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Abstract: Speckle statistics in ultrasound and optical coherence tomography have been studied
using various distributions, including the Rayleigh, the K, and the more recently proposed Burr
distribution. In this paper, we expand on the utility of the Burr distribution by first validating its
theoretical framework with numerical simulations and then introducing a new local estimator to
characterize sample tissues of liver, brain, and skin using optical coherence tomography. The
spatially local estimates of the Burr distribution’s power-law or exponent parameter enable a
new type of parametric image. The simulation and experimental results confirm the potential for
various applications of the Burr distribution in both basic science and clinical realms.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The random interference pattern from coherent illumination known as speckle has been intensively
studied for over a century. In the earliest studies, glass prisms were used to separate narrow color
bands to investigate the phenomenon [1]. In the later 20th century, optical speckle research was
invigorated by the dissemination of radar and lasers [2–9]. In medical ultrasound, Rayleigh’s early
formulations were applied to speckle patterns that are seen in B-scan images [10]. Subsequent
work applied a range of well-established statistical models for the backscattered echoes from
tissues [11,12].

Much of the work in medical ultrasound was influenced by prior work in the areas of
electromagnetics and optics. These include classical distributions: the Rayleigh [10,13–15], the
K [16–18], the Rician [6,19,20], the Nakagami [21–23], and the "marked model" [24,25].

An important use of speckle metrics in medicine is the differentiation of normal versus diseased
tissues. Newer models have been proposed [26,27] and employed to different clinical objectives
[28–31]. A recent review of speckle in acoustics including the major mathematical formulations
for probability density functions (PDFs) is presented in Stanton et al. [32]. They stress the
influence of the scattering shapes and their distributions together with the beampattern effects.

Separately, in the field of optical coherence tomography (OCT) imaging of tissues, a parallel
set of models have been employed both for speckle elimination and for physical modeling or
biomarker characterization. Among these studies, OCT speckle analysis has generally emphasized
utilization of the Rayleigh distribution [33–37], the K distribution [38], the gamma distribution
[39,40], and comparisons between common models and a non-parametric approach [41].

More recently, a new speckle model of medical ultrasound based on power-law distributions
originating in tissue vasculature was proposed [42–45]. The mathematics capture the behavior of
a fractal branching set of cylinders modeled as a set of weak scatterers governed by a power-law
distribution of scattering elements’ radii. This framework breaks from earlier work with important
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distinctions. First, the classical assumption of many identical scatterers interacting so as to justify
the central limit theorem is eliminated. The new model considers one or very few individual
scatterers, and those are distributed in size with a power-law distribution. This led to a novel
result – that ultrasound speckle distributions from vascularized tissue were effectively modeled
by a two-parameter Burr distribution, originally formulated in the context of general functions
for statistics research [46], which possesses a long power-law tail.

The Burr distribution enables a a new set of parameters and subsequent analyses that can be
applied to characterize tissue imaged using OCT or ultrasound. This paper recaps the basic theory
and then develops a relationship for spatially local estimates of the power-law parameter based
on moments of the Burr distribution. Also, the effect of the number of scatterers included within
a coherence volume is addressed by examining the complex addition of an increasing number of
phasors. The Rayleigh distribution is used as a common comparison given its historical role in
characterizing speckle in OCT and ultrasound [8,10,37]. Applications of these metrics to tissues
are shown and assessed for their utility in tissue characterization.

2. Theory

2.1. Sufficient conditions for generating Burr speckle

Only two generalized conditions are sufficient to produce backscatter amplitudes that follow a
Burr distribution. The first is a power-law distribution of weak scatterers, and the second is a
linear increase of intensity with size or scale across some extended scale. Consistent with many
fractal distributions [47] found in the natural world [48], we assume that the probability P of
encountering a scatterer of dimension a within the ensemble is given by

P(a) =
(︃
b − 1
amin

)︃ (︂amin
a

)︂b
, (1)

where amin is some minimum value of dimension, and b is the key power-law parameter governing
the distribution of scattering size. In natural 3D fractals, b is typically found to be between 2 and
3 [47,49]. It is assumed that the scale of this distribution is valid from some minimum, small
radii compared to the wavenumber k where k · amin ≪ 1 up to the point spread function of the
imaging system. At larger sizes, targets begin to appear as discrete objects and are frequently
excluded from the region of interest (ROI) analyzed as "speckle."

