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Abstract

Breast ultrasound provides a first-line evaluation for breast masses, but the majority of the

world lacks access to any form of diagnostic imaging. In this pilot study, we assessed the

combination of artificial intelligence (Samsung S-Detect for Breast) with volume sweep

imaging (VSI) ultrasound scans to evaluate the possibility of inexpensive, fully automated

breast ultrasound acquisition and preliminary interpretation without an experienced sonog-

rapher or radiologist. This study was conducted using examinations from a curated data set

from a previously published clinical study of breast VSI. Examinations in this data set were

obtained by medical students without prior ultrasound experience who performed VSI using

a portable Butterfly iQ ultrasound probe. Standard of care ultrasound exams were per-

formed concurrently by an experienced sonographer using a high-end ultrasound machine.

Expert-selected VSI images and standard of care images were input into S-Detect which

output mass features and classification as “possibly benign” and “possibly malignant.” Sub-

sequent comparison of the S-Detect VSI report was made between 1) the standard of care

ultrasound report by an expert radiologist, 2) the standard of care ultrasound S-Detect

report, 3) the VSI report by an expert radiologist, and 4) the pathological diagnosis. There

were 115 masses analyzed by S-Detect from the curated data set. There was substantial

agreement of the S-Detect interpretation of VSI among cancers, cysts, fibroadenomas, and

lipomas to the expert standard of care ultrasound report (Cohen’s κ = 0.73 (0.57–0.9 95%

CI), p<0.0001), the standard of care ultrasound S-Detect interpretation (Cohen’s κ = 0.79

(0.65–0.94 95% CI), p<0.0001), the expert VSI ultrasound report (Cohen’s κ = 0.73 (0.57–

0.9 95% CI), p<0.0001), and the pathological diagnosis (Cohen’s κ = 0.80 (0.64–0.95 95%

CI), p<0.0001). All pathologically proven cancers (n = 20) were designated as “possibly

malignant” by S-Detect with a sensitivity of 100% and specificity of 86%. Integration of artifi-

cial intelligence and VSI could allow both acquisition and interpretation of ultrasound images

without a sonographer and radiologist. This approach holds potential for increasing access
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to ultrasound imaging and therefore improving outcomes related to breast cancer in low-

and middle- income countries.

Author summary

Breast cancer poses an urgent crisis in low- and middle-income countries, but the major-

ity of the world lacks access to medical imaging for assessment of the breast. The use of

volume sweep imaging (VSI) allows image acquisition of palpable breast lumps without

an experienced sonographer. Images of breast lumps from VSI acquisitions can be inter-

preted by existing artificial intelligence to allow automatic and rapid diagnosis in areas

without sonographers and radiologists. In this study, we fed expert-selected VSI images

obtained by medical students with no prior ultrasound experience into an artificial intelli-

gence (S-Detect) to test the potential for automatic diagnosis of palpable breast lumps. We

found high diagnostic accuracy demonstrating a strong proof of concept for the potential

of automatic diagnosis of palpable breast lumps without a radiologist or sonographer.

Integration of artificial intelligence and VSI could increase access to diagnostic imaging

around the world with the goal of improving global health.

Introduction

Breast cancer is increasingly recognized as an urgent public health crisis in low- and middle-

income countries (LMICs) secondary to a projected nearly 60% increase in both incidence and

mortality of breast cancer over the last 20 years [1]. In contrast, in populations with access to

screening mammography, there has been an observed decrease in breast cancer mortality [2–

4]. It has been estimated that the majority of the nearly 2 million new cases of breast cancer

every year will occur in LMICs [5]. The poor outcomes in LMICs owe, in part, to significant

delays in breast cancer diagnosis (sometimes over 400 days) resulting in advanced disease at

presentation [6]. Although diagnostic imaging is essential in the diagnosis of breast cancer, the

majority of people in the world are thought to lack access to any diagnostic imaging [7,8]. Pre-

sumably, increased access to diagnostic imaging would be a first step in decreasing delays to

diagnosis of breast cancer and improved outcomes.

Screening mammography is typically not an option in LIMCs for a variety of reasons

[9,10]. Breast ultrasound, however, is a portable and low-cost imaging modality ideal for use in

LMICs. In contradistinction to screening mammography which is performed on asymptom-

atic patients, ultrasound is typically used as a diagnostic technique to evaluate a patient pre-

senting with a symptom, such as a palpable lump. Ultrasound and mammography are

complementary imaging modalities each with their own strengths and weaknesses [11]. Since

screening is often not available in LMICs, most patients with cancer will present with a palpa-

ble lump which is amenable to examination with ultrasonography [12]. In general, ultrasound

is considered first-line evaluation for palpable breast abnormalities [13]. Despite its cost-effec-

tive and portable nature, ultrasound’s deployment has been limited by a lack of available ultra-

sound specialists for image acquisition and interpretation [8,14].

Volume sweep imaging (VSI) is an imaging technique that circumvents the problem of a

lack of trained sonographers via the use of a standardized imaging protocol based on sweeps of

the ultrasound probe over a target region in relation to external body landmarks [15]. VSI can

be learned in a few hours by individuals without prior ultrasound training making ultrasound
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image acquisition readily accessible [16,17]. VSI has been combined with teleultrasound with

encouraging clinical results for lung, obstetric, thyroid, and right upper quadrant scanning

indications in Peru [15,18–21]. Clinical studies of breast and lung VSI have also shown prom-

ising results [22,23]. In the study of breast VSI, there was 97.6% agreement between VSI and

standard of care ultrasound on mass presence and 87% agreement on BI-RADS assessments

[22]. These results suggest that breast VSI could be deployed to rural areas to increase access to

breast imaging. Nonetheless, a lack of interpreting providers and constraints on internet access

bottleneck the impact of VSI as a radiologist is still needed to interpret the images.

