
Citation: Parker, K.J. Limitations of

Curl and Directional Filters in

Elastography. Acoustics 2023, 5,

575–585. https://doi.org/10.3390/

acoustics5020035

Academic Editor: Jay N. Meegoda

Received: 9 May 2023

Revised: 13 June 2023

Accepted: 15 June 2023

Published: 16 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

acoustics

Article

Limitations of Curl and Directional Filters in Elastography
Kevin J. Parker

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA;
e-kevin.parker@rochester.edu

Abstract: In the approaches to elastography, two mathematical operations have been frequently
applied to improve the final estimate of shear wave speed and shear modulus of tissues. The
vector curl operator can separate out the transverse component of a complicated displacement field,
and directional filters can separate distinct orientations of wave propagation. However, there are
practical limitations that can prevent the intended improvement in elastography estimates. Some
simple configurations of wavefields relevant to elastography are examined against theoretical models
within the semi-infinite elastic medium and guided waves in a bounded medium. The Miller–
Pursey solutions in simplified form are examined for the semi-infinite medium and the Lamb wave
symmetric form is considered for the guided wave structure. In both cases, we examine simple
but practical wave combinations that can prevent the curl and directional filter operations from
directly providing an improved measure of shear wave speed and shear modulus. Additional factors
including signal-to-noise and the support of filters also restrict the applicability of these strategies for
improving elastographic measures. Thus, some implementations of shear wave excitations applied to
the body and to bounded structures within the body are shown to involve waves that are not easily
resolved by the vector curl operator and directional filters. These limitations may be overcome by
more advanced strategies or simple improvements in baseline parameters including the size of the
region of interest and the number of shear waves propagated within.
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1. Introduction

The use of the vector curl operator and directional filters have been key elements in a
number of elastography techniques. The curl is used because shear waves can be separated
from any irrotational (dilatational or longitudinal) waves by the curl operator [1,2]. The
curl operator can only be applied rigorously to the components of displacement vector
fields in three dimensions (3D), and so has been used in conjunction with 3D magnetic
resonance imaging (MRI) data sets [3–7], and in fewer ultrasound systems [8,9].

Directional filters are used where there is a desire to separate out shear wave prop-
agation from different quadrants or angles, so as to capture separate estimations of their
behavior. These have been utilized in ultrasound, optical, and MRI applications [10–17].

Given the well-established use of these processes in elastography, it may seem that
they will generally lead to an improved estimate of shear wave speed. However, there are
limits to both of these approaches and simple configurations where neither the curl operator
nor the directional filters lead directly to a more accurate estimate of shear modulus. These
practical limits are explored with simple examples, first from continuous waves in a semi-
infinite medium and then within a guided wave structure.
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2. Theory

The curl operator has a central role in vector calculus and in rotational waves including
shear waves. In cartesian coordinates, it is defined as:
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The curl operator is well defined for analytical expressions used in the later sections.
For experimental results, finite differences and more sophisticated approaches can be
used as an approximation given discrete samples of the vector displacement fields. The
computational issues can lead to additional levels of complexity [18,19] that are beyond the
scope of this paper.

Within these issues, it is common to make reference to the Laplacian operator, involv-
ing second spatial derivatives of the components of the displacement vector, along with the
governing Helmholtz equation and the direct inverse of the Helmholtz equation. These are
given, respectively, as follows:

∇2 f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 , (2)

∇2 f = −k2 f , (3)

∇2 f
f

= −k2. (4)

These operations are defined for 3D data sets and if only a 2D imaging plane is avail-
able, assumptions must be made about the out-of-plane directions in order to implement
the full definitions.

Directional filters can be applied to 2D and 3D spatial distributions, furthermore
with an additional dimension of time in transient applications. These can take a variety
of forms but bear a general relation to the Fourier transform of the detected wave, and
also the limitations of filtering given limited windows (limited support of filters). The
Gabor directional filters are a classical example of practical filters that can discriminate and
separate different orientations [20], albeit within the fundamental limitations on the ability
to discriminate in both the image or spatial domain and the transform domain.