Next, we submit that the backscatter intensity returning from a plane wave of unit amplitude
encountering a scatterer of dimension a is assumed to be a linear function of a, above some
minimum level set by the system and by Rayleigh scattering lower limits. This can simply be
considered as a first order approximation of more complicated relationships that trend upward
with increasing size, as shown by Parker [42]. Consequently, the amplitude A is a square root
mapping function given as

A(a) = A0
√

a − amin, (2)

where A0 is a constant scale factor. Given Eqs. (1) and (2), we can apply the probability
transformation mapping rule [32,45,50] that directly yields the two-parameter Burr distribution
[45]:

Burr f (A; b, d) =
2A(b − 1)

d2
[︂ (︁ A

d
)︁2
+ 1

]︂b , (3)

where d is a scale factor, and the range of validity is A>0, d>0, and b>1. An example PDF of the
Burr distribution is shown in Fig. 1, both in linear and log-log scales.
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Fig. 1. The Burr PDF for scale factor d = 1 and power-law exponent b = 3.5, a typical
value of b for 3D space-filling structures. In (a), the Burr PDF is plotted in linear scale. In
(b), the same PDF is shown on a log-log scale.

The mean value of A is given as

Ā = E[A] =
(b − 1)d

√
πΓ

(︂
b − 3

2

)︂
2Γ(b)

, for b>
3
2

, (4)

where Γ(·) is the gamma function. Thus, the mean or expected value of this distribution is
proportional to the scale factor d; for the special case of b = 2.5, which is within the typical range
for tissue, the mean is exactly equal to d.

Furthermore, by direct integration, the ratio of the first moment (mean) squared and the
non-centered second moment can be derived as

(E[A])2

E[A2]
=

(b − 2)π
[︂
Γ

(︂
b − 3

2

)︂]︂2

4 [Γ(b − 1)]2
, for b>2. (5)

Equation (5) is only dependent on b and increases monotonically towards a Rayleigh asymptote
for b growing large. Figure 2 shows the monotonic increase in the estimator of Eq. (5) with
increasing b from 2 to 8. The constant upper line in red is the same ratio of the first moment
(mean) squared divided by the second moment for a Rayleigh distribution that can be shown to
be equal to π/4 or approximately 0.8. Note this is not the same as the well-known Rayleigh
signal-to-noise ratio of 1.91 because we are employing the non-centered second moment in the
denominator instead of the traditional variance centered around the mean. Equation (5) in the
limit of b → ∞ approaches the limit of π/4 exactly, thus suggesting an approach to the central
limit theorem and the Rayleigh distribution. In practice, given a local region of speckle, we can
easily calculate the first and second moments of the sampled data and solve Eq. (5) for b, which
serves as our estimated power-law parameter b̂. Thus, the use of this ratio, Eq. (5), as a local
estimator is proposed in this paper.

2.2. Additional factors: summation of several scatterers within the resolution cell

When multiple scatterers are located within the transmitted coherence volume, then a complex
summation of their amplitudes is formed. When the phasors are characterized by PDFs, the
summation of independent random variables is calculated using convolution or related techniques
(see section IV of Stanton et al. [32]). It has been shown that the summation of Burr distributed
random variables leads to series solutions [51–57]. However, for our case we need to add phasors
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Fig. 2. The dependence of the ratio of the first moment (mean) squared divided by the
non-centered second moment for the Burr distribution as a function of the Burr parameter
b is shown in the blue curve. This ratio is a constant of π/4 for the Rayleigh distribution,
shown in red. Note that as the power-law parameter b increases, the ratio asymptotically
approaches the value found from a Rayleigh distribution.

of the form |A| cos (θ) where A is a Burr distributed amplitude and θ is a uniformly distributed
angle with 0 ≤ θ<2π. An explicit form of the expression can be found in [45], but a brief
summary is given here. The PDF for |A| cos (θ) is derived from the product distribution rule for
the multiplication of two random variables [32,50], which involves an integration. The following
Pearson type VII distribution is thus obtained as

Pearson f (A′; b, d) =
(b − 1)Γ

(︂
b − 1

2

)︂
√
πΓ(b)d

[︂ (︁ A′

d
)︁2
+ 1

]︂b− 1
2

, (6)

where A′ = |A| cos(θ). The Pearson type VII distribution is shown in Fig. 3.
Next, the summation of two phasors is found by the convolution of two Pearson PDFs. Closed

form analytic solutions can be found for specific half-integer values of b, so for a practical
example [58] if b = 3.5 and d = 1, we derive the PDF for the sum of two Burr phasors as a
polynomial ratio:

[f ∗ f ](A; 3.5, 1) =
16(A4 + 24A2 + 336)