Automatic interpretation of VSI with artificial intelligence would allow the performance of

ultrasound imaging without any sonographer or radiologist. This has already been proposed

and successfully tested for obstetric indications [24,25]. Such an automated system for breast

scanning would offer a significant opportunity to increase access to breast imaging around the

world. S-Detect (Samsung Medison, Seoul, Korea) is an artificial intelligence system developed

as a tool for diagnostic analysis of breast masses [26]. It employs convolutional neural net-

works to arrive at a suggested diagnosis for a mass from a radiologist-detected lesion. S-Detect

has shown excellent results in clinical testing (sensitivity of 85%, specificity of 95.4%, and diag-

nostic accuracy of 92.1%) highlighting its potential application in clinical practice [27]. Results

consistently suggest S-Detect can perform at the same level or better than radiologists [27–32].

Therefore, this system would have significant potential to increase access to accurate diagnos-

tic interpretations in the absence of a radiologist.

In this pilot study, we tested the performance of S-Detect on VSI ultrasound imaging per-

formed by medical students without prior ultrasound experience with a portable ultrasound

probe. The images tested were those obtained from the prior clinical study of breast VSI [22].

The goal of this study was to lay the theoretical groundwork for a fully automated system

incorporating VSI and S-Detect. Comparison of the S-Detect VSI report was made to 1) the

standard of care ultrasound report by an expert radiologist, 2) the standard of care ultrasound

S-Detect report, 3) the VSI report by an expert radiologist, and 4) the pathological diagnosis.

To our knowledge, S-Detect has never been previously tested on images obtained from a porta-

ble ultrasound device. Furthermore, previously, concerns had been raised regarding the use of

S-Detect in cases where a sonographer is inexperienced or the ultrasound imaging was subop-

timal, highlighting the importance of this investigation [26]. We hypothesized that S-Detect

results between VSI and standard of care ultrasound would be similar given our experience

with VSI and the literature surrounding S-Detect.

Results

There were 115 masses analyzed by S-Detect from the curated data set (n = 13 abscesses,

n = 20 cancers, n = 23 cysts, n = 6 fat necrosis, n = 24 fibroadenomas, n = 6 lipomas, n = 5 mis-

cellaneous diagnoses, n = 8 sebaceous cysts, and n = 10 unknown) [22]. Patient demographics

are seen in Table 1. Example S-Detect interpretations of a fibroadenoma, a cyst, and a cancer

are seen in Figs 1–3. Among cancers, cysts, fibroadenomas, and lipomas, there was 87.7%

agreement on diagnosis to both expert standard of care interpretation and expert VSI interpre-

tation (Cohen’s κ = 0.73 (0.57–0.9 95% CI), p<0.0001). Within these same mass categories,

there was 90.4% agreement on diagnosis between S-Detect interpretation of VSI and S-Detect

interpretation of standard of care imaging (Cohen’s κ = 0.79 (0.65–0.94 95% CI), p<0.0001)

and 90.5% agreement between the S-Detect VSI interpretation and the pathological diagnosis

(Cohen’s κ = 0.8 (0.64–0.95 95% CI), p<0.0001). Table 2 shows full diagnostic agreement

across different categories.
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Table 3 shows the sensitivity and specificity for malignancy in relation to the pathological

diagnosis. Among cancer, cysts, fibroadenomas, and lipomas, S-Detect interpretations of VSI

had 100% sensitivity and 86% specificity for cancer. Table 4 shows agreement of S-Detect

interpretation of mass characteristics of VSI in relation to S-Detect interpretation of standard

of care imaging, expert VSI interpretation, and expert standard of care interpretation among

cancers, cysts, fibroadenomas, and lipomas. In this analysis, there was greater than 80% agree-

ment across S-Detect interpretations of VSI and S-Detect interpretations of standard of care

imaging, expert VSI interpretation, and expert standard of care interpretation for mass orien-

tation, the combined analysis of mass shape, the combined analysis of mass margins, and the

Table 1. Subject demographics and mass classifications. Categorical variables are summarized as n (proportion

(95% CI)), while continuous variables are summarized as mean±standard deviation.

Metric Category Summary

Age (years) - 42.9±16.4

Sex Female n = 110/115 (95.7% (90.1–98.6%))

Male n = 5/115 (4.35% (1.43–9.85%))

Race African American n = 25/115 (21.7% (14.6–30.4%))

Asian American n = 4/115 (3.48% (0.956–8.67%))

Hispanic n = 9/115 (7.83% (3.64–14.3%))

White n = 75/115 (65.2% (55.8–73.9%))

American Indian or Alaskan Native n = 1/115 (0.87% (0.022–4.75%))

Other n = 1/115 (0.87% (0.022–4.75%))

Laterality Left breast n = 64/115 (55.7% (46.1–64.9%))

Right breast n = 51/115 (44.3% (35.1–53.9%))

Quadrant Upper outer n = 56/115 (48.7% (39.3–58.2%))

Lower outer n = 13/115 (11.3% (6.16–18.6%))

Upper inner n = 21/115 (18.3% (11.7–26.5%))

Lower inner n = 14/115 (12.2% (6.82–19.6%))

Retroareolar n = 10/115 (8.7% (4.25–15.4%))

BMI (kg/m2) - 29.8±8.24

How long has it been there? (days) - 614±1350

Palpable? Yes n = 115/115 (100% (96.8–100%))

