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Abstract
Major topics inmedical ultrasound rest on the physics of wave propagation through tissue. These
include fundamental treatments of backscatter, speed of sound, attenuation, and speckle formation.
Each topic has developed its own rich history, lexicography, and particular treatments. However, there
is ample evidence to suggest that power law relations are operating at a fundamental level in all the
basic phenomena related tomedical ultrasound. This review paper develops, from literature over the
past 60 years, the accumulating theoretical basis and experimental evidence that point to power law
behaviors underlying themost important tissue-wave interactions in ultrasound and in shearwaves
which are now employed in elastography. The common framework of power laws can be useful as a
coherent overview of topics, and as ameans for improved tissue characterization.

1. Introduction

Medical ultrasound rests on a robust synthesis of disciplines including acoustics, biophysics,fields andwaves,
and clinicalmedicine. As such, themajor subtopics inmedical ultrasound, including backscatter, attenuation,
and speed of sound in soft tissues, can appear as disconnected subfields, eachwith its own set of principles and
grammatical rules. This is amplified by the rich history associatedwith each topic, augmented by close parallels
with historical developments in optics, radar, and sonar. For example, in August of 1880, Lord Rayleigh
published an influential paper on themathematics of the sumof randomphases which still applies to speckle
from awide variety of systems including ultrasound and laser imaging (Rayleigh 1880, 1897, 1918a, b).
Rayleigh’s pioneering work led to the definitive early textbooks on sound (Rayleigh 1945a, b), and these along
with his study of electromagnetic waves spurredmany later developments in scattering. Similar paths can be
charted for eachmajor subtopic inmedical ultrasound. The proliferation of subtopics increased dramatically
with the dawn of tissue characterization beginning in the 1970swhen digital recording instruments and
computer capabilitiesmade possible the goal of differentiating subtle underlying properties of echoes. A variety
ofmodelswere introduced to provide a rationale for echoes from tissues, alongwith a proliferation of parameters
to be estimated, hopefully useful as sensitivemeasures of normal versus diseased conditions. In some areas a
dominant paradigm emerged by subtopic. For example, in shear wave propagationmany researchers utilize a
Kelvin–Voigtmodel of tissue rheology. In backscatter,many apply spherical (ormodified spherical) theories to
model echoes from cells. In speckle studies,many rely on the Rayleigh distribution (1880) or its close relatives
developed later in radar or sonar studies. The net result of all this for new graduate students and practitioners in
ultrasound is a set of special topics thatmay seemunrelated in theory yetmust be jointly considered in practice.
This is an emerging issue for clinicians aswell sincemodern ultrasound scanners are now able to estimatemore
parameters with a proliferation of units, techniques, and interpretations.

Perhaps there is an underlying framework that can be utilized to everyone’s advantage and can bring a sense
of commonality to themajor subtopics of waves in tissues. The hypothesis set forth herein is that power laws are
fundamental tomedical ultrasound, operating at a deep level in each subfield. Once understood in this framework,
the task of tissue characterizationmay also be simplifiedwithmore interconnections between subtopics and
parameters.
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This review paper highlights key references related to power laws,first as a general topic prevalent in the
physical and social worlds, then as specific historical evidence in the primary subtopics of: backscatter,
attenuation, speed of sound, speckle, shear wave speed, and shearwave attenuation.Due to constraints on length
and in the interest of brevity, we do not review the extensive literature pertaining to each of the dominant
paradigms, instead focusing on the collected evidence supporting the power law hypothesis.