The well-known uncertainty relationship inherent to Fourier transform operations [21]
is paramount in elastography because tissues and organs are inherently varying (grey
vs. white matter in the brain, cortex vs. medulla in the kidney), and of limited size so
limited support of directional filters is a practical issue, leading directly to constraints on
discriminating between different wave directions for the purpose of analysis. Examples
are provided to illustrate practical situations and all numerical examples are calculated in
Mathematica (version 12.1.1, Wolfram Research, Champaign, IL, USA). These issues will be
illustrated in the next sections.

3. Limitations within a Semi-Infinite Medium

A canonical situation highly relevant to elastography is the simple sinusoidal excitation
source on a semi-infinite medium. This was treated adeptly by Miller and Pursey [22] and
also placed in context by Graff [1]. Three major categories of waves are produced by a
small contact vibrating on the surface: longitudinal waves, shear waves, and surface or
Rayleigh waves. These are illustrated in Figure 1.
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Figure 1. Mechanical waves in optical coherence elastography in a semi-infinite material. In (a), axial 
motion at the surface of a tissue sample is produced by an excitation source for the generation of 
mechanical wave propagation. (b) Numerically simulated diagram depicting different mechanical 
wave branches generated when an axial harmonic load is applied at the surface of a semi-infinite 
elastic medium. Four waves are identified: surface acoustic wave (traveling along the surface), shear 
wave, compressional wave, and longitudinal shear wave (both traveling towards increasing depth). 
Colormap represents normalized displacement magnitude in arbitrary units. [23]. 

3.1. The 2D Imaging Plane in Arbitrary Location 
It can be simply noted from Figure 1a,b that arbitrary imaging planes having an un-

certain position with respect to the single source can lead to problems with interpretation. 
Consider an imaging plane parallel to the surface, such that the imaged region of interest 
(ROI) is oriented along the x-axis in Figure 1 and extends out of the page. If the ROI is 
positioned under the source, a circular pattern of displacement is detected, centered under 
the position of the surface source, and possessing the correct temporal frequency but a 
wavelength that appears anomalously large and bidirectional. This can be understood as 
an en face or C-scan cut of the pattern of Figure 1b. In other cases with an arbitrary angle 
with respect to the surface, the unknown angle and vector projection of the propagating 
wave onto that plane leads to biased estimates towards larger wavelengths [24]. Neither 
curl nor directional filters can resolve this problem within a single 2D imaging plane. The 
curl operator requires 3D information to implement Equation (1), which is not available 
in a 2D imaging plane. The directional filters are not useful in this example because the en 
face imaging plane is oriented transverse to the downward principal direction of propa-
gating waves. The problem can be resolved with a priori enforcement of the known posi-
tioning of the imaging plane with respect to the source. In practice this leads to approaches 
that align the source and imaging plane: Echosens Fibroscan and acoustic radiation force 
systems (ARFI) are prominent examples of fixed configurations [25,26]. Alternatively, ex-
amining a set of estimates across different angles in a freehand system has been proposed 
[24] within the context of the probability distribution of sampled wavelengths. 

3.2. The 2D Imaging Plane with Several Shear Wave Sources 
This is a practical situation, illustrated with a pair of sources and the superposition 

of the Miller and Pursey [22] solution (Figure 1) in order to generate a pair of waves that 
superimpose with some angular alignment [27,28]. Figure 2 describes a far-field simplifi-
cation of the middle region between two small external sources vibrating normally to the 
surface of a semi-infinite medium. A pair of plane waves are represented as having iden-
tical amplitude and angle with respect to the depth (x-axis). Along the midline, the shear 
vectors add to create an x-directed displacement. To an imaging system sensitive to the x-
axis, this appears similar to a longitudinal shear wave but with an elongated wavelength 
(higher shear speed than the nominal shear wave velocity of 𝑐௦ = ඥ𝐺 𝜌⁄ , where 𝐺 is the 
shear modulus and 𝜌 is the density of the elastic material). The error is proportional to 1 ⁄ cosሺ𝜃ሻ, where 𝜃 is the angle with respect to the x-axis in Figure 2, and this error is not 
readily resolved for the case of the x-sensitive 2D imaging system. 

