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Objective: Melanoma is a form of malignant skin cancer that exhibits significant inter-tumoral differences in the
tumor microenvironment (TME) secondary to genetic mutations. The heterogeneity may be subtle but can compli-
cate the treatment of metastatic melanoma, contributing to a high mortality rate. Therefore, developing an accu-
rate and non-invasive procedure to discriminate microenvironmental heterogeneity to facilitate therapy selection
is an important goal.
Methods: In vivo murine melanoma models that recapitulate human disease using synchronous implanted YUMM
1.7 (Yale University Mouse Melanoma) and YUMMER 1.7 (Yale University Mouse Melanoma Exposed to Radia-
tion) murine melanoma lines were investigated. Mice were treated with antibodies to modulate the immune
response and longitudinally scanned with ultrasound (US). US radiofrequency data were processed using the H-
scan analysis, attenuation estimation and B-mode processing to extract five US features. The measures were used
to compare different TMEs (YUMMER vs. YUMM) and responses to immunomodulatory therapies with CD8 deple-
tion or programmed cell death protein 1 (PD-1) inhibition.
Results: Multiparametric analysis produced a combined H-scan parameter, resolving significant differences (i)
between untreated YUMMER and YUMM and (ii) between untreated, PD-1-treated and CD8-treated YUMMER.
However, more importantly, the B-mode and attenuation measures failed to differentiate YUMMER and YUMM
and to monitor treatment responses, indicating that H-scan is required to differentiate subtle differences within
the TME.
Conclusion: We anticipate that the H-scan analysis could discriminate heterogeneous melanoma metastases and
guide diagnosis and treatment selection, potentially reducing the need for invasive biopsies or immunologic
procedures.
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Introduction

Medical ultrasound (US) has been widely used to diagnose and
screen diseases, including liver steatosis/fibrosis/tumors, kidney fibrosis
and breast cancer. Usage of US has increased because of its numerous
advantages: it is non-invasive, it provides real-time imaging, it can be
portable and it is lower in cost compared with magnetic resonance imag-
ing (MRI) and computed tomography (CT). However, US traditionally
has limited usage in disease diagnosis because its qualitative imaging
display relies on clinicians’ interpretations. Further, traditional B-mode
images alone cannot detect subtle pathologic changes in tissues. B-mode
imaging also has lower diagnostic performance than MRI or CT [1],
which motivates the development of methodologies that extract more
information from raw US signals. Recently, quantitative US (QUS) has
been introduced to provide quantitative measures from US scans [2],
which enabled diagnostic improvement compared with traditional B-
mode imaging in many applications such as cancer and disease detec-
tion, disease progression monitoring and treatment response tracking
[3−5]. The diagnostic accuracy of QUS can be verified using accepted
measures from pathology or MRI. For steatosis, MRI-driven proton den-
sity fat fraction (MRI-PDFF) is known as one of the accurate approaches
among non-invasive imaging modalities [6−10]. Thus, QUS parameters
extracted from steatosis human participants were compared with MRI-
PDFF and exhibited high correlation [5]. Although QUS studies include
spectral based analysis, another US frequency-dependent analysis of the
H-scan has been proposed [11,12]. The H-scan uses a matched filter
analysis to characterize scattering behavior and provides color-coded
images to visualize different categories of scatterers. The H-scan has
been applied to liver imaging to monitor pancreatic cancer metastasis
[13]. That study determined that the H-scan results strongly agreed with
biofluorescence measurements and performed better compared with US
measurements of shear wave speed. Moreover, it has been revealed that

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultrasmedbio.2023.10.012&domain=pdf
mailto:kevin.parker@rochester.edu
https://doi.org/10.1016/j.ultrasmedbio.2023.10.012
https://doi.org/10.1016/j.ultrasmedbio.2023.10.012
https://doi.org/10.1016/j.ultrasmedbio.2023.10.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ultrasmedbio


Figure 1. Murine melanoma model study design and experimental setup.
(a) Tumor injection in mice flanks, tumor growth and ultrasound scan. (b) An
anesthetized mouse with two induced tumors on both sides of flanks before
ultrasound scanning. (c) Scanning a grown tumor with ultrasound gel.
(d) Three-dimensional scan performed with a mechanical motion controller.
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H-scan measures have high correlations with pathology or MRI-PDFF in
assessment of many diseases, including liver steatosis (correlation coeffi-
cients: R=0.83 with histology fat fraction [14] and R=0.86 with MRI-
PDFF [15]), kidney fibrosis (R= 0.99 with histology fibrosis score [16])
and breast cancer (area under the curve = 0.81 with biopsy). These
findings suggested the potential of H-scan to contribute diagnosis based
on US quantitative measurements.