3π(A2 + 4)5
. (7)

With a summation of three phasors (i.e., an additional convolution of the PDFs), we obtain a
higher order polynomial given as

[f ∗ f ∗ f ](A; 3.5, 1) =
8(A8 + 74A6 + 2664A4 + 58806A2 + 827415)

π(A2 + 9)7
. (8)

Following Rayleigh’s derivations and arguments from August, 1880 [59], we can assume that
the axes defining the phasor angles are arbitrary and consistent with an isotropic distribution of
phasors expected over angle θ.
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Fig. 3. The Pearson PDF for scale factor d = 1 and power-law exponent b = 3.5, a typical
value of b for 3D space-filling structures. In (a), the Pearson PDF is plotted in linear scale.
In (b), the same PDF is shown on a log-log scale.

As will be seen in the next sections, these PDFs will produce envelope distributions that
strongly resemble Burr distributions over the peak area of the distribution; however, the estimated
b will increase with an increasing number of convolutions. Nonetheless, at the extreme tail of
rare, high amplitudes, we note that both Eqs. (7) and (8) asymptotically decay to ∼ A−6, which
corresponds to 2b − 1 = 6 in this case. In general, more phasor additions will yield PDFs with
higher order polynomials commensurate with increasing estimates of Burr b as a curve fit result;
however, the high amplitude (rare event) asymptotes remain limited.

Practically speaking, this implies that for lower resolution systems (with larger coherence
volumes) the estimate of Burr parameter, denoted as b̂, will exceed the inherent b of Eq. (1) due
to phasor addition. Historically, it has been widely assumed that as the number of scatterers
becomes large, the result will be defined by the central limit theorem, leading to a Rayleigh
PDF in amplitude [60]. In our case, beginning with the power law of Eq. (1), we anticipate
only a few scatterers per sample volume within a high-resolution imaging system. Furthermore,
the convergence of heavy-tailed power-law distributions is notoriously slow, so invoking the
central limit theorem is not justified unless some special conditions are present, such as a broadly
unfocused beam capturing a large volume of scatterers. These issues will be further illustrated in
the Results section 4.

2.3. Influence of beampatterns

Equations (1) and (2) leading to the Burr PDF strictly apply to an ensemble of individual echoes
or backscatter encountered by a uniform pulse or beam. In earlier work on small scatterers
located randomly within an unfocused beampattern, the echo was modeled as a simple product
of the random incident beam amplitude resulting from a random location within a prescribed
beampattern multiplied by a random scattering transfer function [32]. The product rule for
probability functions is used to derive the final overall distribution of echoes. However, when we
now consider a multiscale distribution which included larger scatterers within a tightly focused
beam, this assumption becomes questionable, and so other forms of simulations or models are
required [43,61,62].
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3. Methods

3.1. Numerical simulations

All numerical simulations were performed in MATLAB R2020b (MathWorks, Natick, Mas-
sachusetts, USA). Simulations were performed to compare Rayleigh and Burr distributions.
The parameter m represents the number of phasors to be added, whereas n is the number of
realizations. For each Rayleigh realization, m phasors of unit amplitude and random angles
uniformly distributed between 0 and 2π were summed. The resultant summed vectors’ amplitudes
over n realizations form the histogram data. Upon normalization by the root mean square (RMS),
the simulated data was then visually compared with the Rayleigh distribution.

For the Burr simulation, a power-law distribution with parameters b and amin was first created
according to Eq. (1). Equation (2) was then calculated and the resulting distribution was applied
as the phasors’ amplitudes. The phasors’ angles, θ, were still random and uniformly distributed
between 0 and 2π. Upon summation of m phasors for all n realizations, the resultant summed
amplitudes were normalized by dividing by the RMS, and subsequently fitted to the two-parameter
Burr distribution as prescribed by Eq. (3) using the maximum likelihood estimation (MLE)
method. The built-in MLE function in MATLAB was used and Eq. (3) was the input for the
custom distribution.

Simulations were performed by varying the parameter m = [1, 2, 4, 8, 16], while setting b = 3,
amin = 1, and n = 1, 000, 000. The choice for b is arbitrary, but we chose the numerical value
such that it is within our recently tabulated estimated values from tissues [58]. We chose a million
sample points, which based on our previous analyses, is a sufficient ensemble to capture accurate
behavior without excessively increasing computational time. In addition, the estimated power-law
parameter b̂ is measured as a function of varying m phasors for b = [2, 2.5, 3] using both the
MLE method and based on Eq. (5). These are respectively denoted as b̂MLE and b̂EE (where EE
denotes equation estimate). The estimated parameter d̂ is estimated only using MLE.. Finally,
the same simulations were used to verify the Pearson distribution, or Eq. (6), from Section 2.2 by
incorporating the factor of cos(θ) in the analysis.