2. Theory and evidence

2.1. The prevalence of power laws in the physical and technological world
At ahigh level of overview, an important consideration is that power laws appear frequently indifferentfields, from
astronomy tobiology tonetwork theory.Wedefine apower lawas any relationshipbetween ameasuredparameter
Pm and an independent variable raised to apower, for example,Pm=f aorPm=1/f awhere f is frequency inour later
examples and a is the power lawparameter or exponent.Close relatives include asymptotic power laws, for example
Pm=1/ (1+f )a, which avoids a singularity at the origin, andPm=P0+f a, which allows for a specified constant
valueP0when the independent variable approaches zero.An important property of power laws is that they are evident
on log–log plots, i.e. in aplot of log(Pm) versus log( f ), the simple relation forms a straight linewith slopeofa. In a
major reviewpaper byNewman (2005), numerous examples are givenof a surprising rangeofmulti-scale
phenomena that followapower law. From thephysicalworld this includes: the size distributionof craters of the
Moon, thedistributionof solar spots, anddistributions of rainfall events and earthquakes. In thehumanworld,
power laws also appear in a variety of important areas including incomedistributionswithin a country, and the
popularity of internet sites.All of these canbe thoughtof as commondistributionswhere there are only a few large-
scale itemsor events, interspersedwithmanymore smaller scale items.This is distinctly different from theotherwell
known ‘bell curve’or ‘normal’orGaussiandistribution tending towards ameanvalue.Thepower lawdistribution is
also related to anumber ofwell-referencedphenomenaknownby theParetoprinciple, the 80/20 rule, andZipf’s law
across economics, business, and actuarialfields (Newman2005).

2.2. Power laws in tissue structures
Soft tissues are comprised ofmultiscale features, from subcellular organelles tomillimeter scale and centimeter
scale compositions. An example of themultiscale structures specific to tendons is given infigure 1, however for
each organ a similar diagram could be constructed, from subcellular structures tomacroscopically observable
features.

Many structures within the body, particularly the vascular tree and bronchial trees, have been characterized
as fractal structures, which aremultiscale, spacefilling, and self-similar over awide range of sizes
(Mandelbrot 1977, Bassingthwaighte andBever 1991, Glenny et al 1991). These fractal structures’
autocorrelation functions are described by power laws (Vicsek, 1992, Carroll-Nellenback et al 2020). Thus, it

Figure 1.Hierarchy of structure of a tendon according toKastelic et al (1978). Evidences are gathered from x-ray, electronmicroscopy,
scanning electronmicroscopy, and opticalmicroscopy (Kastelic et al 1978). Usedwith permission fromTaylor& Francis.
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should not be surprising that power law relations would propagate into keymathematicalmodels for tissue-
ultrasound interactions. Physically, this is consistent with the intuitive idea that there aremany small
components within organs and cells that influencewave propagationwithin tissues, alongwith fewer larger
components that also influence thewave propagation, leading to amultiscale phenomenon. The power law
models for specific parameters are described in the next sections and summarized in table 1. These apply
generally to soft vascularized tissues within typical imaging frequencies (2–20MHz) and elastographic shear
wave frequencies (50–500Hz) and are not intended (without further considerations) to apply to highly
anisotropic structures such as the tendon,muscle, and arteries or extrapolations to ultra-high or -low frequency
bands. The references supporting the values and forms shown in table 1 are given by subtopic in following
sections 2.3–2.8.

For a complete picture, it shouldbenoted that there has been a richdevelopment ofmodels related toultrasound
propagation in tissues including scattering, attenuation, and speckle that arenot tied explicitly topower laws. These
includeChivers (1977), Burckhardt (1978), Lizzi et al (1983), JakemanandTough (1987), Insana et al (1990), Chen
et al (1994), Chen et al (1997), Shankar (2000),Ng et al (2006),Destrempes andCloutier (2010, 2021),Destrempes
et al (2016),Oelze andMamou (2016). These have been found tomatch experimental results in anumber of settings.
However, the following sections 2.3–2.8will focuson themodels and experimental evidence tied explicitly topower
lawbehaviors.

2.3. Power laws in ultrasound backscatter
Ausefulmodel of backscatter versus frequency f , supported by theory and experiments, is given by:

s =f B f , 1b
1 1( ) ( )

whereσ is the differential cross sectional backscatterwithunits of 1/Sr-cm, andB1 andb1 are the amplitude and
power law coefficient, respectively. In theory, itwas shownbyBamber (1979) that under anumber of differentmodels
for randomscattering autocorrelation functions, backscatterwouldhave apower lawdependency (at least over some
limited frequencybandwidth), and the coefficient b could approach4 at longwavelengths (Rayleigh scattering).Waag
et al (1983)demonstrated the tight linkbetween tissue autocorrelation structures (including those inferred from
histology slides) and the resulting ultrasound scattering behavior.