As a great number of quantitative parameters have been introduced
to identify tissue characteristics, the integration of multiple parameters
may improve characterization accuracy. Thus, multiparametric analysis
was suggested with several approaches: (i) non-linear transformation to
calculate a combined parameter [17], (ii) support vector machine
(SVM) to incorporate information from parameters [18,19] and (iii)
principal component analysis and inner product to obtain a 1-D com-
bined parameter [14]. These studies demonstrated that incorporating
multiple parameters improved differentiation between different stages
of disease, for example, (i) normal versus inflammation versus fibrosis
in the liver [18], (ii) normal versus steatosis in the liver [20] and (iii)
benign versus malignant breast lesion [21,22]. Moreover, these studies
found that the H-scan was one of the most accurate contributors to tissue
classification.

Although previous studies investigated different disease conditions,
the efficacy of US in discriminating subtypes of the same disease
remained unknown. Inter-tumoral heterogeneity in metastatic mela-
noma is a clinically relevant phenomenon that requires such distinction.
Metastatic melanoma patients have an average survival rate of less than
6 mo [23]. One contributor to mortality rate may be heterogenous treat-
ment responses and different metastases exhibited within the same indi-
vidual secondary to genetic and tumor microenvironment (TME)
variations between the two lesions [24,25].

To study tumor heterogeneity in melanoma, murine models of mela-
noma have previously been developed: the Yale University Mouse Mela-
noma line, known as YUMM 1.7 (YUMM), and the Yale University
Mouse Melanoma Exposed to Radiation, known as YUMMER 1.7
(YUMMER). These cell lines are used to recapitulate the genetic and
TME heterogeneity [25]. The YUMM and YUMMER cell lines share 37%
of synchronous mutations [26], which created immunologically distinct
TMEs, with YUMMER having increased immune infiltration compared
with YUMM [25]. Detection of the distinct subtypes requires an invasive
biopsy for comprehensive analyses such as immunohistochemistry,
Luminex analyte assay and RNA sequencing; these biopsies are typically
clinically cost inefficient. However, given the effect of immunologically
distinct TME on melanoma therapy response, non-invasive measures are
needed to identify immunologic properties of metastases to improve
therapy selection.

In this study, we used non-invasive H-scan US approaches to detect
TME heterogeneity in a murine model of melanoma with implanted
YUMM or YUMMER tumors. To study the efficiency of H-scan on differ-
entiating immunologic differences in the TME, YUMM and YUMMER
tumors were treated with either anti-CD8 antibodies, which decrease
the amount of intra-tumoral immune infiltration, or with anti-PD-1 (pro-
grammed cell death protein 1) antibodies, which increase immune infil-
tration. The H-scan analysis was performed to discriminate YUMM and
YUMMER and to monitor treatment responses over time. H-scan param-
eters and US parameters were measured, and a multiparametric analysis
was performed to combine parameter information.

Methods

Study design

This study protocol was approved by the University of Rochester’s
University Committee on Animal Resources. The bilateral flanks of 6- to
8-wk-old female wild-type C57BL/6J mice from the Jackson Laboratory
(Bar Harbor, ME, USA) were injected with one million YUMM 1.7 or
YUMMER 1.7 cells [25]. The implanted murine melanoma tumors were
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US-scanned, as illustrated in Figure 1. Mice were split into isotype anti-
body-treated control, anti-PD-1-treated and CD8-depleted groups to rep-
resent baseline immune infiltration, increased immune infiltration and
decreased immune infiltration, respectively. The mice received treat-
ment three times per week once the tumors reached 4 mm in the largest
diameter and were sacrificed on day 27 post-tumor implantation; for all
tumors, the largest diameter was between 4 and 2 mm at the time of
scanning. Tumors subsequently underwent hematoxylin and eosin
(H&E) histologic staining and CD45 immunohistochemical staining.
US acquisitions