3.2. Experimental setup

A swept source optical coherence tomography (SS-OCT) system was used to scan samples
of calf liver, mouse brain, and human skin. It was implemented with a swept source laser
(HSL-2100-WR, Santec, Aichi, Japan) with a center wavelength of 1310 nm and bandwidth of
170 nm. The lateral resolution is 20 µm and the axial resolution is 8 µm in air. The maximum
sensitivity of the system was measured to be approximately 120 dB. The imaging depth was
measured to be 5 mm in air. The SS-OCT system was controlled with LabVIEW (Version 14,
National Instruments, Austin, Texas, USA). The scans (single frame, unaveraged, unfiltered,
uncorrected) were performed with 500 A-lines and the focal plane was set to approximately
0.2 mm below the sample surface. The mouse brain was scanned in vivo using a cranial window
that enables OCT imaging. The mouse study was performed in accordance with experimental
protocols approved by the University of Rochester Committee on Animal Resources.

3.3. Burr local estimation

For each scan, a global estimate in the ROI is obtained using MLE by implementing the procedure
outlined in Ge, et al. [58]. This procedure includes a test for uniformity of amplitudes within
the ROI so as to avoid shadows or dissimilar tissues. Another global estimate using Eq. (5) is
obtained for direct comparison. Finally, a local map of the Burr power-law parameter is obtained
by applying the estimator of Eq. (5) within moving a rectangular window of 100 × 80 pixels
across the ROI with intervals of 5× 4 pixels. While the selection of this window size and interval
is arbitrary, we find the windows are adequately sized so that local estimates are accurate, while
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resolution is also preserved. Linear interpolation is performed after the estimates are obtained to
fill out the ROI, and no other filters are applied.

4. Results

4.1. Numerical simulations

First, we examine the background issue of the amplitude of the sum of random phasors, comparing
the classical case of uniform amplitude phasors with Burr distributed phasors. In the series
shown in Fig. 4, it is apparent that as the number of phasors increases, the Rayleigh distribution
is approximated with eight identical phasors or more. The Burr estimators accurately estimate b
with a single phasor, and overestimates b as the number of phasors increases. We report that
b̂EE is always within the 95% confidence interval obtained with b̂MLE for each case. The scale
parameter d̂ also increases as more phasors are summed. With a large number of phasors, the
Burr estimate resembles that of the Rayleigh distribution. The last subfigure of panel 4(b) is
shown in Fig. 5, on a log-log scale to demonstrate the differences among the data points, the Burr
PDF, and the Rayleigh PDF.

Fig. 4. (a) Rayleigh fit to the complex sum of m independent phasors, all of uniform
amplitude and (b) Burr fits to simulations with m phasors of variable amplitudes chosen
from a power law PDF. For the Burr simulations, b = 3 in all cases.

In Fig. 6(a), it is appreciated that at m = 1, b̂ matches b. As the number of phasors increases,
the estimated b̂ increasingly overestimates b. A similar trend is noted with d̂ in Fig. 6(b).

Figure 7 demonstrates the validity of the Pearson distribution (i.e., Eq. (6)), as explained in
Section 2.2. With the phasor magnitudes incorporating the cos(θ) random angle, the Pearson
distribution can also be used to estimate the Burr parameter b.

4.2. Burr local estimation in tissue

In the following examples, we compare results from global estimates of b̂ obtained from the
entire ROI, against the local estimates within the sliding window used to make b̂ images. The
global MLE parameter for the ROI of the OCT liver scan shown in Fig. 8(a) is b̂MLE = 5.24.
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Fig. 5. From the last panel in Fig. 4(b), Burr and Rayleigh fitted to a simulation with 16
phasors on a log-log scale.

Fig. 6. Estimated power-law parameters b̂ and d̂ measured as a function of varying m
phasors for b = 2.0, 2.5, 3.0.

Fig. 7. Pearson PDF fits to simulations with a single phasor (m = 1) and for b equal to (a)
2.5, (b) 3.0, (c) 3.5, and (d) 5.0.
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The global estimate using Eq. (5) is b̂EE = 5.20. The local map using Eq. (5) on local, sliding
windows is shown in Fig. 8(b), which shows strong homogeneity in the b̂local estimate.

