
586 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 72, NO. 2, FEBRUARY 2025

Integrated Difference Autocorrelation: A Novel
Approach to Estimate Shear Wave Speed in the

Presence of Compression Waves
Hamidreza Asemani , Jannick P. Rolland , and Kevin J. Parker

Abstract—Objective: In shear wave elastography (SWE),
the aim is to measure the velocity of shear waves, how-
ever unwanted compression waves and bulk tissue mo-
tion pose challenges in evaluating tissue stiffness. Conven-
tional approaches often struggle to discriminate between
shear and compression waves, leading to inaccurate shear
wave speed (SWS) estimation. In this study, we propose
a novel approach known as the integrated difference au-
tocorrelation (IDA) estimator to accurately estimate rever-
berant SWS in the presence of compression waves and
noise. Methods: The IDA estimator, unlike conventional
techniques, computes the subtraction of velocity between
neighboring particles, effectively minimizing the impact of
long wavelength compression waves and other wide-area
movements such as those caused by respiration. We eval-
uated the effectiveness of IDA by: (1) using k-Wave simula-
tions of a branching cylinder in a soft background, (2) using
ultrasound elastography on a breast phantom, (3) using
ultrasound elastography in the human liver-kidney region,
and (4) using magnetic resonance elastography (MRE) on
a brain phantom. Results: By applying IDA to unfiltered
contaminated wave fields of simulation and elastography
experiments, the estimated SWSs are in good agreement
with the ground truth values (i.e., less than 2% error for
the simulation, 9% error for ultrasound elastography of the
breast phantom and 19% error for MRE). Conclusion: Our
results demonstrate that IDA accurately estimates SWS,
revealing the existence of a lesion, even in the presence
of strong compression waves. Significance: IDA exhibits
consistency in SWS estimation across different modalities
and excitation scenarios, highlighting its robustness and
potential clinical utility.
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I. INTRODUCTION

SHEAR wave elastography (SWE) is an expanding imaging
technique with applications in different modalities such

as ultrasound [1], [2], [3], magnetic resonance imaging (MRI)
[4], [5], and optical coherence tomography (OCT) [6], [7].
The capability of this method to estimate tissue stiffness and
highlight different lesions positions it as a robust clinical tool
for diagnosing a broad spectrum of diseases [8], [9], [10].
The fundamental concept of SWE remains consistent across
different imaging modalities. Typically, shear waves are induced
in the tissue through external excitation captured by the imaging
modality and processed to compute the shear wave speed (SWS)
map or tissue stiffness map [11], [12], [13], [14]. The resolution
and accuracy of SWE are dependent on the imaging modality,
the characteristics of the generated shear wave field, and the
post-processing techniques applied [12], [15].

In SWE, the focus lies on measuring the speed of shear waves
rather than compression waves, as unwanted compression waves
and translational motions can introduce challenges in accurately
assessing tissue stiffness. As illustrated in the classic text by
Graff [16], a vibrating source on the surface of a body will
impart shear waves, which are useful for elastography, but also
significant compression waves and surface waves, which can
confound the estimate of SWS. Compression waves and any
other bulk tissue motion have long wavelengths (in the range of
meters) and long correlation lengths compared to shear waves
(with wavelengths in the range of a few millimeters), so they
present an unwanted term if the analysis is oriented toward shear
waves. Generally, these have been minimized by post-processing
steps, including the calculation of the vector curl from 3D data
or more simply from highpass filtering of 2D displacement
data [17].

An example of filtering is given in [18], where Ormachea
and Parker employed a 2D bandpass spatial filter to elimi-
nate extremely low spatial frequency compressional waves and
reduce high frequency noise in all directions. They used the
cutoff spatial frequencies (f) related to the wavenumber k of the
filter, which were set at kl = 2πf/Csh and kh = 2πf/Csl,
where Csl and Csh represented the chosen low and high SWSs,
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respectively. Filtering contaminated wave fields is often chal-
lenging, especially when the range of SWS is not known a priori.
Specifying the proper cutoffs for a 2D bandpass filter requires
careful tuning in practice.

In this study, we introduce the difference autocorrelation esti-
mator in order to calculate SWS in the presence of compression
waves. By subtracting the velocity between two neighboring
particles, we effectively minimize the impact of compression
waves. This technique is capable of estimating SWS in fully
reverberant shear wave fields, as well as imperfect or more
directionally oriented shear wave fields. The application of the
proposed approach is studied using (1) k-Wave elastography
simulation of a stiff branching cylinder in a soft background, (2)
ultrasound elastography of a breast phantom with a lesion (3)
ultrasound elastography of the human liver kidney region, and
(4) magnetic resonance elastography (MRE) of a brain phantom
with two lesions.