Ultrasound scanning was performed using the Vevo 3100 imaging
system (FUJIFILM VisualSonics, Inc., Toronto, ON, Canada) equipped
with a 40 MHz center frequency linear transducer (MX550D). Focused
beam transmission was used, and a single focal depth of 10 mm was set
for all scans. We acquired 3-D volume images with a 0.05 mm step size
between 2-D frames, and the acquired volumes had approximately 0.1
to 5 mm lengths depending on tumor size, whereby each 3-D volume
data point had approximately 2 to 100 frames; the 3-D scan with the lin-
ear transducer was performed with a mechanical motion controller, as
illustrated in Figure 1d. The machine saved radiofrequency (RF) data,
and we produced B-mode images by in-phase and quadrature (IQ)
demodulation, envelope detection and log compression. The B-mode
images were used for manual contouring of the melanoma boundary for
each frame, which was the region of interest (ROI) for this study, indi-
cating the melanoma area. The saved RF data format was used for H-
scan processing and attenuation correction, and envelope and log-com-
pressed data were used to measure intensity-based parameters.

We estimated two B-scan parameters: B-scan intensity and B-scan sig-
nal-to-noise ratio (SNR). First, B-scan intensity was obtained by averag-
ing the decibel scale intensity of log-compressed data within the
contoured ROI. B-scan SNR was calculated using the envelope data:

B � scan SNR � μB
σB

�1�
Here, μB and σB are the average and standard deviation of the envelope
data within an ROI, respectively. When estimating the two B-scan
parameters, as illustrated in Figure 2, we excluded any area having US
artifacts, such as reverberation artifacts, shadowing and non-uniform US
beam energy in the depth direction caused by focused transmission. Our
scan setting with a single focus at 10 mm reduced the SNR at deeper
depths compared with the focal point, and thus our parameter estima-
tion occurred at depths less than 11 mm. All scanlines and samples



Figure 2. Exclusion of hypo-echoic (low signal) area to estimate B-scan parameters. US, ultrasound.
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having reverberation artifacts or shadowing were excluded from the
estimation by defining lateral and axial intensity thresholds, as depicted
in Figure 2. Figure 2 also illustrates a mask example and US B-scan
speckle within the mask.
Figure 3. H-scan processing.
H-scan analysis

We extracted features from the RF data frequency using the H-scan
analysis [12]. The H-scan was performed to investigate frequency spec-
tral shifts caused by attenuation or scatterer size changes. The process is
summarized in Figure 3. First, US RF data were acquired and used as
input for the H-scan. Because US propagation causes frequency down-
shifts along depth, leading to confusion between the attenuation effects
and scattering signature changes we aim to detect, attenuation correc-
tion was performed. The frequency-dependent attenuation can be mod-
eled by e�αfx; where α is attenuation coefficient (in Np/cm), f is
frequency (in MHz) and x is depth (in cm). Conceptually, by multiplying
e�αfx by the frequency spectrum S

�
f � � fft

�
RF�x�

�
, we can obtain attenu-

ation-corrected (ac) RF data (RFac):

RFac � ifft S f� �·e�αfx� � �2�
Equation (2), however, contains two variables, frequency f and depth x.
To make the depth variable a constant, we divided the depth ROI into
10 zones, and each zone z had a representative depth xz. Now, a simple
calculation of attenuation-corrected RF data is possible with S�f �·e�αfxz ,
and each zone’s attenuation-corrected RF data is RFac

z �t� � S�f �·e�αfxz . To
obtain the attenuation-corrected RF data RFac�t� over the entire depth
range/zones, RFacz �t� can be combined. The attenuation equation e�αfx
also describes intensity attenuation, although most US machines provide
RF data after time-gain compensation (TGC), so S�f �·e�αfx compensates
for intensity attenuation. Thus, before combining, intensity normaliza-
tion between zones is needed only if the RF data were acquired after
TGC. The H-scan processing used attenuation-corrected RF data: RFac�t�.
For matched filtering, 256 Gaussian filters (Gi for i � 1; 2; . . . ; 256)
were determined with different peak frequencies: fp_i for i = 1, 2, . . .,
256, where fp_1 < fp_2 < . . . < fp_256 and fp_k�1 � fp_k = Δf . Δf is a constant
that can be defined based on the frequency spectrum of the RF data for
all peak frequencies to cover the entire spectrum from low- to high-fre-
quency components. A bandwidth of the Gaussian filters was specified
by a standard deviation, σG, as detailed in Figure 3. The bandwidth of
Gaussian filters was set to have 70% of the spectral bandwidth; we first
estimated an averaged standard deviation of frequency spectra for RF
data (σRF) to find the bandwidth, and the bandwidths of the Gaussian fil-
ters were determined by σG � σRF·0:7. Bandpass filtering between the
Fourier transform of RF data and the Gaussian filters was performed,
270



