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Abstract

Reverberant elastography provides fast and robust estimates of shear modulus; however, its reliance
on multiple mechanical drivers hampers clinical utility. In this work, we hypothesize that for
constrained organs such as the brain, reverberant elastography can produce accurate magnetic
resonance elastograms with a single mechanical driver. To corroborate this hypothesis, we performed
studies on healthy volunteers (n = 3); and a constrained calibrated brain phantom containing
spherical inclusions with diameters ranging from 4-18 mm. In both studies (i.e. phantom and
clinical), imaging was performed at frequencies of 50 and 70 Hz. We used the accuracy and contrast-
to-noise ratio performance metrics to evaluate reverberant elastograms relative to those computed
using the established subzone inversion method. Errors incurred in reverberant elastograms varied
from 1.3% to 16.6% when imaging at 50 Hz and 3.1% and 16.8% when imaging at 70 Hz. In contrast,
errors incurred in subzone elastograms ranged from 1.9% to 13% at 50 Hz and 3.6% to 14.9% at 70
Hz. The contrast-to-noise ratio of reverberant elastograms ranged from 63.1 to 73 dB compared to 65
to0 66.2 dB for subzone elastograms. The average global brain shear modulus estimated from
reverberant and subzone elastograms was 2.36 £ 0.07 kPa and 2.38 £ 0.11 kPa, respectively, when
imaging at 50 Hz and 2.70 £ 0.20 kPa and 2.89 & 0.60 kPa respectively, when imaging at 70 Hz. The
results of this investigation demonstrate that reverberant elastography can produce accurate, high-
quality elastograms of the brain with a single mechanical driver.

1. Introduction

Magnetic resonance elastography (MRE) is an imaging technique for determining the mechanical properties of
tissues noninvasively and in vivo (Muthupillai et al 1995), and the current gold standard imaging method for
diagnosing liver fibrosis (Yin et al2007, Venkatesh et al 2013). Given the success of MRE in this application,
several studies are now focused on investigating MRE’s utility in other clinical applications. These include
improving the differential diagnosis of breast cancer (McKnight et al 2002, Sinkus et al 2007, Patel et al 2021),
identifying tears in skeletal muscles, (Dresner et al 2001), detecting pulmonary disease in lungs (Mariappan et al
2014), and diagnosing prostate cancer (Brock et al 2015). MRE could also prove helpful in assessing the
progression of Alzheimer’s disease (Murphy et al 2011), Parkinson’s disease (Lipp et al 2013), multiple sclerosis
(Wuerfel et al 2010), brain integrity and microstructural changes in health and disease (Sack et al 2013), and
evaluating normal pressure hydrocephalus (Streitberger et al 2011, Freimann et al 2012). Li and colleagues
reviewed the crucial elements common to all successful magnetic resonance elastographic imaging systems (Li
etal2014): appropriate mechanical stimulation of the organ under investigation, acquiring wave images with a
good signal-to-noise ratio (SNR), and computing robust estimates of shear modulus from the measured wave
fields. In this work, we focus on the third element, i.e. efficiently computing shear modulus.
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Researchers have proposed different approaches for computing shear modulus that vary in accuracy and
computational efficiency (Doyley 2012). One method computes shear modulus directly from local estimates of
wavelengths (Manduca et al 1996). Although this is computationally efficient, estimating the wavelength in
complex organs, such as the brain, is difficult because waves reflecting from the skull and internal structures
superimpose to create complex shear wave fields (Muthupillai ez al 1995). The local frequency estimator (LFE) is
an alternative method for estimating shear modulus (Knutsson et al 1994, Kruse et al 2000, Hu 2020). Like the
local wavelength estimation (LWE) approach, the LFE method is computationally efficient but produces
erroneous shear modulus when applied to complex wave fields (Hiscox et al 2016). Hu et al (2020) proposed an
enhanced local frequency estimator (ELFE) that used directional filters to eliminate undesirable reflections.
They demonstrated that ELFE produced more accurate shear modulus estimates than the conventional LFE
approach and reduced far-field artifacts (i.e. artifacts in regions far from the wave source). Researchers have
proposed several direct inversion algorithms to overcome challenges incurred when estimating shear modulus
with either LWE or the LFE approach by algebraically solving for the complex shear modulus from the
Helmholtz equation (Manduca et al 2001, Oliphant et al 2001, Papazoglou et al 2008, Barnhill et al 2018).
Although these direct inversion schemes are fast and accurate, they are more susceptible to noise than the LFE,
LWE, or ELFE methods (Hu 2020) investigated the impact of measurement range on two shear modulus
estimation approaches, the algebraic-inversion-of-differential-equation (AIDE) and the local frequency
estimator. Using the wavelength-to-pixel size ratio performance metric, they revealed that AIDE incurred
significant errors when the wavelength-to-pixel ratio was less than 10. In contrast, the LFE method incurred
errors only when the wavelength-to-pixel ratio was less than 2, showing its superiority over the AIDE method.
To improve the robustness of the direct inversion method (Barnhill ez al 2018), developed a multi-frequency
inversion approach that incorporates first-order gradients and combines shear modulus estimates from a
narrow range of frequencies. Researchers have also used filtering schemes to enhance performance (Scott et al
2020). However, excessive filtering degrades spatial resolution. An artificial neural network has recently been
used to reconstruct the shear modulus distribution (Scott et al 2020). Neural networks should provide fast and
reliable shear modulus estimates once the neural network is sufficiently trained; however, their performance in
different clinical scenarios has yet to be revealed. Iterative inversion methods offer the opportunity to model
heterogeneous, viscoelastic tissues appropriately (Van Houten et al 1999, 2001a, Doyley et al 2000, 2010). This
inversion approach is robust but computationally expensive, requiring several hours to compute high-
resolution elastograms. Our long-term objective is to integrate MRE into our clinical workflow. More
specifically, to develop methods to provide accurate MR shear modulus elastograms at the MR console when
imaging the brain.

