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Abstract. Inverse halftoning is the method by which an approxi-
mation of a gray-scale image is reconstructed from a binary, half-
toned version of the original. Several inverse-halftone algorithms are
described, including a three-level cascade algorithm. We demon-
strate that a priori knowledge of the halftone technique is not es-
sential, but can be used if available. Finally, we demonstrate the
results of applying inverse-halftone operations to both computer
synthesized and photographic images.

1 Introduction

Binary digital halftoning is the process of transforming an
n-bit gray-scale image into a 1-bit binary image perceived
to contain gray scale. Digital inverse halftoning is the re-
construction of a gray-scale image from its halftone ren-
dering.

The desire to create an inverse halftone of a 1-bit image
occurs in several simple and advanced applications. In some
instances, an individual may wish to sharpen, enlarge, or
rehalftone an image, but the only source available is a half-
tone rendering.

Most printed materials are produced using halftone tech-
niques. Recently, many advances in digital scanning devices
have taken place, including the introduction of digital du-
plicating devices. The ability for such devices to process
halftone images, including the ability to convert between
halftone algorithms, would be highly advantageous. The
importance of manipulating halftone images is equally val-
uable to the desktop publishing industry. Elementary image
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processing operations such as filtering, decimation, inter-
polation, sharpening, etc., which are routinely implemented
on gray-scale images, are not easily performed on halftone
images. Methods for the processing of binary text' and
binary images2 have been discussed in the literature. These
algorithms are limited to binary characters and are not ap-
plicable to high-frequency distributions of black and white,
which produce the illusion of gray. There has been some
interest in enhancement of halftone images,3 but in general
such operations require special care and may have limited
performance.

In principle, the halftone (dither) procedure can be viewed
as a thresholding operation. The original gray-scale image
is passed through some sequence of operators resulting in
the assignment of a 1 or a O (absence or placement of a
black picture element). The inverse procedure can be seen
as an inverse-quantization operation. Gray levels are derived
by processing the binary image with some inverse-quantizing
criteria (discussed in the following sections), resulting in
the assignment of a discrete gray level. In a more complex
treatment of the general problem, the steps of halftoning
and inverse halftoning can be considered a lossy compres-
sion/decompression technique or an encryption/decryption
technique.

Few previous reports in the open literature involve the
reconstruction of gray-scale images from binary images.*-8
These range from simple low-pass filtering to complicated
neural networks. In general, low-pass filtering that is suf-
ficient to smooth the impulses found in binary images will
also blur sharp features. Hence, reconstructions based on
low-pass filtering either remain grainy or become visually
displeasing because of blurring. Neural networks require
training and may not be optimal over many different haiftone
techniques. Furthermore, existing neural network tech-
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Fig. 1 Original gray-scale image of the "bear” image.

niques do not explicitly take advantage of all the a priori
constraints on the gray-scale image (and power spectrum)
or the nature of the halftone mask when its structure is
available.

This paper begins with a brief review of the halftone
process. We then turn our attention to solving the inverse-
halftone problem. When a known halftone screen, or mask,
is used in the halftone process, we show that knowledge of
the mask can be used to generate estimates. However, we
show that knowledge of the halftone process is not essential.
Finally, we define a three-step cascade of operations leading
to a gray-scale estimate of a halftone image.

Results are qualitatively expressed and compared using
both photographs and data comparison plots. Data com-
parison plots consist of the overlay of original gray levels
(solid line) and reconstruction gray levels (stars). The data
are extracted from a horizontal scan line of the image in
Fig. 1. The line is 300 from the top (out of 512) and cuts
across discrete gray levels of the mushroom stalk. In the
original gray levels (solid line), noticeable impulses are
associated with each change in gray level. These impulses
are the result of sharpening the edges in the image prior to
halftoning. Results are quantitatively expressed in terms of
their normalized mean square error (mse) defined as

Ez_igu,,;')—g’(s,.nf

mse=—2 = (1)
> 2.800))
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where g represents the original gray-scale image, and g
represents the reconstruction. The mse is a simple quality
measurement between the original and the distorted picture.
which is commonly used in the literature.””

The images used to evaluate the presented inverse half-
tone techniques are ‘‘bear’ (a 512 %512 pixel computer-
generated image) and ““girl”" (a 512 % 512 pixel ‘‘natural’
image). All image processing is performed on a SUN SPARC
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station using single precision arithmetic. All images are
processed in an X-window environment as 8-bit raster files.
Images were converted from raster format into PICT format
and transferred to a Macintosh computer where they were
displayed and photographed using a Lasergraphics LFR plus
camera recorder.