Figure 4. Multiparametric analysis to combine information from parameters.
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and the 256 outputs were inverse Fourier-transformed, resulting in 256
outputs of the matched filtering: MFi for i � 1; 2; . . . ; 256. Note that
convolution in the time domain can be used instead of bandpass filtering
in the frequency domain. After the filtering, each time sample t in the
axial direction (each pixel in 2-D US images) had 256 values: MF1�t�;
MF2�t�; . . . ;MF256�t�. We can find a unique maximum of MFimax �t� where
imax is the index of the Gaussian filter Gimax , and Gimax has a peak fre-
quency fp_imax as shown in Figure 3. Then fp_imax is the estimated frequency
component at time sample t: fp�t� � fp_imax . The estimated frequency com-
ponents were mapped into H-scan color levels using the color bar shown
in the pseudo color mapping block in Figure 3. The H-scan color levels
from 1 to 256 are depicted as more red to more blue, in order, as shown
in the color bar in Figure 3. The redder color indicates low-frequency
components and larger scatterers, corresponding to the lower color lev-
els. Thus, the H-scan estimates a color level for each pixel within a ROI.
As the color levels range from 1 to 256, the color levels from 1 to 128
were classified as red pixels, and those from 129 to 256 were classified
as blue pixels. We defined H-scan blue percentages (H-scan % blue) as

H � scan % blue � Number of blue pixels
Total number of pixels within ROI

× 100% �3�
We calculated H-scan SNR as

H � scan SNR � μH
σH

�4�
where μH and σH are the average and standard deviation of the H-scan
color levels within a ROI, respectively.

As previously mentioned, when using raw RF data as the H-scan
input, the attenuation effect of the frequency downshift can be detected,
with more red color for deeper depths. We estimated attenuation coeffi-
cients using the H-scan blocks in Figure 3. Attenuation estimation used
raw RF data before attenuation correction. Through the matched filter-
ing and peak frequency detection blocks, peak frequency (fp�x�) along
depth (x) was estimated, and the attenuation coefficient (bα�x� [dB/MHz/
cm]) can be calculated as

bα x� � � � fp x� � � f0
x·σ2

�5�
where f0 is center frequency and σ is the bandwidth of the transmit US
beam. More details on attenuation estimation, including eqn (5), are
found in Baek et al. [19]. In this study, we first estimated the attenuation
coefficient, and then used the estimated attenuation coefficient for
attenuation correction.
Multiparametric analysis

For multiparametric analysis, we estimated five parameters: two B-
scan parameters (B-scan intensity and B-scan SNR) based on US back-
scattering, two H-scan parameters (H-scan % blue and H-scan SNR)
extracted from US frequency-dependent information and the attenuation
coefficient reflected by US physics. Through multiparametric analysis,
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the best-performing parameters were selected and combined; detailed
procedures are provided in Figure 4.

As illustrated in Figure 4, the extracted raw parameters had different
scales. Z-score normalization was performed to obtain a 0 mean and 1
standard deviation, which enabled a reasonable comparison between
parameters with a consistent scale and distribution. Feature selection
was performed by investigating possible parameter combinations, such
as all five parameters, four parameters after excluding only one, three
parameters after excluding two and two parameters. For each of the pos-
sible combinations, principal component analysis (PCA) was used to cal-
culate the first and second principal components (PC1 and PC2,
respectively). PC1 is considered a combined parameter for statistical
analysis. One-way analysis of variance (ANOVA) was used to evaluate
differentiation between (i) distinct melanoma models (YUMMER and
YUMM) and (ii) treatment conditions (untreated, PD-1 and CD8). More-
over, to visualize clusters in 2-D space, SVM classification was per-
formed. On the basis of the p value from ANOVA and the classification
accuracy from SVM, the best-performing parameter combination for
melanoma discrimination included solely the two H-scan parameters.
Therefore, from the normalized H-scan % blue and SNR, PCA calculated
the first and second principal components, PC1 and PC2, respectively.
PC1 is a combined parameter resulting from combining information
through multiparametric analysis, and further, to visualize the results,
SVM classification was applied to PC1 and PC2.
Results

YUMMER versus YUMM

We subcutaneously implanted the murine melanoma cell line YUMM
or YUMMER into the mice flanks to generate an animal model of mela-
noma. A previous study [25] had determined that these two cell lines
established immunologically distinct TMEs in vivo with YUMMER
tumors having significantly more immune cells than YUMM (Fig. 5). In
Figure 5a−d, the smaller and darker cells likely represent immune cells,
whereas the larger cells represent tumor and stromal cells. Immunohis-
tologic staining for CD45+, a marker for immune cells, confirmed
increased CD45+ immune infiltration in YUMMER tumors compared
with YUMM tumors (Fig. 5e, 5f).