This paper revisits the local wavelength estimation approach by considering the shear modulus estimation
problem as a reverberant problem. More specifically, we seek to estimate the local wavelength of complex wave
fields using a technique known as reverberant elastography. Reverberant elastography uses multiple point
sources to generate complex wave fields (Parker et al 2017); the resulting wave fields’ autocorrelation function
provides reliable local wavelength estimates. However, utilizing many mechanical drivers to produce complex
wave fields can hamper clinical utility. More specifically, performing MRE with multiple drivers is impractical
for many clinical applications and could prove uncomfortable for patients. In this work, we hypothesize that we
can produce reliable elastograms with a single mechanical driver in constrained organs such as the brain, where
complex wave fields are generated naturally. This hypothesis was based on the observation that the skull has
many surfaces that act as point mechanical sources (Clayton et al 2012, Smith et al 2020). To corroborate this
hypothesis, we performed studies on a constrained gelatin phantom and healthy volunteers (n = 3). We used a
similarity metric to quantify the degree of reverberance induced in different displacement components. We
evaluated the performance (accuracy) of reverberant elastograms relative to those computed using the subzone
inversion method (Van Houten et al 2001a, Doyley et al 2010). Also, we assessed the feasibility of recovering
shear modulus from a single component of the reverberant wave field, because doing so would overcome a
limitation of the subzone inversion method that requires the entire 3D displacement field to produce reliable
elastograms. Currently, the 3D displacement field is acquired by applying a phase contrast pulse sequence
(Weaver et al 2001) three times, one for each component. Reverberant elastography could reduce MRE
acquisition time (by a factor of three) if it produced accurate elastograms from a single displacement
component.

2. Materials and methods

2.1.Reverberant shear wave elastography
The general principles of reverberant elastography have been previously described (Ormachea et al 2018, 2019,
Zvietcovich etal 2019, Ormachea and Parker 2021); therefore, in this section, we provide a summary of the
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approach. Complex wave fields are produced when plane waves that originate from multiple point sources or
reflected from various angles superimpose. The particle velocity V (¢, t) of the complex wave field is given by
Parker et al (2017):

V(E, t) = Z ﬁqqulei(k1'€7”°t), (1)
a1

where tand € represent the time and position in the complex (reverberant) wave field, respectively; k represents
the wavenumber, and wy the angular frequency. The subscript g denotes the random unit vector, and the
subscript [ denotes a unit vector, 714, parallel to a disk formed by orthogonal basis vectors & and ¢ (Parker et al
2017). The random variable v; describes the particle velocity magnitude. For isotropic mediums, the
autocorrelation of the wave field in a plane transverse to the detected motion vector is given by (Parker et al
2017):

G . Ji(kAey)

Bw(Aey) = 5 [JO(kA&c) e | ©))
where B,, represents the 2D autocorrelation of V (g, t), 3 represents the expected value of the squared particle
velocity magnitude, k is the wavenumber, and j, and j; are spherical Bessel functions of the first kind of order 0
and 1, respectively. Since 4 and v; are independent of position, an ersatz form of equation (1) can be written as:

v(e) = Vpel?©, ©)]

where @(¢) represents the spatially varying phase, and V/, is related to the root mean squared amplitude of the
field. The wavenumber, k, is computed from the ensemble average of the reverberant field as follows:

do |

de
where A is a scaling constant, which was determined empirically to be one in this study using known
measurement of shear wave speed. The bracket denotes the average value over a homogeneous kernel.

In this study, we acquired MR motion data over four-time points or equally spaced phase offsets. The
Fourier transform of these temporal data provided complex motion at the vibration frequency. We computed
the phase angle of the motion data at each pixel in the imaging field of view (FOV). Assuming phase varies in
three dimensions:

k*=A

b (4)

(%, y, 2) 2 kex + kyz + k.2 + co, (5)

where k., k, and k, are components of the wave vectors in the x, y and z coordinate directions, respectively, and ¢,
is a constant. Substituting equation (5) into equation (4) gives an approximate estimate of the wavenumber:

k2 = Ak + k2 + k2. (6)

We applied the two-dimensional unwrapping algorithm described in Zhao et al (2018) to phase maps
acquired from each coordinate direction. We computed local estimates of wave number by using the singular
value decomposition method (Strang 2016) to fita plane to the unwrapped phase maps within three-
dimensional overlapping kernels. Shear wave speed (c) was computed from local estimates of wavenumber as
follows:

2rf
cC=— (7)
k
where frepresents the shear wave frequency. Local estimates of shear modulus, 11, were computed from the
estimated shear wave speed as follows (Parker eral 2010, 2011):

= pc, (8)
where, p represents tissue density (1 gcm ). In this study, shear wave speed was assumed to be isotropic. The
shear modulus of the tissue or phantom under investigation was estimated by applying the reverberant method
to each phase direction and then computing the average of the resulting images (i.e. the composite shear
modulus elastograms).