The following conventions are used throughout this pa-
per. A gray-scale (multilevel) image is defined as a two-
dimensional light intensity function (i, j), where i and j
denote discrete pixel coordinates, and the value of g at any
point (i,7) is proportional to the gray level of the image at
that point. An 8-bit gray scale is used, providing L=256
possible gray levels lying in the interval [0, L— 1] where
gray level /=0 is considered black and /=255 is considered
white. A halftone (binary or bilevel) image is defined sim-
ilarly, with the exception that its composition is 1 bit in
nature. Hence. a halftoned image only contains two gray
levels [bo.bi], where byp:by may be considered either 0:1 or
0:255 corresponding to black/white. Preceding all recon-
structions, it is assumed that an M XN pixel, 8-bit gray-
scale image (of real and positive integers) has been halftoned
into an M X N, 1-bit binary image. The goal is to reproduce
estimates of the original M x N 8-bit image that are

|. visually acceptable (edge and flat image regions are
accurately reproduced and free of obvious or annoying
artifacts

2. acceptable for elementary image processing algo-
rithms

3. capable of allowing conversion between halftone
methods.

We begin with a brief review of halftoning.

2 Halftoning

Halftoning is the process of transforming continuous gray-
scale information into binary information perceived to con-
tain continuous tone. This problem arises in many forms of
media transfer, from graphic arts to facsimile machines.
The binarization algorithm takes as input the sample g(i, )
and generates the sample b(i, ) =0 or 1 for the binary im-
age. This thresholding decision can be stated

)0 if gl =t
”“-‘-”‘{1 i gli ) >t (2)
where g(i,j) is the gray level of a pixel with coordinate
(i,j) and ¢ is the threshold value, an element in [0, L—1].
The resulting image is referred to as a halftone image.

A complete analysis of halftone techniques is beyond the
scope of this paper. Digital implementation of the halftone
process is supported by a wealth of methods thoroughly
discussed in several reviews and :t,ur\,feys..m‘]‘1 Several ex-
isting techniques include ordered dither," error diffu-
sion, '®'* and blue noise mask thresholding.'? Figure 2 is
a halftone rendition of Fig. 1 generated using a blue noise
mask. '’



Fig. 2 Halftone of "bear” derived using a blue noise mask.

3 Inverse Halftoning

3.1 Binary Information Only

First, we investigate the process of reconstructing a gray-
level image when the binary halftone image is the only
information available.

Most halftone techniques are designed to reproduce ac-
curately the average gray level of a **flat’’ or uniform region.
That is, the proportion of 1’s to 0's in an nXn region is
directly related to the gray level of that region. A dithered
image should contain, on the average, no error in the dc
component. The most straightforward estimate of the gray-
scale image, using only the halftone image, is a localized
average of the halftone image. That is, if an image is a
constant gray level g, where 0=g=1, it is assumed that
the binary image b(i, j) has the property that

N N

|
8li.j) =35 > Dblij) - (3)
i=1j=1

Thus, a simple localized estimate g'(i, ) is given by

M2 Mi2
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This neighborhood approach effectively quantizes the binary
image such that, for a window of dimension n X n, (nxn)+1
quantized levels are produced in the estimate image. A
fundamental problem with using spatial low-pass filters on
halftone images is the undesirable result involving the loss
of edge information for increased approximations of the
mean,

These results suggest the use of adaptive measures of
local statistics in the simplest form. This can include run-
lengths of 0’s and 1’s along any directional line in the
halftone image. For run-lengths along rows and all b’s=0,
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if b(i, )=b(i, j+ D=...=b(i,j+J1)=0 ,

G pi 1
then ¢'(i, j)=g'(i j+ D ="..=g (Lj+J)=7"7 . (5)
For example, on the average, a level of g=1/5 will have a
dispersed dot halftone representation of four 0’s and one 1.
Thus, a string of four zeros (bounded on both sides by 1’s)
is assumed to represent g=1/5. There is no guarantee of
any discernable concentration of 1's or 0’s at (near) an edge.
However, a change in the statistical appearance of the 1's
and 0’s will occur at (near) an edge. Since run-lengths are
likely to terminate at high-contrast boundaries, this estimate
will not necessarily blur image features. The run-length
approach will, however, quantize the g = 1/2 estimate into
integer ratios of 1/2, 1/3, 1/4, 1/5, etc. Where 1s represent
the majority, a similar analysis handles the case for g = 1/2:

if b(i, ) =b(i, j+1)=...=b(i,j+ =1,

S
(] S ¥0F SRR el iR
then g'(i,j)=g'(i,j+1) g, j+J) J+1 6)

where estimates are quantized into the integer ratios of 1/2,
2/3, 3/4, 4/5, etc. Equations (5) and (6) apply to rows
(g1), but can easily be reindexed and applied to columns
(g.), the results of which can be combined as a mathematical
average

gr(i,j)+geli j)

> (7

gj)=
Figure 3 contains a block diagram of our adaptive binary
run-length (ABRL) for inverse halftoning. This approach
could also be applied to two-dimensional regions, as op-
posed to simple rows and columns.