Later, Javanaud (1989) explicitly considered a fractal distribution for scatterers in tissues, and showed that a
power law dependence on frequency as the expected result fromBorn scattering formulations. Campell and
Waag (1984) demonstrated in theory and experiment that a coefficient of b1=1.4was characteristic for calf
liver in the frequency range of 3–7MHz that is commonly used in abdominal imaging of humans. Other
researchers reported similar power law trends (Nicholas 1982, Landini et al 1987,Wear et al 1989, Anderson et al
2001,Nam et al 2011).

Recently, by carefully considering the fractal branching vasculature as the primary source of weak (Born
approximation) scatterers within the liver illustrated infigure 2, we have been able to experimentally determine
the autocorrelation function as a power law and theoretically predict the power law backscatter relationship
(Parker et al 2019a, Parker, 2019a, b, Carroll-Nellenback et al 2020). A fundamental relationship underlying all
of these is that for fractal structures, the spatial autocorrelation function is a power law (Vicsek, 1992). Since
backscatter can be related to the autocorrelation function of weak random inhomogeneities (Waag et al 1983,
Morse and Ingard 1987), when this is introduced into scattering equations these also produce a power law.

When specific fractal cylindricalmodels are evaluated, the backscatter versus frequency exhibits a power law
similar to the data collected byCampbell andWaag for bovine liver, as shown infigure 3.

Table 1.Power laws governingwaves in soft vascularized tissues.

Parameter Form Example

Backscatter s =f B f b
1 1( ) @b 1.41

Attenuation a a=f f a
0 1( ) @a 11 ,

/a = 0.05 Np cm MHz0 ‐
Speed of sound = +c f c c f a

0 1( )ℓ ℓ @ -c 1500 m s0
1

Speckle intensity = - +P I b I1 1 b( ) ( ) ( ) @b 3

Shear wave speed = +c f c c fs
a

0 1s s
s( )

OR

=c f c fs
a

1s
s( )

@a 0.1s

Shear wave attenuation a a=f fs s
as

0 1( ) @a 1s
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2.4. Power laws in ultrasound attenuation
Ausefulmodel of ultrasound (longitudinal wave) attenuation versus frequency, supported by theory and
experiments, is given by:

a a=f f , 2a
0 1( ) ( )

whereα is the attenuation per distance x of a planewave of frequency f, observed as a progressive loss of
amplitude during propagation as exp[−α · x]. In acoustic textbooks, attenuation as a function of frequency is
usually introduced in the simple formof a relaxation functionwith a single time constant (Pierce 1981, Kinsler
et al 1982, Blackstock 2000) tied to a specific chemical or thermalmechanism. For example, chapter 9 of
Blackstock (2000) discusses relaxation of boric acid andmagnesium sulfate in seawater, and general thermal
conduction effects, within the treatment of lossmechanisms. Relaxationmechanisms produce an attenuation
that has a power law of 2 at low frequencies (compared to 1/time constant). However, tissue components have
multiple relaxation functions over awide range of characteristic times and strengths. This was seen as early as
1959 byCarstensen and Schwan (1959) studying the absorption of hemoglobin solutions, and evenwithin this
particular biomaterial they concluded that ‘It has been possible to relate quantitatively themagnitude of the
absorption and dispersion through relaxation theory by assuming broad distribution of relaxation times.’The
power law coefficient that best fit their data (0.5 to 10MHz)was a1=1. An early consensus emerged that a
power lawfit near 1was adequate for attenuationmodels of soft tissues (Wells, 1975, Goss et al 1979, Kuc and
Schwartz 1979, Kuc 1980,Narayana andOphir 1983, Flax et al 1983, Parker andWaag 1983, Parker et al 1984).

Figure 2. Fractal branching vasculature (left) fromavascular cast, imagedwithmicro-CT, and amathematicalmodel using apower law
distributionof cylinders (right) for the studyof backscatter.Details of this approach canbe found inCarroll-Nellenback et al (2020).