We measured the following five parameters from US data: H-scan %
blue, H-scan SNR, B-scan intensity, B-scan SNR and the attenuation coef-
ficient. To exclude outliers, we included only measurements that are in
the range within two standard deviations for each parameter, when ana-
lyzing the measures for statistical analysis and classifications. The results
are provided in Figure 6, and only the H-scan parameters were able to
distinguish the immunologically distinct TMEs, revealing significantly
different measurements between YUMMER and YUMM tumors: p < 0.01
for H-scan % blue and p < 0.05 for H-scan SNR. According to the
Figure 6a H-scan results, YUMMER tumors had a higher percentage of
blue pixels, meaning that a greater number of smaller scatterers were
detected in YUMMER than in YUMM tumors. This finding is consistent



Figure 5. Representative (a−d) histology images stained with hematoxylin and eosin (H&E) and (e, f) CD45 immunohistochemistry (IHC) for (a, c, e) YUMMER and
(b, d, f) YUMM tumors. The red region of interest (ROI) boxes in (a) and (b) were magnified into (c) and (d), respectively.
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with the histology, which revealed higher infiltration of smaller immune
cells in YUMMER tumors (Fig. 5).

In Figure 7 are representative B-scan and H-scan images for
YUMMER and YUMM tumors. The YUMMER tumor H-scan image
clearly revealed more blue pixels than the YUMM tumor H-scan. Because
of the increase in smaller immune cells in YUMMER tumors, their H-scan
results were more blue than those of the YUMM lesions. Also, blue pixels
tended to be found near the boundary, which may represent peritumoral
Figure 6. Estimated ultrasound parameters to differentiate YUMMER and YUMM tum
(dB). (d) B-scan SNR. (e) Attenuation coefficient (dB/MHz/cm). *p < 0.05, **p < 0.01
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infiltration of immune cells, a common clinical phenomenon present in
solid tumors.

Treatment response

Figure 8a illustrates the five parameter measurements used to detect
treatment response. We investigated three groups: untreated (UT), anti-
PD-1 antibody treated and CD-8 depleted groups. Earlier studies
ors. (a) H-scan % blue. (b) H-scan signal-to-noise ratio (SNR). (c) B-scan intensity
, ***p < 0.001, ****p < 0.0001. n.s., not significant.



Figure 7. Representative B-scan and H-scan images for YUMMER and YUMM tumors. Blue and red represent smaller and larger ultrasound scatterers, respectively.

Figure 8. Ultrasound parameters used to investigate treatment response in YUMMER (a) and YUMM (b) tumors. The parameters were H-scan % blue, H-scan SNR, B-
scan intensity (dB), B-scan SNR and attenuation coefficient (dB/MHz/cm). The H-scan parameters were combined using principal component analysis (c). The com-
bined parameter (PC1) differentiated YUMMER and YUMM tumors, detected treatment response in YUMMER tumors and showed no response for YUMM tumors. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. CD8, CD8 depletion; n.s., not significant; PD1, anti-PD-1 treatment; UT, untreated group.
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Figure 9. Representative B-scan and H-scan images of YUMMER untreated, PD-1-treated and CD8-treated cases.
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determined that anti-PD-1 treatment increased the percentage of
CD45+ immune infiltration from approximately 20%−30% to
30%−50%, whereas CD-8 depletion decreased immune infiltration in
YUMMER tumors [25−28]. In contrast, immune infiltration into YUMM
tumors was not altered by either treatment.