2.2.Subzone elastography

The overlapping subzone inversion method computes shear modulus elastograms from MR-measured internal
tissue displacements by combining the finite element method and the Newton-Raphson iterative scheme,
previously described (Van Houten et al 1999, 2001b, Doyley et al 2003). This inversion approach seeks the
distribution of mechanical parameters (in our case, lambda () and shear (14) modulus) that minimize the
difference between internal tissue displacements calculated with the finite element model and those measured
with MR. To reduce the memory required to solve the three-dimensional inverse elasticity problem on high-
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resolution finite element meshes, the solution domain was divided into a series of computationally independent
overlapping subdomains, as described in Van Houten et al (2001b). The objective function that was minimized
at the subzone level is given by

P, A) = Uy, A) — U, ©

where U” (i, A,) and U7, represent vectors of the calculated and measured displacements at the nodal
coordinates of each subzone, respectively. pt, and A, represent shear and lambda modulus at the nodal
coordinates of each subzone, respectively. Setting the derivative of equation (9) with respect to pt, and A, to
zeros, and solving the resulting nonlinear equations with the Newton-Raphson iterative scheme, gives the
resulting matrix solution at the (++1) iteration:

(i MY = (g AY 4 UF (g N (e Np) + T ™!
TJNUE — UG, X)) — ol AV, (10)

where]J, (p,, A,) is the n X n Jacobian matrix, and « is a positive number that was used to improve the condition
of the Hessian matrix, [J} (1, A\,) J, (i, A)].

2.3. Phantom experiments

This study aimed to show that reverberant elastography produces reliable shear modulus estimates from
complex wave fields induced in constrained objects, with multiple reflecting surfaces using a single mechanical
driver. To demonstrate this, we compared the performance (accuracy and contrast-to-noise ratio (CNR)) of
reverberant elastograms to subzone elastograms. We also explore the feasibility of recovering shear modulus
from a single component of the reverberant wave field. Independent mechanical testing provided absolute shear
modulus values.

2.3.1. Phantom fabrication

We fabricated a brain-shaped phantom (180 mm (long axis) x 130 mm (short axis) x 70 mm (height), see
figures 1(a), (b)) from a suspension consisting of bovine gelatin (200 bloom; Sigma Aldrich Chemicals, St. Louis,
MO, USA), de-ionized water (18 MS2), and ethylenediamine tetra-acetic acid (Sigma Aldrich Chemicals, St.
Louis, MO, USA) in a highly controlled and repeatable manner as described in Doyley et al (2003). The phantom
contained three spherical gelatin inclusions with diameters of 18 mm, 12 mm and 4 mm. Table 1 gives the
percentage by weight of the gelatin, water, and copper sulfate used to fabricate the surrounding background and
inclusions.

2.3.2. Elastographic imaging

We performed all elastographic imaging in a whole body 3T MRI scanner (Prisma, Siemens, Erlangen,
Germany) with a 20-channel head coil. A pneumatic actuator with a passive driver (Resoundant, Inc.,
Rochester, MN, USA) was used to induce shear waves in each phantom, as illustrated in figure 1(a). We used
two vibration frequencies (50 Hz and 70 Hz) separately during elastographic imaging, with motion-
encoding gradients matched in the period to vibration and with a variable number of gradients depending
on frequency. It took approximately six minutes to acquire each 3D data set. Table 2 summarizes the
actuator amplitude, gradient amplitude, and the number of gradients used at each frequency. The single-
shot echo-planar imaging (EPI) sequence (Johnson et al 2014, Chaze et al 2019) measured the resulting
time-varying harmonic tissue displacements. We configured the MR scanner with echo and repetition times
of 76.0 ms and 8640 ms, respectively. Forty axial slices were acquired for the phantom with a 153 mm x 153
mm X 60 mm field-of-view (1.6 mm isotropic voxel size), with four images with relative phase offsets. For
brain, eighty axial slices with four phase offsets were acquired with a 240 mm x 240 mm x 120 mm field-of-
view (2.5 mm isotropic voxel size). We used the Fourier transform method described in Sinkus et al (2000)
to estimate the complex, three-dimensional displacement field. To remove low-frequency longitudinal
waves and high-frequency noise, we applied a two-dimensional bandpass filter in all directions. The cutoff
spatial frequency related to the wavenumber k of the filter was determined from pre-selected low (¢;) and
high (¢,) shear wave speed values. The corresponding filter cutoffs were kj = (2 X k X 7 X f)/cp,, and ky,

= (2 x 7 X f)/q.For this study ¢, was 3.5 ms "~ ! and ¢ was 0.3 m s~ !. These values were selected using
phantoms with known shear modulus and an average shear modulus of the whole brain reported in the
literature.