Pain? Yes n = 58/115 (50.4% (41–59.9%))

Discharge? Yes n = 14/115 (12.2% (6.82–19.6%))

Fever? Yes n = 4/115 (3.48% (0.956–8.67%))

Trauma? Yes n = 5/115 (4.35% (1.43–9.85%))

Classification Abscess n = 13/115 (11.3% (6.16–18.6%))

Cancer n = 20/115 (17.4% (11–25.6%))

Cyst n = 23/115 (20% (13.1–28.5%))

Fat necrosis n = 6/115 (5.22% (1.94–11%))

Fibroadenoma n = 24/115 (20.9% (13.9–29.4%))

Lipoma n = 6/115 (5.22% (1.94–11%))

Miscellaneous n = 5/115 (4.35% (1.43–9.85%))

Sebaceous cyst n = 8/115 (6.96% (3.05–13.2%))

Unknown n = 10/115 (8.7% (4.25–15.4%))

Pathology Benign n = 74/115 (64.3% (54.9–73.1%))

Malignant n = 20/115 (17.4% (11–25.6%))

Indeterminate n = 21/115 (18.3% (11.7–26.5%))

Pathology proven? Yes n = 38/115 (33% (24.6–42.4%))

https://doi.org/10.1371/journal.pdig.0000148.t001
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combined analysis of mass echogenicity. S1 Table shows the full analysis of mass characteris-

tics agreement across different categories of masses.

Among pathologically proven cancers (n = 20), S-Detect rated all as “probably malignant”

on both standard of care imaging and VSI. Among pathologically proven fibroadenomas

Fig 1. S-Detect Interpretation of a Fibroadenoma on Standard of Care and VSI. B-mode ultrasound images of a fibroadenoma are shown with their

respective mass segmentations and S-Detect produced reports. The standard of care image was obtained by a certified expert breast sonographer using a

General Electric Logiq E10 ultrasound machine. The VSI image was obtained by a medical student without prior medical experience after less than 2 hours

of training on a portable Butterfly iQ ultrasound probe. S-Detect results between standard of care and VSI are identical apart from standard of care

echogenicity reported as isoechoic (a trivial difference). The S-Detect results for VSI were identical to expert interpretation of standard of care and VSI.

https://doi.org/10.1371/journal.pdig.0000148.g001
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(n = 8), there was 88% agreement with S-Detect interpretation of standard of care imaging

(n = 7/8) and 63% agreement with S-Detect interpretation of VSI (n = 5/8). Among the entire

category of masses classified as fibroadenoma either by pathology or imaging stability there

was 92% agreement with S-Detect interpretation of standard of care imaging (n = 22/24) and

88% agreement with S-Detect interpretation of VSI (n = 21/24). Among cysts, there was 78%

Fig 2. S-Detect Interpretation of a Cyst on Standard of Care and VSI. B-mode ultrasound images of a cyst are shown with their respective mass

segmentations and S-Detect produced reports. The standard of care image was obtained by a certified expert breast sonographer using a Philips Epiq 7G

ultrasound machine. The VSI image was obtained by a medical student without prior medical experience after less than 2 hours of training on a portable

Butterfly iQ ultrasound probe. S-Detect results between standard of care and VSI are identical. The S-Detect results were also identical to expert

interpretation of standard of care and VSI outside of mass shape which was called round on expert interpretation (a trivial difference).

https://doi.org/10.1371/journal.pdig.0000148.g002
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agreement with S-Detect interpretation of standard of care imaging (n = 18/23) and 87%

agreement with VSI S-Detect interpretation (n = 20/23).

Discussion

The results from our study showed high diagnostic accuracy of the S-Detect interpretation of

VSI in relation to expert radiologist interpretation of standard of care imaging, S-Detect

Fig 3. S-Detect Interpretation of Pathology Proven Invasive Ductal Carcinoma on Standard of Care and VSI. B-mode ultrasound

images of invasive ductal carcinoma are shown with their respective mass segmentations and S-Detect produced reports. The standard

of care image was obtained by a certified expert breast sonographer using a Philips Epiq 7G ultrasound machine. The VSI image was

obtained by a medical student without prior medical experience after less than 2 hours of training on a portable Butterfly iQ ultrasound

probe. S-Detect results between standard of care and VSI are similar with ultimate agreement on the “possibly malignant” interpretation.

The S-Detect results were also similar to expert interpretation of standard of care and VSI with ultimate agreement on the “possibly

malignant” characterization. The original BI-RADS assessment on both VSI and standard of care imaging expert interpretation was 4

(biopsy warranted). There was complete agreement across expert interpretation and S-Detect on microlobulated margins.

https://doi.org/10.1371/journal.pdig.0000148.g003
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interpretation of standard of care imaging, expert radiologist interpretation of VSI, and the

pathological diagnosis. The diagnostic accuracy of S-Detect was overall similar to prior pub-

lished studies, performing on par with mammography [27,33]. The high agreement observed

suggests the portable ultrasound image quality was not an obstacle to S-Detect interpretation.

Therefore, with further work packaging the systems together, we believe VSI could be incorpo-

rated with S-Detect to produce an ultrasound system that would require neither an experi-

enced sonographer nor interpreting radiologist to automatically and rapidly diagnose palpable

breast masses (Fig 4). Such a system would simply require a few hours of training on the VSI

protocol, a tablet equipped with the diagnostic software, and a portable ultrasound probe.

Given the urgency and challenges posed by breast cancer in LMICs, such a system could assist

in decreasing delays to diagnosis with the potential of improving outcomes. In many settings,

the sobering alternative to automatic diagnosis may be no imaging at all highlighting the

potential value of this approach.