Figure 1. Mechanical waves in optical coherence elastography in a semi-infinite material. In (a), axial
motion at the surface of a tissue sample is produced by an excitation source for the generation of
mechanical wave propagation. (b) Numerically simulated diagram depicting different mechanical
wave branches generated when an axial harmonic load is applied at the surface of a semi-infinite
elastic medium. Four waves are identified: surface acoustic wave (traveling along the surface), shear
wave, compressional wave, and longitudinal shear wave (both traveling towards increasing depth).
Colormap represents normalized displacement magnitude in arbitrary units [23].

3.1. The 2D Imaging Plane in Arbitrary Location

It can be simply noted from Figure 1a,b that arbitrary imaging planes having an
uncertain position with respect to the single source can lead to problems with interpretation.
Consider an imaging plane parallel to the surface, such that the imaged region of interest
(ROI) is oriented along the x-axis in Figure 1 and extends out of the page. If the ROI is
positioned under the source, a circular pattern of displacement is detected, centered under
the position of the surface source, and possessing the correct temporal frequency but a
wavelength that appears anomalously large and bidirectional. This can be understood as
an en face or C-scan cut of the pattern of Figure 1b. In other cases with an arbitrary angle
with respect to the surface, the unknown angle and vector projection of the propagating
wave onto that plane leads to biased estimates towards larger wavelengths [24]. Neither
curl nor directional filters can resolve this problem within a single 2D imaging plane. The
curl operator requires 3D information to implement Equation (1), which is not available in a
2D imaging plane. The directional filters are not useful in this example because the en face
imaging plane is oriented transverse to the downward principal direction of propagating
waves. The problem can be resolved with a priori enforcement of the known positioning of
the imaging plane with respect to the source. In practice this leads to approaches that align
the source and imaging plane: Echosens Fibroscan and acoustic radiation force systems
(ARFI) are prominent examples of fixed configurations [25,26]. Alternatively, examining a
set of estimates across different angles in a freehand system has been proposed [24] within
the context of the probability distribution of sampled wavelengths.

3.2. The 2D Imaging Plane with Several Shear Wave Sources

This is a practical situation, illustrated with a pair of sources and the superposition
of the Miller and Pursey [22] solution (Figure 1) in order to generate a pair of waves
that superimpose with some angular alignment [27,28]. Figure 2 describes a far-field
simplification of the middle region between two small external sources vibrating normally
to the surface of a semi-infinite medium. A pair of plane waves are represented as having
identical amplitude and angle with respect to the depth (x-axis). Along the midline, the
shear vectors add to create an x-directed displacement. To an imaging system sensitive
to the x-axis, this appears similar to a longitudinal shear wave but with an elongated
wavelength (higher shear speed than the nominal shear wave velocity of cs =

√
G/ρ,

where G is the shear modulus and ρ is the density of the elastic material). The error is
proportional to 1/cos(θ) , where θ is the angle with respect to the x-axis in Figure 2, and
this error is not readily resolved for the case of the x-sensitive 2D imaging system.
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Figure 2. Two external sources are applied to a semi-infinite medium. (a) Approximating the far 
field of the Miller-Pursey solution (Figure 1), we examine a pair of polarized shear waves propagat-
ing in the 𝑘ଵ and 𝑘ଶ direction with transverse particle displacements ((b–d), respectively). The su-
perposition of these along the center line produces an 𝑥ො-directed displacement with an apparent 
wavelength longer than the true shear wave wavelength. 

Directional filters applied to the case of the superimposed pair of waves shown in 
Figures 2 and 3 can fail to enable an accurate assessment of the underlying components 
with the correct wavelength of 𝜆 = 𝑐௦ 𝑓⁄ , where f is the frequency of the shear wave. Di-
rectional filters can take many forms in two-dimensional (2D) or 3D spatial transforms or 
mixed spatial-temporal filters. Many bear some similarities to the classical Gabor direc-
tional filters that have been widely used in imaging applications [20] along with the in-
herent limits on resolution between the spatial and transform domains [21]. 