As illustrated in the leftmost plot in Figure 8a, H-scan % blue can detect
anti-PD-1 treatment response with a statistically significant difference (p <
0.01). Anti-PD-1 treatment caused a red shift (lower % blue), indicating
that there was an increase in larger US scatterers caused by the increase in
smaller immune cells. Although this may appear inconsistent with histol-
ogy, clusters of smaller immune cells can convalesce and be read as larger
US scatterers in a US echo signal. According to Figure 8a and 8b measure-
ments, these individual parameters tend not to be able to show differences
between the three groups. Thus, multiparametric analysis was performed,
and the feature selection process found that combining only the two H-
scan parameters most accurately described the treatment response.
Figure 8c provides the combined H-scan parameter of PC1 derived from
Figure 10. Support vector machine (SVM) classification. (a) Classification between
immune cell infiltration. (b) Classification between untreated and immunotherapy tre
ments; UT, untreated group.
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the two H-scan parameters. PC1 indicates a significant difference between
YUMMER and YUMM tumors (p < 0.05). Moreover, PC1 can detect both
anti-PD-1 and CD-8 depletion treatment responses in YUMMER tumors, as
demonstrated in the earlier study [25]. According to the study, YUMM
was a non-responder to PD-1 and CD8 treatment, which was also found
using PC1.

In Figure 9 are B-scan and H-scan images for the responder YUMMER
tumors. H-scan can reveal slightly different colors for the cases, illustrat-
ing the immunologically distinct TMEs in YUMMER tumors secondary
to immune modification treatments.

SVM classification

The H-scan analysis is capable of differentiating YUMMER and
YUMM tumors, and it can also detect treatment response for the
responder YUMMER tumors. Figure 10 illustrates clustering and classifi-
cation results in multiparametric space. SVM accurately classified
different YUMMER and YUMM forms distinct TMEs with different intra-tumoral
ated. CD8, CD8 depletion; PD1, anti-PD-1 treatment; TMEs, tumor microenviron-
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YUMMER and YUMM tumors (Fig. 10a) and also distinguished treat-
ment groups (Fig. 10b). YUMMER and YUMM tumors can be classified
by SVM with 83.3% accuracy. Untreated, anti-PD-1-treated and CD8-
depleted YUMMER tumor groups had 88.2% classification accuracy.
However, YUMM tumors do not respond to the treatments; measure-
ment in 2-D space revealed overlaps between groups. SVM was not
applied to YUMM tumor measurements because the classifier cannot
define meaningful hyperplanes without clustered classes.

Discussion

Previous QUS and H-scan studies aimed to discriminate distinct dis-
eases or differentiate the diseased from normal condition
[2,5,6,13,14,16,17,19−21,29,30]. However, this study determined that
the H-scan is also sufficiently accurate to detect subtle changes within
the same type of diseased tissues; the H-scan detected TME heterogene-
ity between different melanoma tumors. When comparing different
types of diseases, morphological pattern differences were likely found in
histology images. For instance, fibrosis developed fibrotic septae [19],
whereas steatosis generated circle-shaped fat accumulation [14]. In con-
trast, melanoma metastasis, recapitulated by YUMM and YUMMER
murine tumors, may be grossly morphologically identical except for
slightly different cellular distributions or sizes measured on a micron
scale (Fig. 5). These differences are thus more challenging to detect com-
pared with distinct morphologies of different diseases. In fact, these TME
changes were unable to be detected by the widely used B-scan intensity
parameters and attenuation coefficient measurements (Figs. 6 and 8).
However, H-scan was capable of detecting these cellular differences.
Therefore, this study determined the potential of H-scan to be used as a
more precise diagnostic tool in assessing subtle changes in the TME, as
we revealed the statistically significant differences, with p values <0.05
and high classification accuracies >80%. However, as seen in Figure 10,
clusters of YUMMER and YUMM are likely to be overlapped, and
YUMMER cases were located near the boundary of SVM hyperplane
because of its small number of samples (<10). To define more accurate
hyperplanes, future study requires inclusion of a larger data set.

When measuring US features, we have averaged measurements
within the entire melanoma lesion, but future studies might include
evaluation with localized resolution. Immune cell infiltration can pref-
erentially localize to a specific area or subsequently migrate, causing
different immune cell distributions within a lesion. Furthermore,
genetic differences between melanoma metastases within an individ-
ual host can result in distinct TMEs. These intra-tumoral and inter-
tumoral heterogeneities (i) cause difficulties in accurate diagnosis fol-
lowing a single biopsy, (ii) obscure precise immunotherapy selection
and (iii) result in differential treatment responses [24,25,31]. There-
fore, non-invasive and localized measurement and imaging can con-
tribute to melanoma treatment selection and monitoring. The non-
invasive H-scan analysis has pixelwise resolution. Thus, it is necessary
to evaluate H-scan accuracy by comparing the same sections imaged
by H-scan with histology to verify that the H-scan can precisely illus-
trate the heterogeneously distributed immune cells within a lesion and
between two different lesions.