S-Detect showed excellent diagnostic performance across cysts, fibroadenomas, lipomas,

and cancer. In all cases of malignancy, a rating of “possibly malignant” was produced which

Table 2. Agreement between S-Detect interpretation of malignancy on VSI, compared to other interpretations, sub-divided by the masses included in the analysis.

SOC = standard of care.

Masses Included Comparison Group Overall Agreement (%) Cohen’s kappa P-Value

All S-Detect SOC 79.1% (n = 91/115) 0.57 (0.42–0.72) p<0.0001

Expert SOC 73.9% (n = 85/115) 0.46 (0.29–0.62) p<0.0001

Expert VSI 75.7% (n = 87/115) 0.49 (0.33–0.66) p<0.0001

Pathological Diagnosis 75.5% (n = 71/94) 0.49 (0.3–0.67) p = 0.00044

All minus fat necrosis, abscess, and sebaceous cyst S-Detect SOC 87.5% (n = 77/88) 0.74 (0.59–0.88) p<0.0001

Expert SOC 84.1% (n = 74/88) 0.67 (0.51–0.83) p<0.0001

Expert VSI 85.2% (n = 75/88) 0.69 (0.54–0.85) p<0.0001

Pathological Diagnosis 84.3% (n = 59/70) 0.67 (0.49–0.85) p<0.0001

Cancers, cysts, fibroadenomas, and lipomas S-Detect SOC 90.4% (n = 66/73) 0.79 (0.65–0.94) p<0.0001

Expert SOC 87.7% (n = 64/73) 0.73 (0.57–0.9) p<0.0001

Expert VSI 87.7% (n = 64/73) 0.73 (0.57–0.9) p<0.0001

Pathological Diagnosis 90.5% (n = 57/63) 0.8 (0.64–0.95) p<0.0001

Fibroadenomas S-Detect SOC 87.5% (n = 21/24) 0.33 (-0.37–1) p = 0.13

Expert SOC 75% (n = 18/24) 0.27 (-0.23–0.78) p = 0.31

Expert VSI 75% (n = 18/24) 0.27 (-0.23–0.78) p = 0.31

Pathological Diagnosis 81.3% (n = 13/16) 0 (-1-1) p>0.99

Cancers S-Detect SOC 100% (n = 20/20) � -

Expert SOC 100% (n = 20/20) � -

Expert VSI 100% (n = 20/20) � -

Pathological Diagnosis 100% (n = 20/20) � -

Cysts S-Detect SOC 82.6% (n = 19/23) 0.4 (-0.13–0.93) p = 0.086

Expert SOC 87% (n = 20/23) 0 (-1.1–1.1) p>0.99

Expert VSI 87% (n = 20/23) 0 (-1.1–1.1) p>0.99

Pathological Diagnosis 86.4% (n = 19/22) 0 (-1.1–1.1) p>0.99

Lipomas S-Detect SOC 100% (n = 6/6) † -

Expert SOC 100% (n = 6/6) † -

Expert VSI 100% (n = 6/6) † -

Pathological Diagnosis 100% (n = 5/5) † -

� Cohen’s kappa is undefined because all were rated malignant by all methods.
† Cohen’s kappa is undefined because all were rated benign by all methods.

https://doi.org/10.1371/journal.pdig.0000148.t002
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would result in a patient being referred for higher care and biopsy. There were three cases in

which S-Detect referred to a cyst on VSI as “possibly malignant” which could be addressed in

future updates of the program. Analysis of the VSI cyst results showed that the VSI images of

those cysts likely did not have enough margin around the region of interest to allow accurate

detection as S-Detect needs surrounding breast parenchyma to make an accurate diagnosis.

After adding randomized noise around the cyst, benign results were able to be obtained in all

cases. Similarly, a few cases of cysts on standard of care imaging were also reported as malig-

nant. The standard of care cyst results were thought to relate to differences in the machines

used to train S-Detect and would require further training and modification of S-Detect to pro-

duce benign results.

Apart from these few cases, expert analysis suggested that all results of S-Detect on the VSI

exams were otherwise justifiable. In some cases, masses straddle the BI-RADS 3 or 4 categories

making biopsy or follow-up reasonable. Similarly, though a mass may return pathologically

benign, in many cases the suspicious features still warranted biopsy. The disagreements

observed in mass characteristics likely related to the known accepted large inter-reader differ-

ences in interpretation of breast imaging that have been previously documented [32,34,35].

Many of the disagreements on mass characteristics were thought to be trivial in nature (i.e.

calling a mass round or oval). Other disagreements were thought to relate to the S-Detect algo-

rithm’s performance on images from different ultrasound machines and/or general error in

expert interpretation.

These results suggest that this artificial intelligence is indeed ready to deploy in the near

future. Even conceding a few benign lesions being considered “possibly malignant,” the

authors believe the 100% detection of malignancy in this sample would easily negate any

Table 3. Sensitivity and specificity for masses based on pathological diagnosis. SOC = standard of care.