Fig. 8. (a) B-mode image of a homogeneous section of calf liver ex vivo. (b) Map of
estimated local Burr power-law parameter b̂.

The global MLE parameter for the ROI of the OCT mouse brain scan shown in Fig. 9(a)
is b̂MLE = 4.93. The global estimate using Eq. (5) is b̂EE = 4.94. The local map is shown in
Fig. 9(b), which shows homogeneity, similar to the case with liver.

Fig. 9. (a) B-mode image of mouse brain in vivo. (b) Map of estimated local Burr power-law
parameter b̂.

The global MLE parameter for the ROI of the OCT skin scan shown in Fig. 10(a) is b̂MLE = 3.12.
The global estimate using Eq. (5) is b̂EE = 3.14. The local map is shown in Fig. 10(b), which
shows a visual correlation between the layers of the skin and the b̂local estimate.
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Fig. 10. (a) B-mode image of human skin (palm). (b) Map of estimated local Burr power-law
parameter b̂.

5. Discussion and conclusion

The Burr distribution emerges from two sufficient conditions. First, the probability that a pulse
or beam encounters a scatterer of some dimension is assumed to be determined by a power law.
Secondly, the backscatter intensity is assumed as a first order approximation to increase linearly
with size within the sub-resolved scale. By applying the basic rule of probability transformation,
these two assumptions generate speckle PDFs formed by a two-parameter Burr distribution. The
particular Burr distribution we use is governed by a scale parameter d and a power-law exponent b.
This Burr model of speckle amplitudes is appropriate for scatterer distributions where multi-scale
or fractal distribution of structures is present and is now found to be a useful framework in both
medical ultrasound and OCT [41,58].

Numerical simulations using phasor addition are utilized to demonstrate how the two-parameter
Burr PDF compares with the classical Rayleigh PDF. As the number of phasors increases, the
Rayleigh simulations approach the Rayleigh distribution, which attests to its underlying assumption
of a large number of scatterers. For the Burr simulations, with a single phasor, accurate power-
law parameters can be estimated. As the number of phasors increases, the parameters are
overestimated, and the simulation distribution eventually converges to the Rayleigh PDF.

A new local estimator using the basis of Eq. (5) is also proposed and demonstrated with three
sample OCT scans. As seen in the liver and brain scans, the estimated map of b̂ is homogeneous.
In the skin scan, the estimated map of b̂ is heterogeneous, and closely follows the layers of skin,
also distinctly outlined in the B-mode image. These three scans demonstrate the potential utility
of a local Burr estimator to characterize tissue. However, further studies are needed to investigate
its performance and limitations with respect to different ranges of the mean index of refraction,
multiple scattering, beampattern effects, and window optimization. We have not emphasized the
parameter d̂ which is related to the average amplitude of the speckle and is strongly dependent
on the gain settings of the imaging system. It is possible to construct methods to normalize the
system parameters and extract a tissue-based estimate of d related to optical scattering. These
studies are left to future research.

In summary, the utility of the Burr distribution has been expanded upon with numerical
simulations to validate theory as well as experiments to demonstrate its potential in identifying
and characterizing local tissue structures. New and alternative estimators proposed can be further
refined with various image processing techniques, which would allow for translation to direct
biological and clinical applications.
Funding. National Institutes of Health (F30AG069293, R21AG070331, R21EB025290).



Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 2344

Acknowledgments. This work was support by National Institutes of Health grants R21EB025290 and R21AG070331.
Gary Ge is supported by the National Institute on Aging of the National Institutes of Health under award number
F30AG069293. The content is solely the responsibility of the authors and does not necessarily represent the official
views of the National Institutes of Health. We also thank Wei Song and Maiken Nedergaard for providing assistance and
resources to scan the mouse brain.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. M. von Laue, “The variability of ray beams,” Ann. Phys. 44, 1197 (1914).
2. N. George and A. Jain, “Speckle in microscopy,” Opt. Commun. 6(3), 253–257 (1972).
3. N. George and A. Jain, “Space and wavelength dependence of speckle intensity,” Appl. Phys. 4(3), 201–212 (1974).
4. N. George and A. Jain, “The wavelength diversity of speckle,” in SPIE Developments in Laser Technology II, vol.

