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Abstract— We incorporated raw ultrasound parameters into 
artificial intelligence-based breast cancer diagnosis to achieve 
improved accuracy compared to radiologists and deep learning 
(DL).  

76 patients with suspicious breast lesions were ultrasound-
imaged using a Samsung RS85 system equipped with a 9.4 MHz 
center frequency transducer. The patients underwent biopsy, 
and the biopsy results were used as a reference gold standard: 
n=53 for benign and n=23 for malignant. Ten radiologists 
reviewed the ultrasound images and provided BI-RADS (Breast 
Imaging Reporting and Data System) scores.  

A previously trained DL product with a modified fully 
convolutional network and GoogLeNet contoured the breast 
lesion boundaries. Within the contoured lesions, ultrasound 
parameters were extracted from the radiofrequency, envelope, 
and log-compressed data: (1) H-scan color level, (2) lesion 
boundary shape using convex hull, (3) B-mode boundary 
standard deviation (STD), (4) B-mode STD, and (5) Burr 
distribution b. To quantify breast condition, multiparametric 
analysis combining the 5 features was performed using principal 
component analysis, resulting in the first principal component 
(PC1). The PC1 outputs within a lesion were overlaid on B-mode 
images. We calculated the area under the curve (AUC) to 
evaluate performance.  

We compared AUC results from radiologists, the DL 
product, and our PC1 quantification. The PC1 showed the 
highest AUC. Further, utilizing this PC1 quantification, we 
visualized the localized probability of malignancy, illustrating 
BI-RADS score differences using a color display. Overall, we 
demonstrated the potential of utilizing raw ultrasound 
parameters to improve DL performance and to achieve higher 
diagnostic accuracy than radiologists for breast cancer. 
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I. INTRODUCTION 
There are a growing number of approaches that 

incorporate developments in artificial intelligence (AI) into 
the diagnosis of breast cancer using medical imaging [1-4]. 
Among AI applications to medical imaging, machine learning 
(ML) methods [5-8], such as support vector machine and 
random forest, were utilized to classify breast lesions as 
malignant or benign. ML requires feature extraction and 
selection procedures, which determines the classification 
accuracy. However, deep learning (DL) methods can directly 
utilize images as input, discarding feature dependency; DL 
can classify and segment breast lesions [9-15]. Due to the 

image input processing, DL is computationally expensive, and 
thus it is common to use log-compressed envelope ultrasound 
data as input, which has less information than the raw 
ultrasound radiofrequency (RF) data. Utilizing the image data 
after RF information loss may lower DL performance.  

This study aimed to develop a breast cancer detection 
method utilizing AI results and further adding ultrasound 
parameters, including frequency domain analysis, via H-scan. 
We employed the H-scan analysis since previous studies 
reported that the H-scan can successfully characterize tissue 
signatures, for example, differentiating liver diseases 
(inflammation, fibrosis, steatosis, and pancreatic cancer 
metastasis in liver) [16-20], distinguishing melanoma 
metastases [21], predicting thyroid malignancy [22], and 
detecting breast cancer response to treatment [23].  In this 
study, we segmented breast lesions using DL with log-
compressed images and then added more information from 
features extracted from RF data. This approach resulted in 
higher diagnostic accuracy than both radiologists and a DL 
system. 

II. METHODS 

A. Study protocol 
At the University of Rochester Medical Center, 76 patients 

with at least one suspicious breast lesion were enrolled in this 
study and underwent ultrasound scans. The breast lesions 
were examined by biopsy to diagnose the status as benign or 
malignant; the biopsy results were used as the gold standard. 

The breast lesions were ultrasound-imaged using an RS85 
ultrasound scanner (Samsung Medison Co. Ltd., South Korea) 
equipped with a 3–12 MHz linear array transducer (L3-12A), 
all with the following scanning conditions: (1) using a 9.4 
MHz center frequency transmission; (2) without using 
harmonic mode. The ultrasound scanner saved RF data and 
post-processed log-compressed data, which were used for our 
data analysis.  

The ultrasound breast images were reviewed by ten 
radiologists to provide the Breast Imaging Reporting and 
Database System (BI-RADS) scores. The ten scores for each 
patient were averaged using the area-preserving method of 
averaging receiver operating characteristic curves [24]. The 
BI-RADS score represents the performance of radiologists in 
breast lesion diagnosis. 

This study was approved by the Research Subjects Review 
Board at the University of Rochester and performed under the 
requirements of informed consent. 
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B. Breast lesion classification and contouring utilizing AI 
A deep learning framework, known as S-detect (S-

detectTM for breast, Samsung Medison Co., Ltd., Seoul, 
Korea) was previously developed [25], and its performance 
was evaluated by this group [26]. By utilizing post-processed 
log-compressed data as input, the S-detect segments lesion 
boundaries and classifies lesions as benign or malignant.  

Segmentation was performed using a modified fully 
convolutional network (FCN). Instead of utilizing the 
automatic segmentation of FCN [27], a modification was 
performed to receive radiologists’ input for the center of a 
lesion, which lowers the segmentation error caused by using 
ultrasound images with speckle. Hence, the S-detect outputs a 
lesion boundary. Classification was performed using 
GoogLeNet [28], but after removing two auxiliary classifiers 
of the GoogLeNet. 