Two groups of modulus elastograms were computed from each data set; one was computed using the
reverberant shear modulus estimation method and the other with the subzone reconstruction method. The
reverberant method was performed using 6.4 mm x 6.4 mm X 6.4 mm overlapping kernels. All subzone
reconstructions were conducted on a finite element mesh consisting of 70 000 nodes and 415 000 elements
(created using MATLAB version R2022b). A spatial filtering weight of 20% and subzone radius size of 9 mm and
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Figure 1. (a) Photograph showing the elastic brain-shaped phantom used in the experimental studies (side view), (b) Top view of the
phantom shown in (a). (c) Experimental setup used for phantom imaging, showing the 20-channel head coil used for MR imaging and
the pneumatic mechanical driver used to induce shear waves within the phantom. The pillow driver (blue insert) used for clinical
imaging is shown in (d).

Table 1. Concentration by weight of the materials used to fabricate elasticity phantom.

Gelatin (%) Water (%) Copper-sulphate (%) Actual shear modulus (kPa)

Background 8 92 0 3.34+0.04
Inclusions 18 81.64 0.36 8.15+0.05

Table 2. MRE scanning parameters used in the phantom studies.

Frequency (Hz) Actuator amplitude (%) Gradient amplitude (mT/m) Number of gradients
50 6 8
70 14 20 2

aregularization value of 1 e’ were also employed during subzone reconstructions. A homogeneous trial
solution (shear and lambda moduli of 0.33 kPa and 33 kPa, respectively) was assumed at the start of all subzone
reconstructions. Reconstructions were terminated either after 100 global iterations or when the relative error of
the global objective function did not decrease significantly (2%) for 10 consecutive iterations, whichever
condition occurred first. In general, it took 7 h to compute subzone elastograms and 3 min to compute
reverberant elastograms on an Intel Xeon Gold 6330 CPU computer system (20 cores) running at 2 GHz (Dell
Technologies, Round Rock, Texas USA).
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2.3.3. Mechanical testing

We used a Landmark Servo Hydraulic Test System (MTS, Eden Prairie, MN, USA) for the independent
mechanical tests. We made cylindrical samples (19 mm diameter x 10 mm height) from the same batch of
gelatinous suspension used to manufacture the inclusions and surrounding tissue. Each cylindrical sample was
deformed by applying stresses ranging from 0 to 1 kPa and Young’s modulus from the resulting stress-strain
curve. Shear modulus 1 was calculated from Young’s modulus (E) as follows (Fung 1981):

E
20+ v)

where v is the poison’s ratio, assumed to be 0.495 in this work. The ground truth for the quantitative evaluations
was computed from the average of five statistically independent measurements. The actual shear modulus was
8.15 £ 0.05 kPa for the inclusions and 3.34 + 0.04 kPa for the surrounding gel, which was consistent with
previously reported values for brain tissues (Kruse et al 2008, Clayton et al 2012, Johnson et al 2014).

M (11)

2.3.4. Performance metrics

Elastograms from each reconstruction method were visually inspected for quality, and four quantitative metrics
were used to evaluate performance. The octahedral shear strain signal-to-noise ratio (OSS-SNR) (McGarry et al
2011) was used to evaluate the quality of the measured displacement fields. The quality of the modulus
elastograms was evaluated quantitatively by computing the contrast-to-noise ratio (CNR) performance metric.
CNR was defined on a logarithmic scale as follows (Techavipoo and Varghese 2005):

_ )2
cHVR(dB)::201og(2£ﬁ%——lﬂ§—), (12)
0b+oi

where pi;, and p; represent the mean shear modulus chosen from regions-of-interest (ROIs) in the background
and inclusion, respectively, while oy, and o; represent the standard deviation of the shear modulus in the
corresponding ROIs. The mean error (ME) performance metric was used to evaluate the accuracy of the
recovered modulus compared to mechanical testing as follows:

He — e
ME®%) = | =" | x 100, (13)
,uref

where j1. and pi,srepresent the estimated and from mechanical testing shear modulus, respectively.

The similarity () between the measured and theoretically derived autocorrelation (see equation (2)) was
used to quantify each displacement component’s reverberance level. For a given window, the similarity metric
was computed as follows

SN (i — p)?

%)=1—
X (%) N

x 100, (14)
where x; and y; represent vectors of the measured and theoretically computed autocorrelation function, and Nis
the number of elements in each vector. We used a threshold to classify wave fields as complex (reverberant) or
directed. This threshold was determined empirically by simulating complex wave fields created with increasing
numbers of incident shear waves (i.e. from 10 to 100 with an increment of 10), as described in (Zvietcovich et al
2019). For each wave field, we computed the autocorrelation function of the simulated wave field and those
computed theoretically using equation (2). We observed that the similarity metric increased rapidly as the
number of incident shear waves increased from 10 to 50, then plateaued to 80% with a further increase in
incident waves (not shown). 80% represents the threshold for differentiating fully reverberant (n = 100) from
non-reverberant wave fields (N < 50). Therefore, in this study, pixels in the complex wave field whose similarity
matrix () exceeded 80% were deemed reverberant.