Masses Included Imaging

Modality

Interpreter Sensitivity Specificity PPV NPV Overall

Agreement (%)

Cohen’s

kappa

P-Value

All VSI Radiologist 100%

(n = 20/20)

79.7%

(n = 59/74)

57.1%

(n = 20/35)

100%

(n = 59/59)

84% (n = 79/94) 0.63 (0.45–

0.8)

p<0.0001

VSI S-Detect 100%

(n = 20/20)

68.9%

(n = 51/74)

46.5%

(n = 20/43)

100%

(n = 51/51)

75.5% (n = 71/

94)

0.49 (0.3–

0.67)

p = 0.00044

SOC Radiologist 100%

(n = 20/20)

75.7%

(n = 56/74)

52.6%

(n = 20/38)

100%

(n = 56/56)

80.9% (n = 76/

94)

0.57 (0.39–

0.75)

p<0.0001

SOC S-Detect 100%

(n = 20/20)

68.9%

(n = 51/74)

46.5%

(n = 20/43)

100%

(n = 51/51)

75.5% (n = 71/

94)

0.49 (0.3–

0.67)

p = 0.00044

All minus fat necrosis, abscess,

and sebaceous cyst

VSI Radiologist 100%

(n = 20/20)

80% (n = 40/

50)

66.7%

(n = 20/30)

100%

(n = 40/40)

85.7% (n = 60/

70)

0.7 (0.52–

0.87)

p<0.0001

VSI S-Detect 100%

(n = 20/20)

78% (n = 39/

50)

64.5%

(n = 20/31)

100%

(n = 39/39)

84.3% (n = 59/

70)

0.67 (0.49–

0.85)

p<0.0001

SOC Radiologist 100%

(n = 20/20)

76% (n = 38/

50)

62.5%

(n = 20/32)

100%

(n = 38/38)

82.9% (n = 58/

70)

0.64 (0.46–

0.83)

p<0.0001

SOC S-Detect 100%

(n = 20/20)

76% (n = 38/

50)

62.5%

(n = 20/32)

100%

(n = 38/38)

82.9% (n = 58/

70)

0.64 (0.46–

0.83)

p<0.0001

Cancers, cysts, fibroadenomas,

and lipomas

VSI Radiologist 100%

(n = 20/20)

88.4%

(n = 38/43)

80%

(n = 20/25)

100%

(n = 38/38)

92.1% (n = 58/

63)

0.83 (0.68–

0.97)

p<0.0001

VSI S-Detect 100%

(n = 20/20)

86% (n = 37/

43)

76.9%

(n = 20/26)

100%

(n = 37/37)

90.5% (n = 57/

63)

0.8 (0.64–

0.95)

p<0.0001

SOC Radiologist 100%

(n = 20/20)

83.7%

(n = 36/43)

74.1%

(n = 20/27)

100%

(n = 36/36)

88.9% (n = 56/

63)

0.77 (0.6–

0.93)

p<0.0001

SOC S-Detect 100%

(n = 20/20)

83.7%

(n = 36/43)

74.1%

(n = 20/27)

100%

(n = 36/36)

88.9% (n = 56/

63)

0.77 (0.6–

0.93)

p<0.0001

https://doi.org/10.1371/journal.pdig.0000148.t003
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additional healthcare costs and anxiety associated with the few scattered false positive results

which would be promptly reconciled on referral and/or biopsy. The false negative is the truly

worst outcome possible in this dynamic as it would result in delay to diagnosis and potentially

significant increased morbidity. In our sample, there were no cases of false negatives. Since

S-Detect is already very high performing, future updates to the program algorithm should only

increase its accuracy further.

The primary clinical advantage of this approach is facilitating increased access to ultra-

sound imaging which could decrease the often substantial delays to diagnosis of breast cancer

associated with advanced disease along with increased morbidity and mortality [6,36]. While

more than 70% of breast cancer cases present in stage 1 or 2 in high-income settings, it is esti-

mated that only 20–50% of breast cancer cases present in stage 1 or 2 in LMICs highlighting

the need to detect breast cancer earlier in these settings [37]. In cases of benign breast lesions,

the automatic diagnostic framework would allow reassurance and potentially save the patient

costs associated with workup including any associated travel expenses to a site with breast

imaging capacity.

Despite the high incidence and mortality of breast cancer in LMICs, only 5% of global

spending on cancer is currently allocated to those settings [38]. Automatic and rapid VSI

breast ultrasound acquisition and diagnosis could be one way to help bridge the gap until

advanced imaging services are more readily available. Advanced imaging services such as

mammography are faced with substantial challenges to implementation in lower-resource

Table 4. Agreement on mass characteristics between S-Detect interpretation of VSI, compared to other interpretations, sub-divided by the masses included in the

analysis. The combined mass shape analysis is between “round/oval” or “irregular.” The combined margin analysis is between “circumscribed” or “non-circumscribed.”

The combined echogenicity analysis is between “anechoic/hypoechoic/complex cystic or solid,” “isoechoic/hyperechoic,” or “heterogenous.” SOC = standard of care.

Masses Included Metric Comparison Group Overall Agreement (%) Cohens kappa P-Value

Cancers, cysts, fibroadenomas, and lipomas Mass Orientation S-Detect SOC 80.8% (n = 59/73) 0.45 (0.2–0.71) p = 0.0013