The contoured lesion boundaries were used as a region of 
interest (ROI) for further analysis in this study, and the 
classification results were used to assess the performance of 
the DL classification.  

C. Ultrasound feature extraction 
To obtain more accurate classification than the DL 

approach, we extracted 5 ultrasound features from RF, 
envelope, and log-compressed data: H-scan color level, lesion 
boundary shape, B-mode standard deviation (STD) within the 
ROI, B-mode boundary STD, and Burr distribution b.    

• H-scan color level: The H-scan [29], a matched filter 
analysis, was used to analyze the RF data and 
estimated frequency components of each pixel, 
indicating frequency shift or scatterer size. Since we 
utilized 256 matched filters, our analysis had 256 color 
levels. Lower frequency components and larger 
scatterers resulted in lower H-scan color levels, 
whereas higher frequency and smaller scatterers 
resulted in higher H-scan color levels. Each pixel had 
an estimated H-scan color level, and the estimated 
levels within an ROI were averaged, suggesting a 
parameter: the H-scan scan color level. 

• Lesion boundary shape: Utilizing the lesion boundary 
output of the S-detect, a convex hull was calculated. 
The area difference (dA) between the convex hull and 
the lesion was measured, and dA/A was calculated for 
estimating the lesion boundary shape parameter where 
A is an area within a lesion. 

• B-mode STD: Utilizing log-compressed envelope 
data, the STD within an ROI was calculated to 
characterize B-mode image texture.  

• B-mode boundary STD: To investigate image texture 
near lesion boundaries, morphological erosion and 
dilation were utilized to define the inner and outer 
areas near the boundary, respectively. The STD within 
the area near the boundary was calculated. The margin 
length of the area is 10% of the lesion length. 

• Burr distribution b: We investigated the histogram of 
envelope data utilizing a Burr distribution: 

𝑃(𝐴) = !"($%&)

(!)"#
!
*&+

$         (1) 

where P(A) is a probability density of an echo amplitude of A, 
and b is our parameter estimation, varying depending on 
scatterer distribution.  

D. Multiparametric analysis and DSI 
To combine the five features, a principal component 

analysis was performed and resulted in the first principal 
component (PC1) as a combined parameter. Thus, the 
parameter dimension of five was reduced into one while 
including information from all five parameters.  

PC1 can correspond to a colormap as shown in Fig. 1, 
indicating the probability of malignancy. The combined 
parameter PC1 was used for visualizing breast condition 
within the disease-specific imaging (DSI) framework [30-32]. 
Each pixel in a breast lesion has a PC1 value whose 
corresponding DSI color level was overlaid on each pixel in a 
B-mode image.  

III. RESULTS AND DISCUSSION 
We extracted the five ultrasound features and combined 

them, resulting in PC1. The combined parameter PC1 is used 
to classify breast lesion, which can be visualized using DSI.  

The performance of PC1 was compared to the DL 
approach (S-detect) and to radiologists. This evaluation was 
performed by calculating the area under the curve (AUC) for 
each of the three methods, as shown in Fig. 2. We divided our 
data into 70% of training set and 30% of testing set; AUC 
outputs are provided in Fig. 2 (a) and (b), respectively. To 
investigate performance dependence on lesion sizes, we 

 
Fig. 1. A combined parameter, PC1, and corresponding DSI 
color map, representing probability of malignancy. 

 

 
Fig. 2. Breast cancer detection results from radiologists (BI-
RADS), DL (S-detect), and PC1 quantification. AUC for (a) 
training and (b) testing sets.  
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observed lesion size thresholds from 0 to 1 cm2 in an equal 
interval of 0.2 cm2, and thus lesions greater than a threshold 
were included for calculating each AUC point in Fig. 2. Fig. 2 
indicates that PC1 had the highest AUC, meaning our 
approach outperformed radiologists and DL. Moreover, larger 
lesions resulted in higher AUC than smaller lesions. For the 
lesions greater than 0.5 cm2, our PC1 achieved a high AUC 
greater than 0.98 for both training and testing sets.  

Fig. 3 displays B-mode images and DSI results of 4 
representative cases from low to high BI-RADS scores. Fig. 3 
cases (a) to (d) have averaged BI-RADS scores of 3.2, 4.0, 4.5, 
and 5.0, which were scored by 10 radiologists and then 
averaged. Cases (a-b) were benign, and (c-d) were malignant. 
The DSI colors illustrated the probability of malignancy, 
showing light green to red, indicating lower to higher 
probability of malignancy, respectively. Thus, cases from (a) 
to (d) have more red pixels due to higher BI-RADS scores and 
higher probability of malignancy. These imaging results 
demonstrate that our multiparametric approach is capable of 
illustrating BI-RADS score differences using DSI.  

IV. CONCLUSION 
We proposed a breast cancer detection and visualization 

method, utilizing the deep learning output of breast lesion 
segmentation and adding more information from raw 
ultrasound parameters. The addition of the raw ultrasound 
parameters resulted in improved breast cancer diagnosis of the 
deep learning approach, and further, it outperformed 
radiologists’ performance. Our approach achieved a high 
AUC greater than 0.98 for larger lesions (> 0.5cm2). 
Moreover, the DSI can visualize the probability of malignancy 
by providing a simple color display. Based on these results, 
we anticipate that the proposed analysis would assist 
clinicians in diagnosing breast cancer. 
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