2.4. Clinical study

To evaluate the performance of reverberant elastograms under standard clinical conditions, we performed brain
MRE imaging on three healthy volunteers. We acquired two datasets from each volunteer using an imaging
protocol approved by the University of Delaware Institutional Review Board. In one acquisition, we induced 50
Hz shear waves within the brain. Without moving the volunteers, we increased the frequency of the induced
shear waves to 70 Hz. In both acquisitions, an inflatable pillow (see figure 1(b)) positioned at the base of the skull
generated shear waves within the brain. Table 3 provides the scanning parameters used in clinical imaging; all
other imaging parameters are consistent with the phantom experiment. We used the FMRIB Software Library
(FSL), i.e. FLIRT registration and FAST segmentation toolboxes (Smith et al 2004), to register and segment brain
elastograms.
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Figure 2. Images obtained from the central plane of a partially constrained phantom containing 18 mm, 12 mm and 4 mm diameter
spherical inclusions. (a) MR magnitude image and time-harmonic displacements obtained when performing elastographic imaging
with vibrations frequencies of 50 Hz (b)—(d) and 70 Hz (e)—(g).

Table 3. MRE scanning parameters used in the clinical studies.

Frequency (Hz) Actuator amplitude (%) Gradient amplitude (mTm ") Number of gradients
50 13 70 1

70 25 70 1

3. Results

The proceeding subsection reports the results of experiments conducted on heterogeneous phantoms and
volunteers to evaluate the performance of reverberant elastograms relative to subzone elastograms.

3.1.Phantom studies

3.1.1. Quantitative assessment of induced displacement fields when imaging at 50 Hz and 70 Hz

Figures 2(b)—(g) shows representative displacement maps obtained from the central slice of a phantom
containing spherical inclusions with diameters of 4 mm, 12 mm and 18 mm. Only two inclusions (12 mm and 18
mm diameter) were visible in the MR magnitude image (figure 2(a)). Performing elastographic imaging at 50
and 70 Hz produced time-harmonic displacements (see figures 2(b)—(g)) with OSS-SNR values of 54 and 51,
respectively. Figures 3(a)—(f) shows examples of transects in the X, Y, and Z axes of the measured and
theoretically derived autocorrelation functions corresponding to the rectangular region shown in (figure 2(b))
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Figure 3. Measured and theoretically computed autocorrelation profiles within the white rectangular box region shown on figure 2(b)
when imaging at 50 Hz (a), (c), (¢) and 70 Hz (b), (d), (f). The solid lines represent the measured autocorrelation profiles, and the
dashed line represents the theoretical profiles computed from the X (blue), Y(red), Z(green) displacement components.

when imaging at 50 Hz ((a), (¢), (e)) and 70 Hz ((b), (d), ()). The percentage of reverberant pixels (i.e. pixels
whose similarity matrix exceeded 80%) in the X, Y, and Z displacement components was 89%, 88% and 91%,
respectively, when imaging at 50 Hz. Similarly, the percentage of reverberant pixels in the X, Y,and Z
displacement components was 92%, 91% and 88%, respectively, when imaging 70 Hz. Although the measured
wave field appears to be more reverberant when imaging at 70 Hz, statistical evaluation of the wave fields
computed with the Kolmogorov-Smirnov test showed no statistically significant difference (p > 0.05) in wave
fields obtained at 50 and 70 Hz.

3.1.2. Assessment of reverberant (composite and those computed from a single displacement component) and subzone
elastograms

Figures 4(a), (b), (), (g) shows reverberant and subzone elastograms corresponding to the displacement maps
shown in figures 2(b)—(g). The 12- and 18 mm diameter inclusions were discernible in both sets of elastograms
(reverberant (figure 4(b), (g)) and subzone (figure 4(a), (f))) when imaging at 50 and 70 Hz. Figures 4(c), (d), (e),
(h), (i), () shows the reverberant elastograms computed by applying the reverberant method to individual
components of displacements estimates when imaging at 50 Hz (figures 4(c), (d), (¢)) and 70 Hz (figures 4(h), (i),
(5)). Although both inclusions were visible in elastograms computed using individual reverberant displacement
components, artifacts corrupted some elastograms, and the 12 mm diameter inclusion’s visibility depended on
the displacement component employed. Figures 5(a), (b), (c) shows the accuracy of the recovered shear modulus
of the inclusions (18 mm and 12 mm diameter) and surrounding background gel. The mean shear modulus of
the 18 mm inclusion estimated from composite reverberant elastograms (created by averaging elastograms
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Figure 4. Shear modulus elastograms reconstructed from the motion fields shown in figure 3 in units of [Pa] using the reverberant
method and overlapping subzone inversion method. The first row (a), (f) shows examples of elastograms computed by applying the
subzone inversion method to displacements obtained when imaging at 50 Hz and 70 Hz, respectively. The second row (b), (g) shows
the corresponding composite reverberant elastograms computed from individual displacement components. The remaining rows
(3-5) show reverberant elastograms calculated from each displacement component (x), (y), and (z).