0041 (SPIE, 1974), pp. 161–167.
5. N. George, A. Jain, and R. D. S. Melville, “Speckle, diffusers, and depolarization,” Appl. Phys. 6(1), 65–70 (1975).
6. J. W. Goodman, Statistical Properties of Laser Speckle Patterns (Springer-Verlag, , 1975), vol. 9 of Topics in Applied

Physics, pp. 9–75.
7. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
8. N. George and D. C. Sinclair, “Editor’s page: topical issue on laser speckle,” J. Opt. Soc. Am. 66(11), 1316 (1976).
9. J. C. Dainty, The Statistics of Speckle Patterns (Elsevier, 1977), vol. 14, pp. 1–46.
10. C. B. Burckhardt, “Speckle in ultrasound B-mode scans,” IEEE Trans. Son. Ultrason. 25(1), 1–6 (1978).
11. J. M. Thijssen, “Ultrasonic speckle formation, analysis and processing applied to tissue characterization,” Pattern

Recogn. Lett. 24(4-5), 659–675 (2003).
12. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley-Interscience, 2003), 1st ed.
13. R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, “Statistics of speckle in ultrasound B-scans,” IEEE Trans.

Sonics Ultrason. 30(3), 156–163 (1983).
14. B. J. Oosterveld, J. M. Thijssen, and W. A. Verhoef, “Texture of B-mode echograms: 3-D simulations and experiments

of the effects of diffraction and scatterer density,” Ultrason Imaging 7(2), 142–160 (1985).
15. K. A. Wear, R. F. Wagner, D. G. Brown, and M. F. Insana, “Statistical properties of estimates of signal-to-noise ratio

and number of scatterers per resolution cell,” J. Acoust. Soc. Am. 102(1), 635–641 (1997).
16. E. Jakeman and R. J. A. Tough, “Generalized K distribution: a statistical model for weak scattering,” J. Opt. Soc.

Am. A 4(9), 1764–1772 (1987).
17. G. E. Sleefe and P. P. Lele, “Tissue characterization based on scatterer number density estimation,” IEEE Trans.

Ultrason., Ferroelect., Freq. Contr. 35(6), 749–757 (1988).
18. V. Dutt and J. F. Greenleaf, “Speckle analysis using signal to noise ratios based on fractional order moments,”

Ultrason. Imaging 17(4), 251–268 (1995).
19. M. F. Insana, R. F. Wagner, B. S. Garra, D. G. Brown, and T. H. Shawker, “Analysis of ultrasound image texture via

generalized Rician statistics,” Opt. Eng. 25(6), 256743 (1986).
20. J. M. Thijssen, Echographic image processing (Academic Press, , 1992), vol. 84, p. 317.
21. P. M. Shankar, “Ultrasonic tissue characterization using a generalized Nakagami model,” IEEE Trans. Ultrason.,

Ferroelect., Freq. Contr. 48(6), 1716–1720 (2001).
22. P. M. Shankar, “A compound scattering PDF for the ultrasonic echo envelope and its relationship to K and Nakagami

distributions,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(3), 339–343 (2003).
23. Z. Zhou, D. I. Tai, Y. L. Wan, J. H. Tseng, Y. R. Lin, S. Wu, K. C. Yang, Y. Y. Liao, C. K. Yeh, and P. H. Tsui, “Hepatic

steatosis assessment with ultrasound small-window entropy imaging,” Ultrasound Med. Biol. 44(7), 1327–1340
(2018).

24. R. M. Cramblitt and K. J. Parker, “Generation of non-Rayleigh speckle distributions using marked regularity models,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46(4), 867–874 (1999).

25. T. A. Tuthill, R. H. Sperry, and K. J. Parker, “Deviations from Rayleigh statistics in ultrasonic speckle,” Ultrason.
Imaging 10(2), 81–89 (1988).

26. R. W. Prager, A. H. Gee, G. M. Treece, and L. H. Berman, “Analysis of speckle in ultrasound images using fractional
order statistics and the homodyned K-distribution,” Ultrasonics 40(1-8), 133–137 (2002).

27. T. Yamaguchi, The Quantitative Ultrasound Diagnosis of Liver Fibrosis using Statistical Analysis of the Echo
Envelope (Springer Netherlands, 2013), pp. 275–288.

28. F. Destrempes and G. Cloutier, “A critical review and uniformized representation of statistical distributions modeling
the ultrasound echo envelope,” Ultrasound Med. Biol. 36(7), 1037–1051 (2010).

29. Z. Klimonda, P. Karwat, H. Piotrzkowska-Wróblewska, K. Dobruch-Sobczak, and J. Litniewski, “Ultrasound
scattering statistics predicts the result of neoadjuvant chemotherapy of breast tumors at an early stage of treatment,”
in 2019 IEEE International Ultrasonics Symposium (IUS), (2019), pp. 1512–1514.