 
Figure 3. Vector and amplitude representation of the x-component displacements within an ROI 
taken from the configuration of Figure 2. The vertical axis y = 0 in the middle of this figure is the 
centerline between two small external sources and with angle theta set to 𝜋 8⁄ . The pattern appears 
to resemble a longitudinal shear wave pattern with a wavelength in the x-direction that is biased 
upward from the shear wavelength. 

To illustrate the limitations, we examine the 2D spatial Fourier transform of the pair 
of plane waves produced by two external sources as illustrated in Figure 2 and with the 
angle 𝜃 taken as 𝜋 16⁄  radians. The practical issue here is that we will necessarily have 
a finite window on the function, so instead of obtaining ℑሼ𝑈௫ሺ𝑥, 𝑦ሻሽ , we obtain 

Figure 2. Two external sources are applied to a semi-infinite medium. (a) Approximating the far field
of the Miller-Pursey solution (Figure 1), we examine a pair of polarized shear waves propagating in
the k̂1 and k̂2 direction with transverse particle displacements ((b–d), respectively). The superposition
of these along the center line produces an x̂-directed displacement with an apparent wavelength
longer than the true shear wave wavelength.

Directional filters applied to the case of the superimposed pair of waves shown in
Figures 2 and 3 can fail to enable an accurate assessment of the underlying components with
the correct wavelength of λ = cs/ f , where f is the frequency of the shear wave. Directional
filters can take many forms in two-dimensional (2D) or 3D spatial transforms or mixed
spatial-temporal filters. Many bear some similarities to the classical Gabor directional filters
that have been widely used in imaging applications [20] along with the inherent limits on
resolution between the spatial and transform domains [21].
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Figure 3. Vector and amplitude representation of the x-component displacements within an ROI
taken from the configuration of Figure 2. The vertical axis y = 0 in the middle of this figure is the
centerline between two small external sources and with angle theta set to π/8. The pattern appears
to resemble a longitudinal shear wave pattern with a wavelength in the x-direction that is biased
upward from the shear wavelength.

To illustrate the limitations, we examine the 2D spatial Fourier transform of the pair of
plane waves produced by two external sources as illustrated in Figure 2 and with the angle
θ taken as π/16 radians. The practical issue here is that we will necessarily have a finite
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window on the function, so instead of obtaining I{Ux(x, y)}, we obtain I{W(x, y)Ux(x, y)},
where I{ } is the 2D spatial transform operator, Ux(x, y) is the measured displacements
in the x direction, and W(x, y) is the spatial window applied, where small windows are
typically preferred for spatial resolution. Figure 4a shows the magnitude of the transform
utilizing a square window of 6 cm on edge (6λ in this example), close enough to the ideal
transform where we can distinguish two different waves and can reasonably filter these
with finite impulse response directional filters of the same spatial support. However, 6λ
windows are very unlikely to be achieved in many elastography studies, for example at
50 Hz shear wave frequency and assuming cs = 1 m/s in soft tissue, the wavelength is
2 cm, so a 6λ window of 12 cm on a side will average over many substructures of interest
within a large organ such as the brain or kidney. More realistically, Figure 4b shows the
transform magnitude with a 2λ (2 cm) square window. Here, the transform indicates a
predominantly x-directed wave, commensurate with the appearance of Figure 3 and with
error and uncertainty in the nominal wavelength proportional in this simple example to
1/cos(θ).
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4. Limitations within Guided Wave Structures 
Things get more complicated when a structure such as a tendon or a cornea can mod-

ify the phase velocity by guiding a wave within its boundaries. The exact solution will 
depend on boundary conditions, shape, size, and material properties, but the key message 
here is that because the general solutions allow multiple displacement modes, a wide 
range of different phase velocities are possible at a single frequency, and no one of these 
phase velocities (at a single frequency) is likely to match the phase velocity of shear waves, 𝑐௦, expected within an infinite medium. The theory behind these cases was magnificently 
illustrated in the 1870s through the early 1900s with landmark papers from Pochhammer 
[29], Rayleigh [30], Love [31], and Lamb [32,33]. 