computed from individual displacements) and subzone elastograms was 6.8% higher and 1.9% lower

respectively than its actual value when imaging at 50 Hz (figure 5(a)). For reverberant elastograms, the mean
shear modulus of the 18 mm inclusion computed from the X, Y and Z components of displacements was 1.3%,
3.3% and 14.1% higher than the actual modulus. The mean shear modulus of the 12 mm diameter inclusion
(figure 5(b)) estimated from subzone elastograms was 2.6% lower than the actual value when imaging at 50 Hz.
Composite reverberant elastograms and elastograms computed from the X, Y and Z displacement components
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Figure 5. (a)—(c) shows the error incurred in shear modulus recovered from the 18 mm inclusion, 12 mm inclusion, and the
background. Negative and positive error represents an underestimation and overestimation of the actual shear modulus, respectively.
(d) shows the CNR of the recovered elastograms on a dB scale.
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Figure 6. MR magnitude images (a)—(f) and shear modulus (g)—(r) elastograms recovered from a healthy volunteer when imaging at 50
Hz and 70 Hz. Recovered composite reverberant (g)—(i) and subzone (m)—(0) elastograms when imaging at 50 Hz. Composite
reverberant (j)—(1) and subzone (p)—(r) elastograms recovered when imaging a 70 Hz.

underestimated the shear modulus of the 12 mm diameter inclusion by 14.1%, 16.6%, 15.3 and 4.3%,
respectively. We observed a similar trend for the estimated shear modulus of the background gel figure 5(c). In
this case, the composite reverberant inversion was more accurate than the subzone inversion, and the most
accurate reverberant elastograms were estimated from the Y displacement component. Figure 5(d) shows the
CNR computed from the elastograms shown in figures 4(a)—(j). The CNR of subzone elastograms was
comparable to those produced with the reverberant inversion method. The CNR of composite reverberant
elastograms and those computed from the X displacement yielded the highest and lowest CNR, respectively,
when imaging at 50 or 70 Hz.

3.2. Clinical studies

3.2.1. Quantitative assessment displacement fields induced within the brain when imaging at 50 Hz and 70 Hz
Figures 6(a)—(r) shows representative examples of MR magnitude images and MR elastograms obtained from a
healthy brain. Like the phantom studies, there was no statistically significant difference (p > 0.05) in wave fields
obtained when imaging at 50 and 70 Hz. The levels of reverberance incurred in the brain were comparable to
those incurred in the phantoms. More specifically, the percentage of reverberant pixels in each displacement
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Figure 7. Reverberant elastograms recovered from individual displacement components when imaging the brain of a healthy
volunteer at 50 Hz (a)—(i) and 70 Hz (j)—(r) displayed in units of [Pa]. Elastograms were computed from the X (a)—(c), Y (d)—(f), and
Z(g)—(i) displacement components when imaging at 50 Hz at three different locations of the brain. The corresponding reverberant
elastograms recovered from the X (j)—(1), Y (m)—(0), and Z(p)—(r) displacement components are also shown when imaging at 70 Hz.

component (X, Y, and Z) was 90%, 88% and 92% when imaging at 50 Hz and 91%, 87% and 93% when imaging
at 70 Hz. The values were similar (88%-94%) for the other two brain data.

3.2.2. Assessment of shear modulus values of different brain tissues from reverberant and subzone elastograms
Representative reverberant (figures 6(g)—(1)) and subzone figures 6(m)—(r) nt coronal positions within the brain
when elastographic imaging was performed at 50 Hz (figures 6(g), (h), (i), (m), (n), (0)) and 70 Hz (figures 6(j),
k), 1), (p), (q), (r)). The global brain stiffnesses (GBT) estimated from subzone and reverberant elastograms
shown in figure 6 were 2.5 + 0.96 kPa and 2.3 £ 0.89 kPa, respectively, when imaging at 50 Hz. When imaging at
70 Hz, the GBT estimated from subzone and reverberant elastograms were 2.5 + 0.82 kPaand 2.89 +. 83 kPa,
respectively.

Figure 7 shows representative elastograms obtained from three different slices when the reverberant method
was applied to individual displacement components when imaging at 50 Hz (figures 7(a)—(i)) and 70 Hz
(figures 7(j)—(r)). The GBT estimated from X, Y, and Z motion component elastograms were 2.1 = 0 .88 kPa, 2.4
=+ 0.98 kPa, and 2.3 = 0.99 kPa, respectively, when imaging at 50 Hz. When imaging at 70 Hz, the GBT estimated
from the X, Y, and Z displacement components were 2.4 £ 0.82 kPa, 2.7 £ 0.75 kPa, and 2.89 4 0.92 kPa,
respectively. Figures 8(a), (b) shows box plots of the mean shear modulus of the whole brain, white matter, and
gray matter estimated from composite reverberant and subzone elastograms for the volunteers employed in this
study for 50 Hz and 70 Hz. At both frequencies, the global shear modulus of the brain was consistent with values
reported in Murphy et al (Murphy et al 2013), Ingolf et al (Sack et al 2011), Matthew et al (Murphy et al 2011).
and Arani et al (Arani et al 2015). The shear modulus of the white and gray matter was consistent with results
previously reported (Zhang et al 2011, Johnson et al 2013a, 2013b). Figures 8(c), (d) shows box plots of the mean
shear modulus of the whole brain, white matter, and gray matter estimated from reverberant elastograms
computed from individual displacement components for 50 Hz and 70 Hz. Table 4 summarizes the shear
modulus of the entire brain, white matter, and gray matter computed from reverberant and subzone elastograms
for the volunteers employed in this study.