Figure 3.Theoretical versus experimental backscatter versuswave number using values fromCampbell andWaag (1984) for ex vivo
calf liver (dots) as comparedwith theory. Solid lines are, fromupper to lower: Case 1,fluid-filled fractal cylinders as weak scatterers;
Case 4, fractal cylinders with amodifiedGaussian radial shape; Case 2, fractal cylinders with a parabolic radial shape (Parker 2019b).
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At a deeper theoretical level, additional insight has been developed by consideration of thewave equation
with lossmechanisms, causality constraints, andmultiple relaxation functions leading to fractional derivatives.
These have been developed in recent decades by an impressive set of papers by Szabo (1994, 1995, 2003, Szabo
andWu2000), Holm (2019, Chen andHolm2003,Nasholm andHolm2011,Holm andNasholm 2014),
McGough (Kelly et al 2008, Kelly andMcGough 2009, Zhao andMcGough, 2018), Cobbold (Cobbold et al 2004,
Sushilov andCobbold 2003, 2004), andTreeby andCox (2010, 2011, 2014) . Their work leads to a conclusion
that the power law coefficient inmany tissues will be close to @a 1,1 with some variation related to the fractional
derivative ormultiple relaxation distribution governing the attenuatingmedium. For a deeper treatment, see
equation (18) ofHolm andNasholm (2014) for the low and intermediate frequency regime and the derivations
therein, and equation (5.66) inHolm (2019).

2.5. Power laws in speed of sound
Ausefulmodel of the speed of sound versus frequency, supported by theory and experiments, is given by:

= +c f c c f , 3a
0 1( ) ( )ℓ ℓ

where c0 is the low frequency speed and cℓ and aℓ are related to the dispersion. In general terms, the speed of
sound in a liquid like salt water (and soft tissues are comprised of a high percentage of water with salts and buffers
in solution) is determined by the bulk compressibility alongwith any lossmechanisms affecting thewave. The
low frequency bulkmodulus and acoustic speed of sound of salt water can bemeasured using sonar and other
techniques, and c0 is roughly 1500m s−1 depending on conditions including temperature and exact amounts of
salts and proteins in solution (Kinsler et al 1982). However, in tissuewithmultiple relaxationmechanisms
operating over awide range of time constants, a fractional derivativemodel becomes relevant and descriptive
and the dispersion term is a power law. For amore in-depth treatment see equation (19) ofHolm andNasholm
(2014) and equation (5.67) inHolm (2019) for the low and intermediate frequency regimes, and the derivations
leading to those results. The approximation for speed of sound in the low to intermediate frequency range
(relative to the reciprocal of the time constants of the relaxationmechanisms) is examined inmore detail in the
appendix, and some examples of ultrasound dispersion in tissues are given in Bhagat et al (1977) andMarutyan
et al (2006).

2.6. Power laws in ultrasound speckle
Ausefulmodel of the probability P of speckle intensity I, from tissue, supported by theory and experiments, is
given by:

=
-
+

P I
b

I

1

1
, 4

b
( )

( )
( )

for >b 1and >I 0, andwhere b is related to the underlying power law of the distribution ofmultiscale
scatterers within the tissue. This recent derivation (Parker 2019a, Parker and Poul 2020b, Parker and
Poul 2020a) rests on the presence of two sufficient conditions. First, there is assumed amultiscale distribution of
scatterers following a generic power law distribution (few large scatterers,many small ones). Second, there is
assumed to be a linear increase in echo intensity from the scatterers as a function of size, at least above some
minimum.Once these conditions are satisfied, a simple probability transformation results in the classic Burr
distribution for the speckle amplitude, and amodified power law, equation (4), for speckle intensity of the raw
(uncompressed) echoes, as illustrated infigure 4.