Figure 4 contains a reconstruction of the bear using ABRL.,
Figure 5 shows the corresponding data comparison plot. In
comparing the ABRL estimates to the spatial low-pass es-
timates, we find that by using the ABRL inverse-halftone
algorithm, edges are better preserved.

3.2 Single Pixel Operations For Known Masks

We now turn our attention to situations in which information
can be derived from knowledge of a known halftone mask.
Netravali and Bowen® approximated a gray-level image from
its dithered image using information supplied by the halftone
matrix. Their estimate of the gray-level image was achieved
using a repeated, 4 X4 dispersed dot dither matrix and a
3 % 3 neighborhood operation. We now show that, when a
halftone mask is known, the range of possible gray values
for the estimated gray level is reduced.

In principle, single-pixel estimates of the gray-scale im-
age can be derived from single pixels of the binary image
when the halftone mask Ah(i, j) is known. This is because
the basic decision rule for halftoning is stated as

o1 ifgi, )= h(i,])
b(i,.!)—{o if g(i, j)=h(i,j) -~ ®

Thus, our single-pixel estimate (with 4 normalized, 0 <<h<1)
is described by
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Adaptive Median
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Fig. 3 Block diagram for ABRL algorithm.

Fig. 4 Reconstruction using run-lengths combined as (row + col)/2.

b hii,j)<g' <1 iftb(ij)=1 ’
£ (*'-f)f”{osg'sh(f,j) if b(i, j)=0 "’ “)
where the estimate is taken to be the expected value of the
given range. The precision of any estimate is linked to the
range of numbers associated with that pixel. Thatis, if b(i, j)
is 1 and h(i, ) is 0.6, then the range of possible values of
g'(i,j) is between 0.6 and 1.0, an undesirably large range.
Without other information, the appropriate estimate would
use the half range point, or 0.8 in this example.

Application of the single-pixel operation results in a range
compression or *‘flatness™ in the resultant image. This loss
of dynamic range results from the use of the midpoint of
the estimated range. That is, when b(i,j)=1,

T ;i -
g'(ij)=5[1=hEPI+AGT) - (10)
Thus, the expected value of g'(i, ) for these pixels is

1
Elg'(f,j)]=5{l —Elh(i, DI} +ELh(, )] - (1)
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Fig. 5 Original gray levels (solid line) and reconstruction using run-
lengths combined as (row + col)/2 (boxes) from scan line 300 of
“bear.”

For linear, symmetric halftone masks E[h(i,j)]=1/2, and

1 1.1
i, )1==|1—-=]+==0.75 . 12
Elg'(i,j)] 2(1 2) 2 (12)
Similarly, when b(i, j)=0,

1
8"(!'.}):5[?!(1’,})] . (13)

1
ELS’(LJ‘)]=E{EUP(LH]} . (14)

1
Elg'(i,j)]= (5) G) =0.25 . (15)

Hence, in regions of the original image where g(i,j)=0,
the average estimate obtained using single-pixel compari-
sons with the halftone is 0.25. Where g(i, j)= 1, the average
estimate is 0.75. This 50% gray-scale compression results
in a ““flat’’ or dynamically restricted estimate of the image.
This compression can readily be rescaled.

Because this is a point operation, no additional blurring
associated with neighborhood operations is introduced into
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the reconstruction. The information obtained in performing
the single-pixel operation is not limited to the estimated
pixel values, g'(i,j). Two additional constraints that may
be used in further processing of the image are outlined
below.

Constraint 1. A “‘goodness’’ or weight value, which dis-
tinguishes good estimates from poor estimates, can be as-
signed to each estimated pixel. For g(i,j) approaching 0
and g(i,j) approaching 1, the weight value increases as

Vv b(i,j)=1 N ki, j)—1.0
{v b(i,j)=0 N h(i,j)—ao.o}:xw_’l) (16)

and decreases as

v b(i,j)=1 N h(i, j)—0.0 .
{v b(i, j)=0 N h(i,j)——)l.O}:>(w 0) . (17

This information can be used to approximate the degree by
which a pixel value is in error, and by how much its value
should be adjusted.