30. A. Tang, F. Destrempes, S. Kazemirad, J. Garcia-Duitama, B. N. Nguyen, and G. Cloutier, “Quantitative ultrasound
and machine learning for assessment of steatohepatitis in a rat model,” Eur. Radiol. 29(5), 2175–2184 (2019).

https://doi.org/10.1016/0030-4018(72)90187-3
https://doi.org/10.1007/BF00884230
https://doi.org/10.1007/BF00883551
https://doi.org/10.1364/JOSA.66.001145
https://doi.org/10.1364/JOSA.66.001316
https://doi.org/10.1109/T-SU.1978.30978
https://doi.org/10.1016/S0167-8655(02)00173-3
https://doi.org/10.1016/S0167-8655(02)00173-3
https://doi.org/10.1109/T-SU.1983.31404
https://doi.org/10.1109/T-SU.1983.31404
https://doi.org/10.1177/016173468500700204
https://doi.org/10.1121/1.419738
https://doi.org/10.1364/JOSAA.4.001764
https://doi.org/10.1364/JOSAA.4.001764
https://doi.org/10.1109/58.9332
https://doi.org/10.1109/58.9332
https://doi.org/10.1177/016173469501700401
https://doi.org/10.1117/12.7973900
https://doi.org/10.1109/58.971725
https://doi.org/10.1109/58.971725
https://doi.org/10.1109/TUFFC.2003.1193628
https://doi.org/10.1016/j.ultrasmedbio.2018.03.002
https://doi.org/10.1109/58.775652
https://doi.org/10.1177/016173468801000201
https://doi.org/10.1177/016173468801000201
https://doi.org/10.1016/S0041-624X(02)00104-X
https://doi.org/10.1016/j.ultrasmedbio.2010.04.001
https://doi.org/10.1007/s00330-018-5915-z


Research Article Vol. 13, No. 4 / 1 Apr 2022 / Biomedical Optics Express 2345

31. R. Hu, R. Singla, F. Deeba, and R. N. Rohling, “Acoustic shadow detection: study and statistics of B-mode and
radiofrequency data,” Ultrasound Med Biol 45(8), 2248–2257 (2019).

32. T. K. Stanton, W. Lee, and K. Baik, “Echo statistics associated with discrete scatterers: A tutorial on physics-based
methods,” J. Acoust. Soc. Am. 144(6), 3124–3171 (2018).

33. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.
25(8), 545–547 (2000).

34. P. Michael, G. Erich, A. L. Rainer, F. Adolf Friedrich, and K. H. Christoph, “Speckle reduction in optical coherence
tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).

35. O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de la Zerda, “Speckle-modulating
optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).

36. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt.
Soc. Am. A 22(4), 593–596 (2005).

37. M. Almasian, T. G. van Leeuwen, and D. J. Faber, “OCT amplitude and speckle statistics of discrete random media,”
Sci. Rep. 7(1), 14873 (2017).

38. A. Weatherbee, M. Sugita, K. Bizheva, I. Popov, and A. Vitkin, “Probability density function formalism for optical
coherence tomography signal analysis: a controlled phantom study,” Opt. Lett. 41(12), 2727–2730 (2016).

39. A. A. Lindenmaier, L. Conroy, G. Farhat, R. S. DaCosta, C. Flueraru, and I. A. Vitkin, “Texture analysis of optical
coherence tomography speckle for characterizing biological tissues in vivo,” Opt. Lett. 38(8), 1280–1282 (2013).

40. M. Y. Kirillin, G. Farhat, E. A. Sergeeva, M. C. Kolios, and A. Vitkin, “Speckle statistics in OCT images: Monte
carlo simulations and experimental studies,” Opt. Lett. 39(12), 3472–3475 (2014).

41. M. Niemczyk and D. R. Iskander, “Statistical analysis of corneal OCT speckle: a non-parametric approach,” Biomed.
Opt. Express 12(10), 6407–6421 (2021).

42. K. J. Parker, “The first order statistics of backscatter from the fractal branching vasculature,” J. Acoust. Soc. Am.
146(5), 3318–3326 (2019).

43. K. J. Parker, “Shapes and distributions of soft tissue scatterers,” Phys. Med. Biol. 64(17), 175022 (2019).
44. K. J. Parker, J. J. Carroll-Nellenback, and R. W. Wood, “The 3D spatial autocorrelation of the branching fractal

vasculature,” Acoustics 1(2), 369–381 (2019).
45. K. J. Parker and S. S. Poul, “Burr, Lomax, Pareto, and logistic distributions from ultrasound speckle,” Ultrason.