II. THEORY

The particle velocity V within a fully reverberant shear wave
field is described as [19], [20] as

V (�, t) =
�

q,l

n̂ql vql ei(kn̂q. ��ω0t ). (1)

where � signifies the position vector, t is time, ω0 is the angular
frequency, and the indices q and l correspond to realizations of
the random unit vectors n̂q and n̂ql, respectively. The vector
n̂q denotes the random direction of wave propagation, n̂ql

indicates a random unit vector representing the direction of
particle motion and vql represents an independent, identically
distributed random variable signifying the magnitude of the
particle velocity within a given realization. In transverse shear
wave fields, the direction of wave propagation is orthogonal to
the particle motion, indicating that n̂ql . n̂q = 0. However, the
wave propagation and particle motion are in the same direction
for compression waves, which implies n̂ql . n̂q = 1.

In the standard autocorrelation technique, the autocorrelation
of the z-directed velocity field (BVzVz ) is conventionally com-
puted in both space and time as described in [21] as

BVzVz (Δ�, Δt) = E {Vz (�, t) Vz
� (� + Δ�, t + Δt)} (2)

where Δ� and Δt represent the small difference in position
vector and time, respectively, E signifies an ensemble average,
and the asterisk (�) indicates the complex conjugate. In practice,
this equation takes the estimated particle velocities from an
imaging system as a function of space and time. The presence
of any unwanted compression waves in the tissue adds a long
wavelength term to the autocorrelation equation. The estimated
SWS in this condition is affected by the low spatial frequency
compression waves. In order to overcome this issue and mini-
mize the influence of compression waves and whole tissue mo-
tion, we propose to compute the autocorrelation of the quantity
Vz(�� Δ�) � Vz(� + Δ�) instead of the autocorrelation of
only the velocity field Vz . The subtraction of particle velocities
between neighboring particles effectively cancels out the con-
tribution of compression waves with large wavelengths, leaving

only the SWS component. Thus, the difference autocorrelation
estimator BDAVzVz is defined, for simplicity when Δt is zero,
as follows

BDAVzVz (Δ�)

= E {[Vz (�� Δ�) � Vz (� + Δ�)] [Vz (�� Δ�)

�Vz (� + Δ�)]�}

= E

�
���

���

[Vz (�� Δ�) Vz
� (�� Δ�)]

+ [Vz (� + Δ�) Vz
� (� + Δ�)]

� [Vz (�� Δ�) Vz
� (� + Δ�)]

� [Vz (� + Δ�) Vz
� (�� Δ�)]

�
���

��	

= 2



Vz
2 � BVzVz (2Δ�)

�
(3)

where Vz
2

is the ensemble average velocity-squared and the
simplified form is based on the fundamental definition of each
of the terms, assuming spatially stationary statistics. Note also
that any extra motion approximately constant across the auto-
correlation window will be canceled by the subtraction in the
first bracketed expressions.

In (3), BVzVz is the conventional spatial autocorrelation
function. The autocorrelation function in different directions
depends on the angle θs between the imaging system sensitivity
(assumed to be z-directed) and the direction of Δ�, defined by
Aleman-Castañeda et al. [22] as follows

BVzVz (Δ�, Δt) = 3Vz
2

eiω0�t

×
�

sin2θs

2


j0 (kΔ�) �

j1 (kΔ�)

kΔ�

�
+ cos2θs

j1 (kΔ�)

kΔ�

�
,

(4)

where j0 is the spherical Bessel function of the first kind of zero
order and j1 is the spherical Bessel function of the first kind
of first order. In standard baseline autocorrelation estimation,
Δ� is assumed to be aligned with one of the Cartesian axes.
The angle θs in (4) is π/2 for Δεx and Δεy , and zero for Δεz .
Consequently, the standard baseline autocorrelation functions
are defined as

BVzVz (Δεx, Δt) =
3

2
Vz

2
eiω0�t


j0 (kΔεx) �

j1 (kΔεx)

kΔεx

�

(5.a)

BVzVz (Δεy, Δt) =
3

2
Vz

2
eiω0�t


j0 (kΔεy) �

j1 (kΔεy)

kΔεy

�

(5.b)

BVzVz (Δεz, Δt) = 3Vz
2
eiω0�t j1 (kΔεz)

kΔεz
(5.c)