Figure 4. Speckle patterns in a normal animal liver. (a)B-scanwith selected region of interest. (b)Histogramof speckle intensity
plotted on a linear scale. (c)Histogramplotted on a log–log scale. The solid red line is the theoreticalfit to the asymptotic power law
known as the Lomax distribution shown in table 1.
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2.7. Power laws in shearwave speed
Ausefulmodel of the shear wave speed versus frequency, supported by theory and experiments, is given by:

= +c f c c f , 5s
a

0 1s s
s( ) ( )

or inmany cases simply:

=c f c f , 6s
a

1s
s( ) ( )

where c0s
is the low frequency speed and c1s

and as capture the dispersion. In the case of shear wave propagation
through tissue, the appropriate theory comes from consideration of transverse waves in a viscoelasticmaterial. A
key parameter is the shearmodulus alongwith lossmechanisms associatedwith viscosity. Of themanymodels
available, the Kelvin–Voigt fractional derivative (KVFD)model captures themultiple relaxation nature of
multiscale responses of tissue in shear (Koeller 1984, Bagley andTorvik 1986, Zhang et al 2007, Parker et al
2019b). The phase velocity of shear waves is directly related to the square root of the shearmodulus, so if the
shearmodulus is governed by a fractional derivative (power law), then so is the shear wave speed, albeit with a
power law reduced by½due to the square root relationship between the shearmodulus and phase velocity
(Parker et al 2018a) andwith further details in the appendix. An example of shear wave dispersion is shown in
figure 5.

2.8. Power laws in shearwave attenuation
Ausefulmodel of shear wave attenuation versus frequency, supported by theory and experiments, is given by:

a a=f f , 7s s
as

0
1( ) ( )

where as is the attenuation coefficient, and as0
and as1

form the power law dependence. Analogous to the
discussion and references given in sections 2.4 and 2.7, if the shearmodulus has real and imaginary power law
dependence on frequency (consistent with a fractional derivativemodel such as theKVFDmodel), then the
attenuationwill also have a power law dependence, close to unity for soft tissues such as the liver (Parker et al
2015,Nenadic et al 2017, Parker et al 2018b, Sharma et al 2019).

2.9.Diagnostic value of power lawparameters
Measured values of ultrasound attenuation, backscatter, and speed of sound have been of interest since the
early days of tissue characterization (Goss et al 1978, Linzer 1979, Bamber andHill 1981). Thus, the power
law parameters in table 1 specific to any tissue or organ will vary with different pathologies and conditions,
hence they are important quantities for diagnostic purposes. However, there are over ten of these in table 1
and some scanners could estimate additional parameters from contrast studies, nonlinear behaviors, and
anisotropicmeasures. Assuming these can bemeasured accurately and are independent of system settings
and overlying tissues, the net result is a potentially large set of numbers for a clinician to consider along with

Figure 5. Shear wave speed cs( f ) data extracted frombovine liver samples, including estimates derived from crawlingwaves (CWS),
single tracking line shearwave estimators (STL), and curve-fit based on stress relaxation results (MM). The nearly linear (on log–log
scale) combined results are consistent with the concept of power law behavior (Parker et al 2019b).
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the traditional B-scan information. To address this realty, some specific approaches have been recently
proposed. First, theH-scan analysis estimates the backscatter power law transfer function and attenuation
usingmatched filters (Parker and Baek 2020). Secondly, a means of combining all available information in a
multiparametric space, and then simplifying the result for display purposes has been developed and is
termed disease-specific imaging (DSI) (Baek and Parker 2021). The key idea behindDSI is that any set of
parameters listed in table 1 along with other availablemeasures will tend to cluster inmultidimensional
space for a normal organ such as the liver. Furthermore, major disease categories exhibit unique, separable
clusters. In this framework any new patient’s measures can be compared with known clusters by applying a
mathematical measure of closeness inmultidimensional (multiparametric) space. This result can be
converted into a single metric or a unique, disease-specific color overlay representing the best match of the
new patient’s data to the closest known cluster of disease states, as shown in figure 6. Thus, a clinician using
an advanced ultrasound scanner does not need tomemorize the physics and normal values associated with
backscatter, speed of sound, and so forth. Instead, the DSI analysis inmultiparametric space will identify the
closest likely match, visually and quantitatively.

