeled as spherical in shape with different radii
whose surfaces are randomly rounded to the nearest quantized voxel to avoid artificially flat
(quantized) surfaces, and their spatial distributions are also random within the 3D background
medium, which is considered as the tissue parenchyma. These spherical scatterers are considered
as inhomogeneous regions with material properties ∼3% different than the background medium
to have an impedance difference for the acoustic reflections. Consistent with conjecture 1 and
Eq. (1), the number densities of spherical scatterers with different radii are modeled to obey a
power law relationship as NðrÞ ¼ N0∕rb, where N0 corresponds to the number of scatterers with
unit radius placed randomly within the simulation volume and r is the radius in units of discrete
spherical scatterers. The range of r extends in the simulation from 0.5 to 6 elements, thus the
largest sphere is of diameter 12 elements, or ∼0.83 mm and the smallest scatterer is ∼0.07 mm.
These spheres can be seen in Fig. 4. The power law distribution on the scatterers’ number density
is governed by the power law parameter b, which is set in the range of 2 to 3 in this study to
mimic the physiological range. In this study, 15 different simulations based on changes in the
values of b (2.2, 2.5, 2.8) and N0 (1000, 1500, 2500, 3500, 4500) are implemented to investigate
cases with different scatterer distributions.

Fig. 4 (a) The beampattern of the linear array transducer. (b) The schematic of the 3D view of the
medium showing some spherical scatterers with different densities distributed in a uniform back-
ground. The transducer orientation is also shown on top of the domain as a small blue rectangular
box.
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The dimensions of the 3D domain are 15 mm along depth, 13 mm along the lateral direction,
and 3 mm along the transverse direction. The mesh sizes along the three dimensions are uniform
with the element size of ∼0.069 mm in all three directions. The computational time step is
∼1.3 × 10−8 s, consistent with the Courant–Friedrichs–Lewy (CFL) criteria, which require a
CFL number CFL ¼ ðc0Δt∕ΔxÞ ≤ 0.3 to enable a stable simulation.

A linear array transducer model is implemented in k-Wave for this study. The transducer is
excited by a two-cycle toneburst signal with the frequency of 4 MHz. The transducer wavelength
at center frequency is 0.385 mm. This frequency is close to the common range of frequencies set
for the abdominal scan in adult human populations. In order to reduce the side lobe artifacts, the
transducer element width is set to the value less than the half of the wavelength. Also to minimize
the reflection artifact from the waves reflecting back to the medium after interacting with the
boundaries, an absorbing layer called a perfectly matched layer is implemented around the 3D
medium that absorbs the pressure waves.

The B-scans of the scattering media are reconstructed by implementing beamforming,
frequency filtering, envelope detection, and compression of the radio frequency data from the
simulations. The PDF of the envelope of echo amplitudes is then calculated for an appropriate
ROI and fitted to the Burr distribution using the nonlinear least squared method implemented in
MATLAB.

4 Results

4.1 Ultrasound

The transducer beam pattern is shown in Fig. 4(a) using the recorded pressure field. The near-
zone (Fresnel) region, the focal region, as well as the far (Fraunhofer) zone are observed form
this figure. A schematic 3D view of the scattering medium is presented in Fig. 4(b) incorporating
a few spherical scatterers with different diameters distributed randomly within the background
material. The transducer orientation with respect to the medium is also shown on top of the 3D
domain as a small blue rectangular box.

Initially, we investigate how the echo intensities increase with scatterers’ radii. To do so, we
evaluate separate realizations of a single scatterer with a specific radius. In addition, we consider
individual scatterers in the medium located at different depths, ∼5.0, 7.5, and 10 mm to vary the
echo with respect to the nominal focus of ∼10 mm.

First, the spatially averaged echo intensities coming from each scatterer at a specific depth are
obtained, and then the mean of these averaged intensity measurements from these three single-
radius scatterers is calculated. This process is independently repeated for different radii and the
results are shown in Fig. 5. As observed, the average intensity increases with the scatterer radius
and the underlying correlation between intensity and radius is approximated reasonably as a
linear relationship. This is well-consistent with our earlier assumptions in modeling intensity
versus radius in conjecture 2. Variations are due to the different depths simulated and to the
random roughness of the spheres around the quantized voxel sizes used in the simulation.
Note that the results of Fig. 5 are consistent with the general trend of Fig. 2, however, that
is a different calculation related to backscatter from a monochromatic plane wave. Figure 5 rep-
resents received echo intensity from a focused broadband system. These concepts are related but
not identical, as system effects play a major role in defining the outcomes of Fig. 5.