We will follow Lamb’s 1917 derivation because this spurred far-reaching research for 
over a century of new applications, eventually arriving in elastography where structures 
such as biofilms [34], corneas [23,35], and arterial walls [36] are under investigation. An 
illustration of the two possible modes, symmetric and antisymmetric, propagating in a 
thin structure with parallel sides is shown in Figure 5. 

Figure 4. Magnitude plots in contour form of the right half (+kx) of the spatial Fourier transform of
the pair of waves described in Figure 2, however, with practical limits on the rectangular window
limiting the extent of the ROI. In (a), a rectangular window of 6λ is applied, and the resulting
transform can resolve two waves separated by an angle φ. However, in (b), a rectangular window
of only 2λ is applied and the resulting uncertainty in the spatial frequency domain blurs the peaks
leading to a biased estimate of k̂. This fundamental window effect also pertains to the limited support
of directional filters. In this color scale bright yellow is the peak amplitude and dark blue represents
low or zero amplitude.

4. Limitations within Guided Wave Structures

Things get more complicated when a structure such as a tendon or a cornea can
modify the phase velocity by guiding a wave within its boundaries. The exact solution
will depend on boundary conditions, shape, size, and material properties, but the key
message here is that because the general solutions allow multiple displacement modes,
a wide range of different phase velocities are possible at a single frequency, and no one
of these phase velocities (at a single frequency) is likely to match the phase velocity of
shear waves, cs, expected within an infinite medium. The theory behind these cases was
magnificently illustrated in the 1870s through the early 1900s with landmark papers from
Pochhammer [29], Rayleigh [30], Love [31], and Lamb [32,33].

We will follow Lamb’s 1917 derivation because this spurred far-reaching research for
over a century of new applications, eventually arriving in elastography where structures
such as biofilms [34], corneas [23,35], and arterial walls [36] are under investigation. An
illustration of the two possible modes, symmetric and antisymmetric, propagating in a thin
structure with parallel sides is shown in Figure 5.



Acoustics 2023, 5 580Acoustics 2023, 5 580 of 585 
 

 

 
Figure 5. Guided waves in structures can have distinctly different modes of propagation. (a) Thin-
plate-type tissue (interfacing air at the top and liquid fluid at the bottom) being locally excited with 
axial motion at the top surface can propagate “leaky Lamb waves”. (b) Classical Lamb waves are 
generated with free boundaries and guided by the thin plate in the quasi-symmetric (𝑆) and quasi-
antisymmetric (𝐴) zero-order modes. Red and blue fields represent positive and negative displace-
ment, respectively [23]. 

A significant issue for the elastography of structures that can guide waves is that the 
modes allow for propagation in the long axis of periodic displacements that have a phase 
velocity below, above, or much higher than the nominal shear wave velocity of 𝑐௦ =ඥ𝐺 𝜌⁄ , where 𝐺 is the shear modulus and 𝜌 is the density of the elastic material. An ex-
citation at one frequency can, in theory and in practice, excite more than one mode of 
propagation, each with a separate phase velocity in the direction of the long axis, and none 
matching the nominal shear wave velocity [2,37,38]. A numerical example following the 
derivations of Lamb [33] is given in the Appendix A for the purpose of illustration. How-
ever, the main question before us is: in the case of a guided wave structure, will either the 
curl operator or some set of directional filters provide us a direct estimate of spatial fre-
quency directly and solely related to 𝑐௦? The answer is no, at least not without rare and 
special conditions. The form of the solutions from Pochhammer, Rayleigh, Love, and 
Lamb are all separable with a phase velocity in the long axis z given as expሾ𝐼𝜉𝑧ሿ, where 𝜉 
is the wavenumber derived from a complicated interaction of factors including boundary 
conditions, geometry, and the longitudinal wave speed, and I is the imaginary unit. The 
component directions of the propagations are separable along the long axis and in the 
lateral directions respectively, with no need for filters to separate them; however, no spa-
tial wavenumber will reduce to the nominal 𝑘௦ = 𝜔 𝑐௦⁄  except asymptotically at relatively 
high frequencies. There is, however, a way to more fully characterize the structure under 
examination: given a priori knowledge of the shape and size of the structure and meas-
urements of a particular mode across different frequencies, an inverse solution can be 
generated for the unknown material properties [39–41]. In more general terms, the meas-
ured dispersion of the phase velocity can be input to appropriate models to estimate the 
unknown shear modulus of a waveguide. 