3.Discussion and conclusion

Anumber of developments in the past 60+years have pointed to power law relations in themajor phenomena
that form the elements ofmedical imaging. These appear to emerge out of the nature of soft tissue as a
complicatedmultiscale structure withmultiple levels of influence on propagatingwaves. It seems that once a
power law is introduced into a tissuemodel, be it scattering or attenuation or others, the power law propagates
through the relevant equations and thenwill be evident in the properties of echoes from soft tissues.Within this
framework the task of tissue characterization immediately turns to the estimation of key parameters listed in
table 1.

Figure 6.Disease-specific imaging. (a)Three features of formal and diseased liver tissues were extracted byH-scan, attenuation, and
B-scan analyses, generating the components (%blue, a, IdB), respectively. The coordinate represents a normalized (H,A,B)=(%
blue, a, IdB)—(50,0.5,−15) for convenience, representing changes fromnormal liver (50%, 0.5 dBMHz−1 cm−1,−15 dB). Linear
lines showdisease progression pathways fromnormal to end time point causing death. Allmeasured features of this studywere
projected onto their diseases’ pathway, showing scatter plots. The end points causing death are denoted using the symbol ‘×’. Then the
distance between the origin and any newmeasurement can be applied as color intensity,meaning the greater values representmore
severe disease. The support vectormachine classifies liver states, and assigns colors of yellow and green for steatosis and fibrosis,
respectively. Then the colors are overlaid on B-scan (b)–(c), (d)–(e). Normals in (b), (d) only showB-scanwithout colors. Late stages in
(c), (e)fill inwith saturated colors, representing extensive disease. (Baek and Parker 2021). Usedwith permission from JohnWiley and
Sons.
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Furthermore, there are additional parameters that can bemeasured and included in a comprehensive
assessment of a tissue. For example, in the classical ‘weak shock theory’ of nonlinear wave propagation, the nth
harmonic generated by shock formation of an initially pure tonewavewill have amplitude ~B n1n at long
distance and high shock parameter (Blackstock 1966). This is yet another power law relationshipwhich could be
incorporated into a framework that includes table 1.Others will likely be added asmore types ofmeasures are
developed.

It should be noted however that linear approximations to a function over small rangesmay sometimes be a
simple alternative to a power law formula, since the Taylor series approximation, consisting of a constant and a
first order term, is generally useful for well-behaved functions. So for example, equation (3) under a Taylor series
expansionwould have a constant termplus a first order term, f 1 rather than f .a1 This seems confusing, sincewe
then appear to have two different power law exponents describing one set ofmeasurements. However, this is
understandable within the confines of thefirst order Taylor series as a general approximation valid only over a
limited range, whereas the power lawfit incorporates an a priorimodel tied tomultiscale distributions and the
power law behavior they exhibit.

In any organ there is, of course, an upper and lower limit on the size of structures thatmight contribute to
scattering, so that implies an upper and lower limit on the range of applicability of equation (1), and similarly for
all of the power law parameters that are considered. These limits are notwell characterized and require further
study. For example, Herthum et al (2021)have estimated a possible sharp decrease in shear wave speed near 1Hz
in brain tissue, however the implications of this are notwell understood. The low frequency regions represent a
challenge for shear wave experimentation because thewavelengths become large compared to adult organs. At
high ultrasound frequencies (above 20MHz) and shearwave frequencies (above 500Hz) the penetration depths
due to increased attenuation can create practical limitations, so these upper limits will also require additional
study. Another limitation of the power law framework and forms of table 1 is that these are not intended for
monodispersed scatterers, periodic structures, or single relaxationmaterials.While these conditions do not
apply tomost soft tissues, they can be created in phantoms and patterned cell cultures, so alternativemodels
would be required for these special situations. In this context, it is important to note thatmodels of cells as
spheres can also exhibit power laws under certain conditions, especially given randomization of spacing or sizes.
For a particular example, themodeling of red blood cell clustering in Savery andCloutier (2001) introduced
aggregation parameters which could be linked to a fractal dimension of the ensemble. In certain cases, this can
lead to power law backscatter behavior overmany decades of frequencies used inmedical ultrasound. This
points to the possibility that other earliermodels, not explicitly concernedwith power laws,may exhibit power
law behaviors under particular regimes, however this remains for future research.