Imaging 42(4-5), 203–212 (2020).
46. I. W. Burr, “Cumulative frequency functions,” Ann. Math. Statist. 13(2), 215–232 (1942).
47. T. Vicsek, Fractal Growth Phenomena (World Scientific, 1992), 2nd ed.
48. B. B. Mandelbrot, Fractals : Form, Chance, and Dimension (W.H. Freeman, 1977).
49. J. J. Carroll-Nellenback, R. J. White, R. W. Wood, and K. J. Parker, “Liver backscatter and the hepatic vasculature’s

autocorrelation function,” Acoustics 2(1), 3–12 (2020).
50. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill series in systems science

(McGraw-Hill, 1965).
51. M. H. Tahir, G. M. Cordeiro, M. Mansoor, and M. Zubair, “The Weibull-Lomax distribution: properties and

applications,” Hacet J. Math. Stat. 44(14), 1 (2014).
52. N. Balakrishnan, Handbook of the Logistic Distribution, Statistics, textbooks and monographs (Dekker, New York,

1992).
53. S. Nadarajah, “Exponentiated Pareto distributions,” Statistics 39(3), 255–260 (2005).
54. S. Nadarajah and M. M. Ali, “Pareto random variables for hydrological modeling,” Water Resour. Man. 22(10),

1381–1393 (2008).
55. S. Nadarajah, “Exact distribution of the product of m gamma and n Pareto random variables,” J. Comput. Appl. Math.

235(15), 4496–4512 (2011).
56. Q. H. Nguyen and C. Robert, “Series expansions for sums of independent Pareto random variables,” (2013).
57. W. Abu-Dayyeh, A. Assrhani, and K. Ibrahim, “Estimation of the shape and scale parameters of Pareto distribution

using ranked set sampling,” Stat. Papers 54(1), 207–225 (2013).
58. G. R. Ge, J. P. Rolland, and K. J. Parker, “Speckle statistics of biological tissues in optical coherence tomography,”

Biomed. Opt. Express 12(7), 4179–4191 (2021).
59. L. Rayleigh, “XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase,” The

London, Edinburgh, Dublin Philos. Mag. J. Sci. 10(60), 73–78 (1880).
60. D. Middleton, An Introduction to Statistical Communication Theory, International series in pure and applied physics

(McGraw-Hill, 1960).
61. E. Hysi, M. N. Fadhel, M. J. Moore, J. Zalev, E. M. Strohm, and M. C. Kolios, “Insights into photoacoustic speckle

and applications in tumor characterization,” Photoacoustics 14, 37–48 (2019).
62. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “A model for simulating

speckle-pattern evolution based on close to reality procedures used in spectral-domain OCT,” Laser Phys. Lett.
11(10), 105601 (2014).

https://doi.org/10.1016/j.ultrasmedbio.2019.04.001
https://doi.org/10.1121/1.5052255
https://doi.org/10.1364/OL.25.000545
https://doi.org/10.1117/1.1578087
https://doi.org/10.1038/ncomms15845
https://doi.org/10.1364/JOSAA.22.000593
https://doi.org/10.1364/JOSAA.22.000593
https://doi.org/10.1038/s41598-017-14115-3
https://doi.org/10.1364/OL.41.002727
https://doi.org/10.1364/OL.38.001280
https://doi.org/10.1364/OL.39.003472
https://doi.org/10.1364/BOE.437937
https://doi.org/10.1364/BOE.437937
https://doi.org/10.1121/1.5132934
https://doi.org/10.1088/1361-6560/ab2485
https://doi.org/10.3390/acoustics1020020
https://doi.org/10.1177/0161734620930621
https://doi.org/10.1177/0161734620930621
https://doi.org/10.1214/aoms/1177731607
https://doi.org/10.3390/acoustics2010002
https://doi.org/10.15672/HJMS.2014147465
https://doi.org/10.1080/02331880500065488
https://doi.org/10.1007/s11269-007-9231-7
https://doi.org/10.1016/j.cam.2011.04.018
https://doi.org/10.1007/s00362-011-0420-3
https://doi.org/10.1364/BOE.422765
https://doi.org/10.1080/14786448008626893
https://doi.org/10.1080/14786448008626893
https://doi.org/10.1016/j.pacs.2019.02.002
https://doi.org/10.1088/1612-2011/11/10/105601