For the case of Lamb waves, we can show that the curl operator does provide a peri-
odic pattern that can be further analyzed to estimate the shear modulus. An example is 
given in Figure 6 of the symmetric mode of the soft material (G = 1000 Pa) flat sample, 2 
cm thick, excited from the left side at 100 Hz and with parameters described more fully in 
the appendix. The shear wave speed in this example is 𝑐௦ = 1 m/s and we would like to 
estimate that and infer the correct value of G from the observed displacements. However, 
we find repeating patterns along the x-axis in the symmetric mode, also in the patterns 
resulting from the curl operator that are periodic along the long axis with the apparent 
wavelength consistent with twice the shear velocity, where cycles repeat every 2 cm 

Figure 5. Guided waves in structures can have distinctly different modes of propagation. (a) Thin-
plate-type tissue (interfacing air at the top and liquid fluid at the bottom) being locally excited
with axial motion at the top surface can propagate “leaky Lamb waves”. (b) Classical Lamb waves
are generated with free boundaries and guided by the thin plate in the quasi-symmetric (S0) and
quasi-antisymmetric (A0) zero-order modes. Red and blue fields represent positive and negative
displacement, respectively [23].

A significant issue for the elastography of structures that can guide waves is that the
modes allow for propagation in the long axis of periodic displacements that have a phase
velocity below, above, or much higher than the nominal shear wave velocity of cs =

√
G/ρ,

where G is the shear modulus and ρ is the density of the elastic material. An excitation at
one frequency can, in theory and in practice, excite more than one mode of propagation,
each with a separate phase velocity in the direction of the long axis, and none matching the
nominal shear wave velocity [2,37,38]. A numerical example following the derivations of
Lamb [33] is given in the Appendix A for the purpose of illustration. However, the main
question before us is: in the case of a guided wave structure, will either the curl operator or
some set of directional filters provide us a direct estimate of spatial frequency directly and
solely related to cs? The answer is no, at least not without rare and special conditions. The
form of the solutions from Pochhammer, Rayleigh, Love, and Lamb are all separable with
a phase velocity in the long axis z given as exp[Iξz], where ξ is the wavenumber derived
from a complicated interaction of factors including boundary conditions, geometry, and
the longitudinal wave speed, and I is the imaginary unit. The component directions of the
propagations are separable along the long axis and in the lateral directions respectively,
with no need for filters to separate them; however, no spatial wavenumber will reduce
to the nominal ks = ω/cs except asymptotically at relatively high frequencies. There
is, however, a way to more fully characterize the structure under examination: given a
priori knowledge of the shape and size of the structure and measurements of a particular
mode across different frequencies, an inverse solution can be generated for the unknown
material properties [39–41]. In more general terms, the measured dispersion of the phase
velocity can be input to appropriate models to estimate the unknown shear modulus of a
waveguide.