The number of immune cells for YUMMER tumors were reported in
the following order: CD8-depleted < control < anti-PD-1 treated lesions.
In contrast, H-scan % blue showed the following order: anti-PD-1 treated
< CD8 depleted < control YUMMER tumors. H-scan measurement corre-
sponds to US scatterer sizes; smaller US scatterers result in higher H-
scan % blue. The size of most cancer cells has been reported as 10-20
μm, and lymphocytes are generally 5−10 μm in diameter [32−37].
Thus, we can expect the smaller immune cells would result in higher %
blue. This was seen in in Figure 7; YUMMER tumors exhibited higher
immune cell infiltration than YUMM tumors, resulting in more blue pix-
els in the YUMMER H-scan image. In addition, when comparing the
measurements between the CD8-depleted, which eliminated CD8+ lym-
phocytes, and the control YUMMER tumors, control YUMMER tumors
275
resulted in higher H-scan % blue, as expected. However, although anti-
PD-1-treated YUMMER tumors had greater immune cell infiltration,
they had the lowest % blue values, meaning US scatterers were revealed
to be larger with a higher % red. Because of clustering of immune cells,
US scatterers in anti-PD-1-treated YUMMER scans can appear larger
than single immune and tumor cells. Moreover, the US wavelength was
38.5 μm, and the transducer manufacturer (FUJIFILM VisualSonics, Inc.)
has reported its axial resolution is 40 μm. The immune cell size (approxi-
mately 5−10 μm) in Figure 5 was found to be smaller than the resolu-
tion. Thus, US cannot differentiate single immune cells but only detect
changes caused by immune infiltration present in tumor lesions. We can
infer that the relatively sparse distribution of the small immune cells can
produce more frequent intensity changes for the reflected US echo, act-
ing as smaller US scatterers, whereas the relatively dense distribution of
the immune cells with clusters may act as larger US scatterers. Future
work could investigate the US scatterer size changes detected by H-scan
with varying small cell density. H-scan trajectories along with gradual
increase in immune cell infiltration can be studied to monitor melanoma
progression.

In this study, five US parameters were extracted from H-scan imag-
ing, conventional B-scan imaging and the attenuation estimation. The H-
scan measures detected TME heterogeneity more sensitively than the
other parameters. Consistently, previous studies comparing H-scan
measures with other parameters, such as attenuation, echo intensity and
shear wave elastography parameters, have reported that the H-scan
analysis resulted in the most accurate tissue classification [19,20,38].
However, other parameters were still able to differentiate significant dif-
ferences between diseases (e.g., normal vs. stage 4 steatosis); for exam-
ple, B-scan, shear wave elastography and H-scan can be used to
diagnose severe steatosis [38]. In this study, the only parameters sensi-
tive enough to detect TME heterogeneity were the H-scan parameters
(the heterogeneity was not detectable by attenuation or backscattering
intensity) because the H-scan uses frequency information, which reflects
subtle changes of scatterers. Further, other QUS parameters can be
explored to assess melanoma; on the basis of this study, spectral-based
approaches, such as spectral slope and mid-band fit, would contribute
more than intensity-based approaches, such as the Nakagami parameter.
However, the classification performance of parameters can vary depend-
ing on the tissue characteristics we aim to detect. When classifying
breast cancer, lesion boundary shape is one of the significant factors,
which cannot be measured by the H-scan detecting scattering signatures.
A breast cancer study reported that boundary shape parameters played
the most crucial role in identifying small-sized breast lesions [21].
Therefore, we recommend selecting the H-scan analysis as the most pre-
cise metric when detecting US scattering changes. Future study can also
include all parameters from H-scan, QUS and shear wave elastography,
and compare the performance.
Conclusion

The H-scan analysis was capable of discriminating TME heterogene-
ity using the murine melanoma models of YUMMER and YUMM tumors.
Moreover, the H-scan was sufficiently precise in monitoring changes in
immune infiltration following immunomodulatory therapies. These
TMEs were not distinguished by other widely used US features. Overall,
the H-scan approach is promising in the identification of subtle patho-
logic changes and has the potential to detect inter-tumoral heterogeneity
in melanoma metastases within an individual host, which could ulti-
mately help to individualize immunotherapy selection in metastatic mel-
anoma.
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