To enhance the robustness of the autocorrelation estimator,
Asemani et al. [23], [24] introduced the angular integral auto-
correlation (AIA) which involves computing the angular integral
of the autocorrelation function within a two-dimensional plane
spanning from 0 to 2π, resulting in the expression for the xz
plane and yz plane as follows

BAIAxz (Δρ, Δt) = BAIAyz (Δρ, Δt)
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=
3

4
Vz

2
eiω0�t


j0 (kΔρ) +

j1 (kΔρ)

kΔρ

�
(6)

where Δρ represents the one-dimensional lag in the autocorre-
lation argument subsequent to integration around θs. For the xy
plane we have:

BAIAxy (Δρ, Δt) =
3

2
Vz

2
eiω0�t


j0 (kΔρ) �

j1 (kΔρ)

kΔρ

�

(7)
The difference autocorrelation for the standard baseline auto-

correlation estimator can be obtained by assuming Δt = 0 and
substituting (5) in (3) to yield

BDAz (Δεx)=2

�
Vz

2�
3

2
Vz

2

j0 (2kΔεx)�

j1 (2kΔεx)

2kΔεx

��

(8.a)

BDAz (Δεy)=2

�
Vz

2�
3

2
Vz

2

j0 (2kΔεy)�

j1 (2kΔεy)

2kΔεy

��

(8.b)

BDAz (Δεz)=2

�
Vz

2 � 3Vz
2
eiω0�t j1 (2kΔεz)

2kΔεz

�
(8.c)

By substituting (6) or (7) in (3), the integrated difference
autocorrelation (IDA) for different autocorrelation planes can
be obtained as

BIDAxz (Δρ) = BIDA yz (Δρ)

= 2

�
Vz

2 �
3

4
Vz

2

j0 (2kΔρ) +

j1 (2kΔρ)

2kΔρ

��

(9)

BIDAxy (Δρ) = 2

�
Vz

2�
3

2
Vz

2

j0 (2kΔρ) �

j1 (2kΔρ)

2kΔρ

��

(10)

Fig. 1(a) displays the autocorrelation curves for the z-directed
simple autocorrelation functions and the AIA function in the
xz plane. The magnitude of the small difference in position
(Δεx, Δεz, and Δρ) ranges from zero to one pixel less than the
size of the autocorrelation window. As depicted in this figure,
the curves for the autocorrelation functions (BVzVz (Δεx) and
BVzVz (Δεz)) are distinct, and the AIA function is consistently
positioned between them. The maximum occurs at zero lag
for all autocorrelation functions. Fig. 1(b) presents z-directed
difference autocorrelation curves of Δεx and Δεz , along with
the IDA curve in the xz plane. The IDA curve consistently
falls between the simple difference autocorrelation curves. At
zero lag, the value for the difference autocorrelation functions
is zero. In practice, a curve fit of measured data to (9), (10)
is necessary. Fig. 1(b) is utilized to derive a best fit estimate
of wavenumber k, thereby determining SWS from the physics
definition k = ω/Cs and where ω is the applied radial frequency
and Cs is taken in this context as equal to the SWS.

III. K-WAVE ELASTOGRAPHY SIMULATION

The effectiveness of the proposed IDA approach was eval-
uated using the k-Wave simulation toolbox in MATLAB (The

Fig. 1. Autocorrelation and difference autocorrelation curves:
(a) Curves for the z-directed simple autocorrelation functions and
the AIA function in the xz plane, (b) curves for z-directed difference
autocorrelation functions of ��x and ��z , along with the IDA function
in the xz plane.

MathWorks, Inc. Natick, MA, USA, version 2022b) [25] of a stiff
branching cylinder in a soft background. Both the background
medium and the y-shaped inclusion were modeled as uniform
isotropic materials, with SWS of 1 m/s and 2 m/s, respectively.
The simulation geometry and the defined SWS properties for the
y-shaped cylinder and the background are presented in Fig. 2(a).
Further details regarding this simulation can be found in [23].
A fully reverberant shear wave field at a frequency of 200 Hz
was created by the application of multiple shear wave point
sources around the outer boundary. A white Gaussian noise with
a signal-to-noise ratio (SNR) of 10 dB was added to the shear
wave field. The resulting shear wave field was purposely super-
imposed with compression waves, modeled as a long wavelength
phasor of the same temporal frequency and approximately the
same amplitude. It is assumed that the transducer was positioned
on the top side of the model and the velocity field was specifically
measured along the z-axis to mimic realistic scanning conditions
in elastography. Fig. 2(b) presents an unfiltered phase map of the
wave field at 200 Hz, revealing the reverberant shear wave field
superimposed onto a longer spatial scale of compression waves.
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Fig. 2. k-Wave elastography simulation: (a) Simulation geometry and
defined SWS properties for the y-shaped inclusion and the background,
(b) unfiltered phase map of the contaminated wave field at the excita-
tion frequency of 200 Hz, demonstrating both small scale shear wave
patterns and larger scale compression wave pattern, (c) SWS map
estimated by applying AIA to the unfiltered contaminated wave field,
(d) SWS map estimated by applying IDA to the unfiltered contaminated
wave field.