Figure 6 shows the 2D (x-y) view of the middle plane cut through four different 3D scattering
structures, in which the numbers and sizes of scatterers follow a power law function character-
ized by two different parameters: b and N0. These four cases with different scatterer densities
correspond to high and low values of b and N0 in this study. The black regions represent the
scatterers with different diameters distributed in a homogeneous background media. Figures 6(a)
and 6(b) show two samples from the category with the power law parameter of b ¼ 2.8, and
Figs. 6(c) and 6(d) show for the category with b ¼ 2.2, both for the cases of N0 ¼ 4500

and N0 ¼ 1000.
Comparing these scatterer density cases, it is observed that for a constant N0, when b is

smaller, the number density of the random scatterers with a specific diameter is higher than for
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Fig. 6 The 2D plane cut through the middle of four different 3D scattering media corresponding to
the power law parameter of b ¼ 2.8 when (a) N0 ¼ 4500 and (b) N0 ¼ 1000, and to the power law
parameter of b ¼ 2.2 when (c) N0 ¼ 4500 and (d) N0 ¼ 1000.

Fig. 5 Spatially averaged echo intensity as a function of scatterer radii along with the linear
correlation fit. Boxplots show intensity variations across three different realizations repeated for
each radius.
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cases with larger b. The corresponding B-scan images for the four scattering media in Fig. 6 are
shown in Fig. 7. The ROIs for obtaining the speckle statistics of echoes are depicted as a red
rectangular region on each B-scan.

Figure 8 demonstrates the details of the speckle statistics for the four cases shown in Fig. 7.
This figure presents the speckle statistics data obtained from a large ROI on the B-scan, as well as
the curves from fitting the Burr distribution to the speckle statistics data. The histogram for each
case is presented in two forms: (i) linear-binned axes and (ii) log-binned axes. The latter rep-
resentation allows us to examine how the speckle data behaves around the initial and final tails of
the distribution. Therefore, we can assure that the fitted curves from the Burr distribution are
capturing the overall details of the speckle data. In Fig. 8, it is observed that the fitted curve for
each case shows close agreement with the speckle data from the simulations, and this indicates
that the Burr distribution is capable of capturing the speckle statistics for the scatterers distrib-
uted according to the power law relationship. The fitting parameters of the Burr distribution for
these four cases are presented in Table 1. The average number of scatterers per unit volume of the
interrogating pulse for each case is also presented in Table 1. For this calculation, the pulse
volume is approximated as an 8-dB ellipsoid in 3D averaged over echoes from three single voxel
scatterers at different depths. The higher numbers of scatterers per pulse volume are associated
with significant complex summations of amplitudes within the acoustic pulse and explain the

elevated values for b̂ obtained from the histograms. It should be noted that the power law param-
eter used to create the spherical scattering structures is called the generating power law parameter

Fig. 7 The B-scan images corresponding to the scattering structures with the power law param-
eter of b ¼ 2.8 when (a) N0 ¼ 4500 and (b) N0 ¼ 1000, and for the scattering medium with the
power law parameter of b ¼ 2.2 when (c) N0 ¼ 4500 and (d) N0 ¼ 1000.
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here and is shown as b, whereas the parameter obtained from fitting the Burr distribution to the

speckle data is indicated as b̂ and is called the fitted (or estimated) power law parameter.
To summarize the results from all the simulations across different N0 and different b, which

both play a role in the scatterer densities, the fitting results of the speckle statistics for the Burr
power law parameters are shown in Fig. 9. The results indicate that the fitted power law param-

eter b̂ is a sensitive parameter that changes with the scatterer distribution: either a change in the
generating power law parameter response to any variation in b or a change in N0. It is observed

that b̂ increases by increasing N0 and also b. In order to assess the variability in estimating b̂
from different realizations of random scatterer distributions, for two scattering cases of (b ¼ 2.8

and N0 ¼ 2500) and (b ¼ 2.2 and N0 ¼ 2500), we simulated five independent realizations for
each case and reported the mean and standard deviation of the fitting parameter in the form of
error bars shown in Fig. 9.

4.2 Optical Coherence Tomography

Following the methods of Ge et al.,66 results from OCT studies of fresh samples of calf liver were
examined for speckle statistics. The scanning system utilized a swept source laser (HSL-2100-
WR, Santec, Aichi, Japan) with a center wavelength of 1310 nm and full-width half-maximum

Fig. 8 The speckle statistics data shown as: (i) linear-binned scale and (ii) log-binned scale for the
power law scatterer distributions with (a) b ¼ 2.8, N0 ¼ 4500; (b) b ¼ 2.8, N0 ¼ 1000; (c) b ¼ 2.2,
N0 ¼ 4500; and (d) b ¼ 2.2, N0 ¼ 1000. The Burr-fitted curves to the speckle data are also shown
in each case as a solid line.