Expert SOC 87.7% (n = 64/73) 0.57 (0.3–0.83) p<0.0001

Expert VSI 84.9% (n = 62/73) 0.52 (0.26–0.78) p<0.0001

Mass Shape S-Detect SOC 76.7% (n = 56/73) 0.54 (0.34–0.73) p<0.0001

Expert SOC 60.3% (n = 44/73) 0.34 (0.15–0.52) p = 0.0015

Expert VSI 60.3% (n = 44/73) 0.32 (0.12–0.51) p = 0.0014

Mass Shape (combined) S-Detect SOC 86.3% (n = 63/73) 0.65 (0.44–0.85) p<0.0001

Expert SOC 78.1% (n = 57/73) 0.48 (0.25–0.7) p = 0.00039

Expert VSI 79.2% (n = 57/72) 0.48 (0.24–0.71) p = 0.00018

Mass Margins S-Detect SOC 63% (n = 46/73) 0.31 (0.1–0.5) p<0.0001

Expert SOC 64.4% (n = 47/73) 0.29 (0.075–0.51) p = 0.00031

Expert VSI 67.1% (n = 49/73) 0.35 (0.13–0.56) p<0.0001

Mass Margins (combined) S-Detect SOC 82.2% (n = 60/73) 0.61 (0.42–0.8) p<0.0001

Expert SOC 80.8% (n = 59/73) 0.56 (0.35–0.77) p<0.0001

Expert VSI 84.9% (n = 62/73) 0.65 (0.46–0.84) p<0.0001

Mass Echogenicity S-Detect SOC 56.9% (n = 41/72) 0.38 (0.21–0.54) p<0.0001

Expert SOC 57.5% (n = 42/73) 0.36 (0.19–0.53) p<0.0001

Expert VSI 57.5% (n = 42/73) 0.37 (0.2–0.54) p<0.0001

Mass Echogenicity (combined) S-Detect SOC 93.1% (n = 67/72) 0.64 (0.34–0.94) p<0.0001

Expert SOC 100% (n = 73/73) 1 (1–1) p<0.0001

Expert VSI 98.6% (n = 72/73) 0.9 (0.71–1.1) p<0.0001

Mass Posterior Acoustic Features S-Detect SOC 64.4% (n = 47/73) 0.47 (0.31–0.64) p<0.0001

Expert SOC 75.3% (n = 55/73) 0.59 (0.43–0.76) p<0.0001

Expert VSI 76.7% (n = 56/73) 0.62 (0.47–0.78) p<0.0001

https://doi.org/10.1371/journal.pdig.0000148.t004
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settings [9,10]. Therefore, cost-effective and sustainable solutions to increase imaging access in

LMICs should be considered [1,39–41]. Our proposed automated diagnostic framework (Fig

4) holds much potential in this regard, but from a public health perspective, studies will need

to be conducted how best to market this technology to the community and integrate it into

existing healthcare systems. Factors such as availability of biopsy services and surgical/onco-

logical services may somewhat limit the initial impact of deployment at this present time.

There is further work to be done in order to create and integrate an automatic diagnostic

framework for breast masses into clinical practice. S-Detect requires that a DICOM image be

input into the program. In this study, all of the VSI frames selected for interpretation by

S-Detect were chosen by an expert breast imager. This is a workflow and expertise restriction

Fig 4. Proposed Model for Integration of Breast VSI and Artificial Intelligence. Schematic demonstrating the integration of VSI and artificial intelligence.

In this model, a patient presenting with a palpable breast mass would be scanned by an individual with a few hours of ultrasound training using the VSI

protocol. Imaging acquisitions would be funneled into artificial intelligence software that outputs a diagnostic report. The diagnostic report would then be

available for the health center and patient. This would result in rapid and automated diagnosis without a radiologist or a sonographer.

https://doi.org/10.1371/journal.pdig.0000148.g004
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which may be eliminated in the near future by additional artificial intelligence systems trained

to automatically detect the mass within the VSI frame and input it into S-Detect. Also, in gen-

eral, artificial intelligence such as S-Detect could benefit from considering clinical parameters

such as age and family history of breast cancer [31]. We noted in this study that abscesses and

sebaceous cysts were suboptimally analyzed with S-Detect which is not surprising given that

the clinical history is crucial for an experienced breast imager to make an accurate diagnosis.

While it is true these cases are usually without clinical ambiguity negating the need for auto-

mated diagnosis, input of clinical history could favor a benign diagnosis if infectious symptom

are present. Similarly, the artificial intelligence could be upgraded to expand from simply call-

ing masses “possibly benign” or “possibly malignant.” It would be possible to have Breast

Imaging-Reporting and Data System (BI-RADS) assessments or a suspected diagnosis (i.e.

fibroadenoma or cyst) included in the final assessment.

Breast VSI in this form is currently limited to scanning of palpable abnormalities, not gen-

eral screening. Automated approaches to whole breast ultrasound screening have been previ-

ously described but are not generally cost-effective or immediately deployable in rural areas

[42]. As a theoretical possibility, S-Detect could also be integrated with whole breast screening

ultrasound systems to produce automated diagnosis without any human operator, but again,

costly systems would limit this approach’s relevance to LMICs. VSI could possibly be adjusted

to completely scan the entire breast in future iterations, but this approach would be limited by

many issues such as potentially suboptimal image quality, false positives, false negatives, and

increased time to perform the exams. Palpable abnormalities are ideal for VSI examinations as

they are often superficial and large in size allowing ease of diagnosis. Furthermore, the most

common presenting feature of breast cancer is a palpable mass, and virtually all breast cancer

in LMICs will present as a palpable lump [12,43]. Given the current reported delays to diagno-

sis for palpable lumps, a system for exclusive automatic diagnosis of palpable lumps is of signif-

icant value even though it will inherently not detect asymptomatic lesions which require

mammographic examination or other advanced imaging.

One limitation of the study is that our analysis is limited to one single frame selected from

the VSI cine clips for interpretation. Future expansions could be made to test multiple frames

from a VSI clip to better characterize the performance of S-Detect, especially when a mass is

only partially visualized on a VSI frame. Nonetheless, the goal of this study was to demonstrate

a proof-of-concept minimizing the impact of this limitation. We approached the study with

the interrelated goals of assessing S-Detect performance on both a portable ultrasound

machine and on VSI scans. It is possible that S-Detect would perform better given an experi-

enced operator acquiring the images on the portable ultrasound machine. Our study design

precluded assessment of this possibility. However, as the ultimate goal of this study was to lay

the groundwork for a system that could be used in rural areas, this limitation is of minimal sig-

nificance to the conclusion that S-Detect functions well with scans obtained on a portable

machine. In addition, the already high agreement with standard of care suggests that any

increased performance of S-Detect on portable scans obtained by an expert sonographer could

only be marginal at best.