4, Discussion

This study introduced an analog of the reverberant shear wave elastographic imaging technique previously
developed for ultrasound elastography (Parker et al 2017), now adapted for MRE. Reverberant elastography
assumes a superposition of waves generated by multiple point sources, and reflections will generate a complex
3D shear wave field. Under these conditions, the two-dimensional autocorrelation function of the complex wave
field and the phase gradient provides fast and accurate estimates of the wavenumber from which shear wave
speed and modulus are derived. Reverberant elastography has been demonstrated with ultrasound (Parker et al
2017) and optical coherence tomography (Zvietcovich et al 2019, Ge et al 2022) using multiple point drivers.
However, to our knowledge, this is the first reported study demonstrating its utility with MRE and its feasibility
in the brain using a single mechanical driver. We used the goodness of fit performance metric to quantify the
degree of reverberance in different displacement components. We also studied three healthy volunteers to assess
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Figure 8. Box plots of the mean shear modulus of the whole brain (FB), gray matter (GM), and white matter (WM) for all subjects in
this study. Showing the mean shear modulus computed by applying either the subzone inversion or the reverberant method
(composite) to measured displacements when imaging at 50 Hz (a) and 70 Hz (b). Also shown are box plots of the mean shear modulus
computed when the reverberant method was applied to individual displacement components denoted by the subscript of the
displacement component employed when imaging at 50 Hz (c) and 70 Hz (d).

how reverberant elastography performs within the clinical setting. The primary findings of this investigation
were as follows:

. Asingle mechanical source generates a complex wave field (reverberant) in constrained phantoms, quantified

by assessing how well the measured autocorrelation function matched the theoretically derived one. Applying
the reverberant shear modulus estimation method to the resulting shear wave fields produced elastography
with variable accuracy (83.2%-98.7%) and CNR ranging from 63.1 to 73 dB (figure 5).

. The performance (accuracy and CNR) of subzone and composite reverberant elastograms were comparable.

However, the performance of reverberant elastograms degraded marginally when reverberant elastograms
were computed from a single displacement component (figure 5).

. The reverberant reconstruction method produced meaningful elastograms when applied to one displace-

ment component, but performance varied based on the displacement component used. We observed the best
performance when reconstructions were performed using all displacement components. This raises concerns
about the usefulness of reverberant elastograms produced from a single displacement component obtained
from a partially reverberant field.

. The mean shear modulus of the whole brain, white, and gray matter estimated from composite reverberant

and subzone elastograms obtained from healthy volunteers were consistent with previously reported shear
modulus estimates of the healthy brain.

In ultrasound-reverberant elastography, elastograms acquired at higher frequencies were superior to those

obtained atlower frequencies (Parker et al 2017, Ormachea et al 2019); in this study, the quality of elastograms
produced at 50 and 70 Hz was similar. Figure 2 demonstrates the impact of attenuation on the displacements
when images are acquired at 50 Hz and 70 Hz. Despite the reduction in shear wave amplitude, the displacement
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Table 4. Average Stiffness values for different brain regions using subzone and reverberant reconstruction approaches.

Volunteer
Sex (M/F) Age (years) Frequency (Hz) Method Motion Component % Reverberance Gray matter (kPa) White matter (kPa) Whole brain (kPa)
F 73 50 Reverberant X 89 2.03+0.65 2.44+0.45 2.36 £0.85
Y 91 2.01£0.57 2.54+0.63 2.27+£0.82
Z 92 1.93 £ 0.64 2.34+0.59 2.19+£0.72
all N/A 2+0.57 2.4144+0.54 2.34540.67
subzone all N/A 1.93 £0.62 2.34+0.68 2.2374+0.74
70 Reverberant X 20 2.6 :0.57 3.240.63 2.74+0.73
Y 91 2.62+0.42 3.54+0.75 2.96 £0.91
Z 89 2.70 £0.58 3.2+0.57 2.92+0.82
all N/A 2.63 £0.54 2.85+0.69 2.69 £0.72
subzone all N/A 2.58 +0.59 3.1+0.69 2.75+0.82
F 20 50 Reverberant X 92 2.2+0.65 2.8+0.74 2.28 £0.79
Y 90 1.92 £0.68 2.73£0.64 2.53+0.84
Z 91 240.53 2.94+0.54 2.54+0.73
all N/A 1.99 £0.58 2.67 £0.59 2.45+0.78
subzone all N/A 2.1+£0.66 2.56 £0.55 2.39 £0.69
70 Reverberant X 89 2.7+£0.69 3.3+0.68 2.98 £0.79
Y 93 2.7+0.54 3.31+0.58 3.10+0.83
Z 94 2.65+0.43 3.01£0.63 2.93+0.95
all N/A 2.61+0.54 3.12+0.62 2.94+0.75
subzone all N/A 2.48 +£0.64 2.90 £0.53 2.77 £0.81
M 22 50 Reverberant X 90 2.14+£0.79 2.39+0.93 2.1+0.88
Y 88 2.51+1.07 2.67+1.1 2.44+0.98
Z 92 2.35+1.05 2.50 +£0.90 2.3+0.99
all N/A 2.240.88 2.49+0.88 2.34+0.89
subzone all N/A 1.95+0.94 2.39+0.93 2.5+0.96
70 Reverberant X 91 2.63+0.71 2.85+0.68 2.49+0.82
Y 87 2.85+0.82 34+0.74 2.74+0.75
Z 93 2.80+£0.81 3.05+0.84 2.89+0.92
all N/A 2.4+0.82 2.7+0.75 2.89+0.83
subzone all N/A 2.52+0.79 2.6+0.86 2.5+0.82
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amplitudes at 70 Hz were high enough to produce reasonable elastograms. Although we increased the amplitude
of shear waves when imaging at 70 Hz, however, since the mechanical driver is pneumatic, the amplitude of the
shear wave at the passive driver is likely to be much less than at the active driver. Therefore, future studies will
measure the amplitude shear waves at both the active and passive drivers during imaging.