The animated sequence of the shear wave field is available in
the supplementary materials.

A square autocorrelation window 15 mm in size was utilized
in all simulation measurements to estimate the SWS. A central
3D region of interest was selected to reduce the memory and
computational costs. The SWS map estimated by applying the
AIA to the unfiltered contaminated wave field is illustrated in
Fig. 2(c). Due to the presence of compression waves in the
shear wave field, SWS estimation using conventional methods
is challenging, and the y-shaped inclusion is not discernible
against the background. The average SWS in the background
was estimated to be 3.41 m/s (i.e., 241% error). Fig. 2(d) displays
the SWS map estimated by applying the IDA to the unfiltered
contaminated wave field, where the y-shaped inclusion is clearly
highlighted. The average SWS in the background was estimated
to be 0.98 m/s (i.e., 2% error)

Although AIA fails in estimating SWS when applied to con-
taminated wave fields, effective filtering techniques can enhance
its efficiency and accuracy. In Fig. 3(a), the magnitude of the 2D
spatial Fourier transform of the k-Wave displacement field at
200 Hz is depicted. The central red zone signifies the presence of
high-energy, low spatial frequency waves or compression waves
within the wave field.

A 2D bandpass filter was determined based on a maxi-
mum value for the SWS (corresponding to minimum value
for wavenumber k), and a minimum value for the SWS (cor-
responding to maximum value for wavenumber k), according to
Cs = 2πf/k. Following numerous trials using different lower
and upper values, the optimal values were determined, with the
lower value designated as Csl = 0.54 m/s and the upper value as

Fig. 3. Process of 2D bandpass filtering and SWS estimation using
AIA in k-Wave simulation: (a) Magnitude of the 2D spatial Fourier trans-
form of the k-Wave displacement field at the excitation frequency of
200 Hz, (b) 2D bandpass filter in the Fourier domain used to eliminate
compression waves, (c) phase map of the shear wave field after 2D
bandpass filtering at the frequency of 200 Hz, (d) SWS map estimated
by applying AIA to the filtered phase map of the shear wave field at the
frequency of 200 Hz.

Csh = 3.89 m/s. Considering a frequency of 200 Hz, these val-
ues correspond to kl = 23.26 cm-1 and kh = 3.23 cm-1. Fig. 3(b)
displays the 2D bandpass filter defined for k-Wave elastography,
presenting lower wavenumber kl and upper wavenumber kh
values. Fig. 3(c) depicts the phase map of the shear wave field
at 200 Hz after applying a 2D bandpass filtering. In this case
with perfect a priori information, the compression waves are
eliminated and a fully reverberant shear wave field is obtained.
Employing AIA on the filtered phase map of Fig. 3(c) led to the
estimation of the SWS map, presented in Fig. 3(d). The average
SWS in the background was estimated to be 0.98 m/s (i.e., 2%
error).

IV. ULTRASOUND ELASTOGRAPHY OF BREAST PHANTOM

In order to explore the effectiveness of the difference auto-
correlation method, a dataset of ultrasound elastography ex-
periments on a CIRS breast phantom (model 509, CIRS Inc.,
Norfolk, Virginia, USA) was utilized. The CIRS breast phantom
mimics the breast tissue characteristics and contains several
lesions of different sizes. A Verasonics ultrasound system (V-1,
Verasonics Inc., Kirkland, WA, USA) connected to a linear array
ultrasound transducer (Model L7-4, ATL, Bothell, WA, USA)
with a 5 MHz center frequency was utilized in this experi-
ment. The sampling frequency was 20 MHz. Four mechanical
vibration sources were used in the elastography experiment to
generate a reverberant shear wave field. A 3D matrix of in-phase
and quadrature (IQ) data was collected for postprocessing. To
calculate the axial particle displacements, a Loupas estimator
[26] was employed. The dataset contains the displacement fields
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