Conclusion

The global community is facing an urgent public health crisis with increasing incidence and

mortality of breast cancer in LMICs. The lack of readily available ultrasound imaging likely

contributes to significant delays to diagnosis of palpable masses, presumably resulting in

increased morbidity and mortality. New approaches are needed to increase access to medical

imaging in cost-effective and sustainable ways. The integration of volume sweep imaging and
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artificial intelligence is a promising avenue to realize increased access to imaging. Our synthe-

sis of an inexpensive, portable ultrasound scanner with VSI and artificial intelligence would

allow for automatic rapid image acquisition and preliminary but actionable interpretation

without a dedicated sonographer or radiologist. In this study, we demonstrated excellent diag-

nostic accuracy of S-Detect on VSI scans performed by medical students without prior ultra-

sound training after less than 2 hours of instruction. Further work is needed to synthesize the

individual components of this system and automate the identification of a breast lump in a

VSI clip for analysis by artificial intelligence. In the context of this urgent public health crisis,

we propose expedited further study of this potentially life-saving innovation. Compared to

current practice, this technology holds the potential to reduce cost by at least an order of mag-

nitude while increasing accessibility and providing a preliminary, actionable diagnosis to mil-

lions of underserved patients.

Methods

Ethics statement

This study was approved by the University of Rochester Research Subjects and Review Board

(Study 00005262). Formal written consent was obtained from every participant.

Breast volume sweep imaging

VSI was designed to increase access to imaging in areas with a lack of medical professionals

[15]. In VSI, the ultrasound probe is swept over a target region in relation to easily recognized

external body landmarks using presets of the ultrasound probe removing the need for anatom-

ical knowledge or technical ultrasound ability. The sweeps are saved as video clips which are

later interpreted by a specialist. VSI can be learned over the course of hours as opposed to the

years of dedicated training often required for ultrasound specialists [16,17]. This approach has

already been successfully piloted for lung, obstetric, right upper quadrant, and thyroid scan-

ning [15,18–21,23]. Specifically, breast VSI has been successfully clinically tested with encour-

aging results [22]. At this time, breast VSI is only indicated for evaluation of palpable

abnormalities. It is generally accepted that ultrasound is first-line evaluation for palpable breast

abnormalities [13,44–46]. In breast VSI, the operator marks a palpable abnormality with an

“X” and sweeps the probe over the abnormality in several orientations (Fig 5). The protocol

can be performed within 5 minutes. It should be emphasized the individual acquiring the

images is not adjusting the ultrasound machine or interpreting the images in any way. VSI

operators are instead encouraged to focus on their probe technique maintaining good contact

with the skin and holding the probe steady.

S-Detect

S-Detect is a computer-aided diagnosis system originally designed as an assistance tool for

radiologists. A PC-based research version of S-Detect was used for this study. DICOM images

are input into S-Detect which outputs mass characteristics and a dichotomous assessment of

“possibly benign” or “possibly malignant” (Fig 6). S-Detect always outputs a result for all possi-

ble categories regardless of the image quality. In the current version of S-Detect, a mass is

required to be identified by the user. Once the mass has been identified, the contours of the

mass can be subsequently edited if needed. The current version of S-Detect does not distin-

guish between images with a mass or without a mass. Therefore, future integration with VSI

will require additional software to identify a mass within the breast tissue.
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Study design

The masses in this study were obtained from a curated data set from a prior clinical study of

breast VSI [22]. All breast VSI examinations were performed by medical students without

prior ultrasound experience after less than two hours of training. The VSI scans were per-

formed on the hand-held Butterfly iQ ultrasound probe at the University of Rochester (Butter-

fly Network, Guilford) with its small organ preset. VSI operators were blinded to the clinical

history and were explicitly instructed not to look at the ultrasound images while scanning as

an additional safeguard. Standard of care ultrasound examinations were performed in accor-

dance with conventional clinical practice by experienced certified breast sonographers.

Fig 5. Breast VSI Poster. Illustration of how to perform breast VSI. Sweeps of the ultrasound probe are performed in

the transverse, sagittal, radial, and anti-radial orientations.

https://doi.org/10.1371/journal.pdig.0000148.g005
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Standard of care scans were performed on either a Logiq e10 (General Electric, Boston) or an

Epiq 7G (Philips, Amsterdam) ultrasound machine with a high-frequency probe with settings

adjusted across exams to obtain optimal imaging. The iQ costs approximately $2,000 while the

state-of-the-art standard of care ultrasound machines are approximately 50–75 times more

expensive.

Individuals over 18 years of age of either sex were eligible to enroll provided they felt a pal-

pable breast lump. For the purposes of this investigation into the accuracy of S-Detect on VSI

scans, subjects were eligible for analysis only if VSI and standard of care imaging both showed

Fig 6. Screenshots of S-Detect User Interface. (A) Screenshot showing the S-Detect user interface. There are three possible methods to target the mass in

S-Detect (bracket). In this screenshot, the “Target Point” method has been used. This method involves placing a single point within the target mass (green dot).