The composite elastograms and those computed from the individual displacement components
overestimated the modulus of the 18 mm diameter inclusion (see figure 5(a)). The 12 mm diameter inclusion
shear modulus was underestimated in all cases (see figure 5(b)). The cause of this behavior is unclear, but it may
be due to using a suboptimal kernel or a partially reverberant field. We expect that using larger kernels will
increase the CNR but cause the modulus of smaller inclusion to be underestimated. Employing a larger kernel
would also reduce the background noise observed in the elastograms (see figure 5(c)). In contrast, smaller
kernels should provide more accurate results, although with alower CNR. Further work is needed to fully
understand the kernel size’s impact on the experiment’s performance and to determine the underlying cause of
the observed behavior.

Model-based inversion approaches need all three displacement components to compute shear modulus
precisely (Doyley 2012). Researchers have demonstrated theoretically that computing shear modulus with fewer
components reduces the accuracy of the resulting elastograms (Skovoroda et al 1994). Sampling error and poor
ultrasound penetration, especially in patients with high body mass index (Zhao et al 2014) cause the diagnostic
performance of ultrasound elastography for detecting and staging liver fibrosis to be lower than that achieved
with MRE (Li et al 2021). Figure 5 demonstrates that reverberant shear wave elastography can create reasonably
accurate elastograms (on the order of 16.8% error) from a single displacement component. Although shear
elastograms computed from individual displacement components may differ in appearance (see figure 7), the
average modulus computed from each brain region was similar (see figure 8). Using only a single displacement
component when performing reverberant MR elastography is not recommended due to inconsistent results
obtained with different displacement components. We recommend that composite reverberant elastograms be
computed from all three displacement components to obtain the best results.

Researchers have demonstrated that longitudinal waves make it difficult to reconstruct shear modulus from
asingle displacement field (Honarvar et al 2013). The presence of longitudinal waves could be one reason the
performance of reverberant elastograms varied with different components of displacements. The curl operator
is typically used to minimize the impact of longitudinal waves. The bandpass filter employed in this study was
equivalent to computing the vector curl of the complex wave field (Sinkus et al 2005). Studies performed on a
constrained gelatin phantom and the brains of healthy volunteers demonstrated that reverberant shear wave
fields could be generated using standard elastographic imaging equipment (i.e. a single mechanical driver).
Besides mechanical sources, other factors, such as the position of the external reflectors, size of the mechanical
sources, shear wave attenuation, vibration amplitude, etc, will dictate the degree of reverberance induced within
tissues. The impact of these variables on reverberant fields induced in soft tissue is beyond the scope of this work.

Nevertheless, intuitively, we expect to use fewer mechanical sources to generate a fully reverberant shear
wave field in constrained organs such as the brain compared to unconstrained organs. Using multiple shakers
can direct waves in different directions. Furthermore, the vibration from these sources can be out of phase to
reduce the formation of standing waves. Therefore, we plan to investigate the clinical performance of
reverberant brain elastograms obtained using a mechanical actuation system like that described in (Anderson
etal 2016, Li et al 2021), which employs multiple mechanical sources.

Alimitation of this study is that we did not perform any imaging on an unconstrained phantom or organ. To
address this, we plan to compare the performance of the shear modulus estimation method on both constrained
and unconstrained phantoms. Although figures 6 and 7 demonstrated that the reverberant elastography method
produces clinically useful elastograms, the spatial resolution of acquisition may be another factor that may affect
the shear modulus. In this study, we used a 2.5 mm isotropic voxel size. Curtis et al (Johnson et al 2014 ). used 2
mm, and (Zhang etal 2011). used 3 mm in their studies. Reconstructions from only one component of motion
displayed consistent shear modulus values (see table 4). We are currently conducting studies on a larger cohort of
patients to evaluate the clinical performance of the reverberant elastograms; the results we will report in a future
publication. Although the reconstructions from reverberant elastography have a lower spatial resolution, the
reconstruction times are much faster. The shorter reconstruction times and accurate results make the technique
well-suited for clinical studies in the brain.

5. Conclusion

This study corroborated the hypothesis that reverberant elastography produces reliable shear modulus
elastograms of constrained organs, such as the brain, with a single mechanical driver. Studies performed on a
brain-shape phantom demonstrated that the accuracy of reverberant elastograms computed using all three
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displacement components was comparable to those calculated using the subzone inversion method. The clinical
study results were consistent with those of the phantom study (i.e. the performance of reverberant and subzone
elastograms was comparable) and sufficiently encouraging enough to warrant further evaluation with a larger
cohort of subjects.
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