Table 1 Four samples of the results from fitting the Burr distribution to the speckle statistics for the
cases shown in Fig. 8. The last column shows the number of scatterers per unit of pulse volume.

Scattering case

Fitting results

Approximate number of scatterers
per unit pulse volumeb̂ l R2

(a) b ¼ 2.8, N0 ¼ 4500 7.01 1179.16 0.9975 6.3

(b) b ¼ 2.8, N0 ¼ 1000 3.16 263.80 0.9985 1.4

(c) b ¼ 2.2, N0 ¼ 4500 5.90 1132.60 0.9974 4.6

(d) b ¼ 2.2, N0 ¼ 1000 2.87 289.50 0.9981 1.0
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bandwidth of 170 nm. The liver specimen was cut using a surgical knife from a freshly obtained
calf liver and selected to be free of major arteries, connective tissue, and the outer capsule. The
OCT scan and Burr best fit histograms are shown in Figs. 10(a)–10(c). Similar to the OCT
results from other tissues reported in Ge et al.,66 the speckle statistics are effectively character-
ized by the Burr distribution with an estimated b in the range found in other soft vascularized
tissues.

4.3 Radar and Sonar of Vegetation

We do not currently have available raw echo amplitude distributions from plausibly fractal veg-
etation scattering targets using radar or sonar systems. However, we note that in early studies of
radar crop analysis,67 some heavy-tail distributions were noted. These heavy-tails are not con-
sistent with Rayleigh distributions but could be more consistent with Burr and other power law
PDFs. Similarly, in some sonar studies,68–70 some heavy-tail distributions were noted, leading to
a better fit using the generalized Pareto or mixture distributions over earlier Rayleigh and expo-
nential models. It remains to be seen if the Burr distribution can effectively capture the long tail
distributions formed in these cases.

(a) (b) (c)

Fig. 10 Optical coherence tomography scan of a fresh calf liver, ex vivo, is shown in (a). The liver
surface is a bright horizontal line, the speckle below is analyzed for amplitude statistics, with the
ROI shown in green. The histogram of amplitudes is shown below in (b) linear and (c) log–log
formats with a mean squared error best fit to a Burr distribution with an estimated b̂ of 5.2.

Fig. 9 The summary of the results from fitting the Burr distribution to the speckle statistics data for
all 15 simulation cases. The two error bars represent the means and standard deviations of the
fitting parameter b̂ obtained from five different realizations repeated for the simulation cases
({b ¼ 2.8, N0 ¼ 2500} and {b ¼ 2.2, N0 ¼ 2500}).
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5 Discussion and Conclusion

We propose two simple conjectures that are sufficient to produce a Burr distribution of echo
amplitudes. First, scatterers are distributed according to a power law with respect to size (con-
sistent with fractal and multiscale structures), and second, their echo intensity increases with size
as a first-order approximation over some range in the subresolved region. Together, these two
conjectures predict the emergence of speckle PDFs that are modeled by a Burr distribution deter-
mined by a scale parameter and a governing power law b. These conjectures are somewhat gen-
eral and not restricted to perfect spheres or cylinders. This Burr model of speckle amplitudes is
expected to be useful in situations where multiscale or fractal distribution of scatterers is present.
In addition, for experimental studies of speckle, the Burr PDF uniquely provides a long-tail,
power law asymptote, which is distinct from classical models. The Burr parameters have shown
promise for differentiating different tissue types and pathological states in preliminary studies in
OCT66 and ultrasound.40,42,71 This model would not be relevant in situations where organized
structures, periodic targets, or large numbers of scatterers are interrogated. In practical situations,
there are a number of additional system factors that influence the speckle statistics; we consid-
ered only a few aspects of the effects of beampatterns and the effects of the number of scatterers
per unit volume.

Limitations of this work include the need for additional analysis of raw data from different
sources that image multiscale weak scatterers. Although we have access to ultrasound and OCT
data,42,66,72 we do not currently have examples from radar and sonar. The derivations also do not
include the effects of attenuation, or multiple scattering which would be influential in a number
of situations. It remains to be seen how effectively the inherent power law parameter b can be

deduced from measurements of the estimated b̂. Finally, the effect of the beampattern for
cases where the scattering objects are comparable to the beampattern has not been fully explored
in theory, although we have presented simulations and convolutional models to provide
examples.

In summary, we postulate that the Burr distribution can be a meaningful model across a
wide set of applications in ultrasound, optics, radar, and sonar where weak multiscale natural
scatterers are interrogated by imaging systems. The two Burr parameters may be useful in
characterizing the targets, however, further research is required to make these more rigorously
system independent.
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