This could also be accomplished using a “Target Area” or manually outlining the mass boundaries using the “Manual Contour” option. Once the mass has been

targeted, S-Detect will produce an interpretation after pressing the “Calculate” button (arrow). (B) Screenshot showing the results after a mass has been

targeted. S-Detect outputs a result of “possibly benign” or “possibly malignant” (arrow) as well as a list of mass characteristics (bracket). The mass segmentation

is outlined in yellow and this can be adjusted or redone if necessary.

https://doi.org/10.1371/journal.pdig.0000148.g006
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a sonographic mass as S-Detect does not provide interpretations of normal breast tissue. A VSI

frame best representing the mass per expert analysis was chosen by a radiologist and converted

to DICOM image format. This DICOM file along with a DICOM file from the standard of

care exam were input into S-Detect. The S-Detect interpretation output included both mass

characteristics and a final assessment. Mass characteristics included mass orientation (“paral-

lel” or “not parallel”), mass shape (“round,” “oval,” or “irregular”), mass margins (“circum-

scribed,” “indistinct,” “microlobulated,” “angular,” or “spiculated”), mass echogenicity

(“anechoic,” “hypoechoic,” “isoechoic,” “hyperechoic,” “complex cystic and solid,” or “hetero-

geneous”), and mass posterior acoustic features (“none,” “enhancement,” “shadowing,” or

“combined”). The final assessment was “possibly benign” or “possibly malignant.”

The expert VSI exam interpretation procedure was previously described in the clinical

study of breast VSI [22]. VSI expert interpretations were made from the best frames/sweeps

available by a specialist in breast imaging with over 20 years of experience. The standard of

care exam reports were produced per normal clinical practices by an unblinded breast imager.

There was a similar reporting scheme employed for the expert interpretations to the one used

by the artificial intelligence with two notable differences. The first is that S-Detect will always

output a result even if the feature is suboptimally visualized. In the VSI scan expert readings,

if one of these features was not visualized or non-diagnostically assessed, it was reported as

non-visualized. In standard of care examinations, all features were always visualized. The

second difference was the expert VSI and standard of care reports used discrete BI-RADS

assessments as opposed to the “possibly benign” or “possibly malignant” categorization used

by S-Detect.

BI-RADS is an important classification tool in breast imaging which provides a standard

format for interpretation and reporting considered standard of care [47,48]. BI-RADS assess-

ments for standard of care examinations apply to the entirety of the breast tissue examined

whereas VSI is solely examining a single palpable location. Therefore, standard of care BI-R-

ADS assessments were adjusted to account for only the palpable finding disregarding findings

related to any other breast tissue routinely imaged as part of the standard of care exam. These

adjusted assessments also disregarded other clinical history related to prior imaging. BI-RADS

assessments were subsequently converted to “probably benign” (BI-RADS 2 or 3) or “probably

malignant” (BI-RADS 4 or 5) for analysis. In clinical practice, BI-RADS 2 represents a finding

with 100% chance of benignity such as a simple cyst and requires no follow-up. BI-RADS 3

represents a finding with less than a 2% chance of malignancy and is typically managed with a

6-month follow-up. Both BI-RADS 4 (2–95% chance of malignancy) and 5 (>95% chance of

malignancy) are typically managed with biopsy.

Among the 170 lumps scanned in the prior clinical trial of breast VSI, n = 115 sonographic

masses were identified on VSI and n = 119 sonographic masses were identified on standard of

care. This discrepancy was due to 4 sonographic masses seen on standard of care imaging and

not on VSI. This was further explored in the prior publication but related to subtle lesions

likely of no clinical significance [22]. Since this is a pilot trial, we therefore only tested sono-

graphic masses identified on VSI. The other lumps in the prior study corresponded to palpable

areas without a corresponding sonographic mass which is a common occurrence. Therefore,

these could not be tested in S-Detect since there was no sonographic mass to test. As explained

earlier, this version of S-Detect requires the user to identify a mass which is subsequently fed

to S-Detect for analysis. S-Detect does not distinguish background breast parenchymal tissue

from sonographic breast masses.

We conducted several analyses of the of agreement including across all masses. However,

abscess, sebaceous cysts, and fat necrosis often depend on the clinical history to be distin-

guished from malignancy. Therefore, we conducted a separate analysis removing these
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diagnoses from consideration. Additional analysis was performed solely for fibroadenomas,

lipomas, cysts, and cancer individually and as a group. Mass characteristics were analyzed

across the above groupings for agreement on the single descriptor along with combined analy-

ses where similar descriptors were considered as agreement. These included “round/oval” or

“irregular” for mass shape, “circumscribed” or “non-circumscribed” for mass margin, and

“anechoic/hypoechoic/complex cystic or solid,” “isoechoic/hyperechoic,” or “heterogenous”

for mass echogenicity. Agreement with the pathological diagnosis when available was also per-

formed which was determined by biopsy result when possible. Due to the limited number of

biopsies, a mass with a BI-RADS assessment of 2 (100% chance of benignity) was also noted as

benign. BI-RADS 3 cases were excluded from the analysis as the pathology was likely benign

but not definitively known. Finally, expert analysis of discrepancies in agreement was under-

taken by an experienced radiologist.

Statistical analysis

Throughout, categorical variables are summarized by proportion (95% confidence interval

(CI)), and continuous variables are summarized as mean ± standard deviation. For compari-

son of diagnostic accuracy, pathological diagnosis was used as the gold standard, and sensitiv-

ity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were

calculated. Agreement on both diagnosis and mass characteristics was quantified using overall

agreement (%), as well as Cohen’s kappa. All statistical analyses were performed using

MATLAB (R2019b, The Mathworks, Inc., Natick, MA).

Supporting information

S1 Table. Agreement on mass characteristics between S-Detect interpretation of VSI, com-

pared to other interpretations, sub-divided by the masses included in the analysis.
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