For the case of Lamb waves, we can show that the curl operator does provide a
periodic pattern that can be further analyzed to estimate the shear modulus. An example is
given in Figure 6 of the symmetric mode of the soft material (G = 1000 Pa) flat sample, 2 cm
thick, excited from the left side at 100 Hz and with parameters described more fully in the
Appendix A. The shear wave speed in this example is cs = 1 m/s and we would like to
estimate that and infer the correct value of G from the observed displacements. However,
we find repeating patterns along the x-axis in the symmetric mode, also in the patterns
resulting from the curl operator that are periodic along the long axis with the apparent
wavelength consistent with twice the shear velocity, where cycles repeat every 2 cm instead
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of every 1 cm in the long axis. However, it can be shown that by further applying the
Laplacian operator in two dimensions, then using this within a Helmholtz direct inversion
formula, the result is capable of providing an estimate of the shear modulus, as described in
more detail in the Appendix A. In summary, the apparent wavelength seen in Lamb waves
(or more generally, guided waves in long structures) can be much longer or much shorter
than the shear wavelength found in a semi-infinite medium. Neither the curl operator
nor directional filters can change this pattern. Additional mathematical steps would be
required to estimate the underlying shear modulus G of the material.
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Figure 6. Vector streamline diagram of 6 cm segment of an infinite plate in the horizontal direction
and out-of-page direction, with propagating symmetric Lamb waves at 100 Hz. Periodic repeats
are seen every 2 cm; however, a shear wave of this material in an infinite medium would have a
wavelength of 1 cm. The curl operator and directional filters will not provide a direct 1 cm wavelength,
further steps are required.

Another important issue with the use of curl in this example, and more generally in
elastography, is that estimates of displacements in tissues tend to be noisy due to the small,
micron-scale displacements commonly utilized across all the imaging modalities, along
with the need for speed in data acquisition (limited averaging across repetitions) and the
reality of physiological motions and electronic noise. Taking the curl’s spatial derivatives
using finite difference approximations will notoriously amplify noise. In this example,
one must estimate the curl and then the Laplacian in order to complete an estimation
of the shear wave speed, essentially three successive orders of spatial derivatives which
amplify noise. This would be followed by a quotient of terms for the direct Helmholtz
equations [42,43]. Thus, more sophisticated noise reduction and regularization strategies
may be required [44,45].

5. Discussion

In optical coherence tomography, MRI, and ultrasound imaging systems, one of the
fastest means of obtaining information for elastography is to obtain a single component of
displacement or velocity in a 2D imaging plane. For common situations where external
sources are providing continuous shear waves, simple configurations are shown to be
resistant to improved analysis by the use of curl or directional filters. The curl operator
requires volumetric information which is not available in simple 2D imaging ROIs. Direc-
tional filters’ ability to separate and discriminate between different waves is limited by the
support of the filters and the size of the ROI, such that practical configurations resembling
a pair of Miller–Pursey sources can produce wavefronts that are easily misinterpreted and
not resolvable by directional filters.

One means of mitigating these difficulties is to design the source and imaging plane
in a fixed geometry, for example in Echosens and ARFI systems where the excitation and
imaging planes are preconfigured [25,26].

Another means of mitigating the difficulties is to establish a 3D set of shear waves
across multiple directions, producing the reverberant shear wave field. In that case, the
imaging system ROI can have an arbitrary configuration with respect to the organ of
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interest, and the estimators take advantage of the simple limiting mathematics of the
expected ensemble of waves in 3D [46–48]. This enables the freehand orientation of the
imaging plane, as is common with hand-held imaging probes, in addition to preset 3D scan
geometries.

A limitation of this paper is that for both the curl operator and the directional filters,
their ability to improve estimates of the shear modulus will diminish as a function of
specific parameters, including the noise level in the displacement estimates and the size of
the imaging ROI relative to the wavelength. Further work is required to characterize these
error curves and trends for specific implementations.
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Appendix A

Following Lamb [33], we calculate the waves within a long parallel plate, with stress-
free boundary conditions on the top and bottom surfaces, infinite in the x and z directions,
with waves propagating in the x direction and all z dependence and derivatives equal
to zero. We quote from Lamb [33] directly for the following section, and use his original
notation where σ is radial frequency, λ and µ are the Lamé constants, ρ is density, h
is the wavenumber associated with longitudinal waves in an infinite medium, k is the
wavenumber associated with shear waves in an infinite medium, and u and v are the
wave displacements in the x and y directions, respectively. Furthermore, x is the direction
of the long axis of the plate and the thickness in the y axis is defined as 2f, A and B are
amplitudes of the wave functions (constants), φ and ψ are the wavefunctions associated
with longitudinal and shear wave propagation, respectively, and α and β are additional
wavenumbers. The wavelength describing the resulting periodicity in the long axis is λ′.
Lamb’s derivation proceeds as follows:

Then we assume a time factor eiσt (omitted in the sequel), and write:

h2 =
ρσ2

λ + 2µ
, k2 =

ρσ2

µ
, (A1)

so that (
∇2 + h2

)
φ = 0,

(
∇2 + k2

)
ψ = 0. (A2)

We further assume, for the present purpose, periodicity with respect to x. This is most
conveniently done by means of a factor of eiξx, the wavelength being accordingly:

λ′ =
2π

ξ
. (A3)

Writing
α2 = ξ2 − h2, β2 = ξ2 − k2, (A4)

we have
∂2φ

∂y2 = α2φ,
∂2ψ

∂y2 = β2ψ. (A5)

The solutions for the internal stresses are:

pyy
µ =

{
A
(
ξ2 + β2) cosh α f − B2iξβ cosh β f

}
eiξx,

pxy
µ = ±

{
A2iξαsinhα f + B

(
ξ2 + β2)sinhβ f

}
eiξx . (A6)
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Equating these to the boundary conditions provide the allowable interrelationships
between the constants; in general, the multiple roots of the governing equations lead to
multiple modes that can propagate. Equations (A4) and (A5) are more profound than first
meets the eye; they effectively change the wavenumbers from simple dependence on shear
and longitudinal wave speeds to a more complicated set of wave speeds related to α, β,
and ξ, which in turn are related to a number of material factors and boundary conditions.
Finally, Lamb also states that when the motion is symmetrical with respect to the plane
y = 0 we assume, in accordance with Equation (A5):

φ = A cosh αyeiξx, ψ = Bsinhβyeiξx, (A7)

u =
∂φ

∂x
+

∂ψ

∂y
, v =

∂φ

∂y
− ∂ψ

∂x
. (A8)

The equations for displacement in the x and y directions are then given as:

u = {IAξ cosh αy + Bβ cosh βy}eIξx,
v = {Aαsinhαy− IBsinhβy}eIξx.

(A9)

Consistent with the long wavelength approximations (Lamb’s Equations (A6)–(A9)
and related discussion), we have chosen an example where a soft biological material
(G = 1000 Pa, ω = 2π× 100 s−1, cph = 1 m/s, λ = 1 cm) of thickness 2 cm in the y direction
and with a wave propagating in the x direction. The parameters for Equation (A9) are also
taken as consistent with Lamb’s remarks for the long wavelength approximations: A =
B = 1, ω = 2× π × 100 s−1, α = 99× π m−1, ξ = 100× π m−1, and β = I × 100×

√
3π

m−1. The resulting vector field and its curl are periodic in the x direction with an evident
wavelength of 2 cm, instead of 1 cm as would be the case for a shear wave in an infinite
medium of this material. The vector plot of a symmetric mode at 100 Hz is given in Figure 6.

Although the wavelength and phase velocity in the x direction are a factor of 2 higher
than in an infinite medium, the curl of this vector field is found by substituting Equation
(A9) into Equation (1) with the z derivatives assumed to be zero. The result is entirely
in the z-direction (out of page) and is of the form Beiξx(−β2 + ξ2)sinhβy. The Laplacian

of this has the form −BeIξx(β2 − ξ2)2sinhβy. Thus, a division of the two representing a
direct inversion of the Helmholtz equation produces the term

(
β2 − ξ2), which, according

to Equation (A4), is equal to k2, the wavenumber associated with the shear modulus. It can
be shown that similar results are found for the antisymmetric case. This implies that within
the guided wave structures having highly anomalous phase velocities in the long axis, the
curl operator only reproduces the Lamb wavelength (not the nominal shear wavelength),
but this result can be used as a first step towards isolating the shear wavenumber k,
and therefore cs. Lamb referred to similarities between his approach and Pochhammer’s
solutions for cylinders, so this is likely to be the case across structures of different cross-
sectional shapes, although further work is required to confirm that hypothesis.
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