Ultimately, it is hoped that a power law frameworkmight simplify the overview of themajor subtopics in
medical ultrasound. Furthermore, the power law framework can focus tissue characterization on key
parameters. These parametersmay be ultimately integrated into an improved diagnostic classification by
methods such as themultiparametric DSI, however additional work is required to assess the full scope and
accuracy of this approach.
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Appendix

Howare the power law relations for wave speed and attenuation generated?One straightforward approach
begins with the general equations forwave propagation, intowhich the specific behavior of themedium, for
example aKVFDmodel, is inserted. As an example of this approach, startingwith the complex exponential
representation of a planewave at frequency w, themonochromatic wave equation for a disturbance traveling in
the+x direction is:

= w- -u x Ae , 8j kx t( ) ( )( )

where u(x) is displacement,A is the amplitude, j is the imaginary unit, and k is thewavenumber. Furthermore,
w

=k
c

9
s

( )

8
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and

r r
= @c

G E

3
, 10s ( )

where cs is the shear wave speed, ρ is density,G the shearmodulus, and E the Young’smodulus, with the
approximationG=E / 3 valid for nearly incompressiblematerials.More details can be found in chapter 5 of
Graff (1975), or reviewed for elastography in Parker et al (2011). In this purely elastic, lossless propagation, there
is only one velocity cs for all frequencies and no attenuation.

However, when some lossmechanisms are present, the speed c changes with frequency (called ‘dispersion’).
In this case, the solution to the lossywave equation still resembles equation (8), but now k is complex: its real
component is related to /w cp where cp is the phase velocity of the shear wave (which is dependent on frequency),
and the imaginary part of k defines an exponential decaywith distance.We can introduce this in a general way by
defining a complex, frequency-dependent shearmodulus (Lakes 1999, Zhang andHolm2016) for thematerial
or tissue:

* w w w= +G G jG , 11d i( ) ( ( ) ( )) ( )

whereG* is the complexmodulus,Gd is the dynamicmodulus, andGi is the lossmodulus. Introducing this into
the formof equations (8)–(10), thewave number is nowwritten as:

w
w w

r

b a
w

a=
+

= - = -k
G jG

j
c

j , 12
d i p( ) ( )

( )

and thewave propagation nowhas the form:

= a w b- -u x Ae e . 13x j t x( ) ( )( )

Working through the real and imaginary parts of equation (12) and denoting

w w= +G G G , 14d i
2 2∣ ∣ ( ) ( ) ( )

the result for the phase velocity as a function of frequency is:

r
w

= +
-

⎜ ⎟
⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

c
G G

G

1

2
1 , 15p

d
1 2

∣ ∣ ( )
∣ ∣

( )

and the attenuation coefficient includes a leading termdirectly proportional to the first power of frequency:

a w
r w

= -⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥G

G

G

1

2
1 . 16d

1 2

∣ ∣
( )

∣ ∣
( )

The above equations are all general; they are formulated frombasic relationships. Particular forms of these
depend on themodel chosen forG*(ω), and examples from some simple tissuemodels can be found in
Carstensen and Parker (2014). However, in thismanuscript, we are concernedwith power law relations and so as
an example, the specific rheological KVFDmodel can be used forG(ω) and entered into the above equations for c
andα:

* w w= +G G G i . 17a
0 1( ) ( ) ( )

The result is somewhat complicated because of the square root of the real and imaginary parts ofG*, but
simplifies for low frequencies and higher frequencies, whereG0 is dominant, or negligible, respectively.We
believe that for shear waves around 100Hz in elastography, theG0 termwill be negligible (Zhang et al 2007), and
the terms simplify to:

w=c c 18p 1
a
2 ( )

and

a
w p

=
-

⎛
⎝

⎞
⎠c

a

8
, 19

a1
2

1

( )
( )

where c1 is the phase velocitymeasured atω=1 rad s−1, and a small value of a is assumed in equation (19).
This is consistent with equations (5.66) and (5.67) inHolm (2019) for the intermediate frequencies. In any

case, we can observe that the square root operator onG plays an important role in the power law observed by
introducing a factor of½ in the speed and attenuation exponents, i.e. the power a in the shearmodulus becomes
a/2 in the speed and attenuation equations.
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