Constraint 2. Range information is available for each es-
timated pixel. This constraint can be used to set boundaries,
keeping a pixel from taking on impossible values when
further processing is performed:

W b, j)=1h(i, j)<r<1
W b(i, j)=0>0<r=<h(i,j) . (18)

Great increases in the precision of the (local) estimate can
be obtained when two or more pixels of the binary image
are used in conjunction with the corresponding pixels of the
halftone mask. That is, assuming that the image is slowly
varying in a region R, and the b(i, j) are 1, we have

V bli,j)er=1>max{h(i,j)er} <g' <1 . 19)

Analogous rules can be derived for the case where the b(i, j)
are 0,

V b(i,j)er=02>0<g' <min{h(i, j)er} . (20)

For mixed results, where b’s are 0 and 1 within a neigh-
borhood, we have

Y b(i, j)er = 1=>x1 =max{h(i, j)er} ,
Y b(i, j)er=0=>x0=min{h(i, j)er} , @n

min(xo,x1) < g’ < max(xo,x1) ,

providing new minimum and maximum bounds on g’. Note
that if g is truly uniform within the region, then xo will be
greater than x;.

To demonstrate the advantage of the adaptive maximum
and minimum operations, let us assume that the halftone
mask is uniformly distributed between 0 and 1. We wish to
determine the probability distribution function for max{h,,h2,
..., hy}, assuming all #’s to be independent. For the case
x=2, the cumulative distribution function Fyg(g’) is given

by

Fg(g')=P(G' <g')=P[max(H,Hy) <g']
=P(Hi<g' N H)<g')
=P(H,<g')P(H,<g")
=Fu1(8')Fuag") , (22)

and the probability distribution function (pdf) is found by
taking the derivative

fe(8")=Fr1(8")fuxg") + Fuxg" ) fur(g") . (23)

For uniformly distributed 4, the resulting pdf f,-(g') is more
highly weighted toward 1.0. Assuming the h’s are inde-
pendent and identically distributed,

fo(8)=2Fu(g")fu(g) , (24)

and E(g')=2/3. This result naturally extends for the case
of x random variables. As the number of pixels used in-
creases, the expected values of g’ more closely approach
the original gray level, and dynamic range is less com-
pressed. This argument reveals where the blue noise mask
is superior to conventional screen halftones for inverse half-
toning. In the blue noise mask, adjacent pixels are highly
uncorrelated. In conventional masks there is a great degree
of correlation between neighboring pixels. Hence, region
size required to gain independent information is increased.
Independent multiple-pixel estimates can be obtained from
different configurations.

We have evaluated a number of window arrangements
where the halftone screen was known. 2°For these groupings
it is determined that a 2 X 2 pixel window provides maxi-
mum results regarding trade-offs between increased blurring
and minimized gray-scale compression.

Information introduced using neighborhood operations
with the blue noise mask can be summarized as follows:

1. Because neighborhood operations imply low-pass fil-
tering, some degree of image blurring occurs, the
amount of which is dependent on the size of the neigh-
borhood.

2. Range compression is greatly reduced, thus the orig-
inal range of gray-scale values is more closely pre-
served.

3. ““Goodness,” or weight criteria, and range informa-
tion can no longer be applied with certainty as in the
single-pixel case. This is because an estimated value
is no longer associated with a given pixel, but rather
with the statistics of the neighboring pixels.

While it is true that the total number of gray levels is re-
duced, it is common image processing knowledge that hu-
man eye sensitivity requires only 6 bits or 64 gray levels
to simulate continuous shading and avoid contouring.?!-24
The 1-pixel operation meets this criteria. Assuming the mask
is known, we can treat the 1-pixel reconstruction as a sig-
nificant improvement gained from trivial operations. No
additional blurring is added, while a better approximation
to gray scale is achieved.
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Fig. 6 Block diagram of cascaded inverse-halftone algorithm.

3.3 Cascade Algorithm

It is clear from the preceding discussion that a number of
primary estimates of g’ and postprocessed estimates of g
can be generated. Several other estimation methods (i.e.,
iterative, adaptive low pass, and arithmetic mean over sev-
eral results) are described in Miceli. 20 Each technique de-
scribed above has unique features, and produces unique
reconstructions of the gray-scale image. Some techniques
perform better in terms of visual perception, others in terms
of mse, but in many cases the differences are subjective,
and no one algorithm stands out as exceptional. By com-
bining different reconstructions or techniques, it is hoped
that the “‘strong’’ features of one reconstruction will cancel
or subtend the ‘‘weaknesses’’ associated with another. It is
with this consideration that we approach the cascade al-
gorithm.

We have determined a three-step sequence that produces
visual results superior to the results of any one of the al-
gorithms presented thus far. This sequence of operations
can be applied to images halftoned by most dispersed dot
halftone methods, and it works particularly well for blue
noise mask and error diffusion techniques. The greatest
attribute to this cascade is that no information about the
halftone mask or method is required (other than that the
halftone dots be dispersed).

The first stage involves the application of the previously
described adaptive run-length algorithm to the halftone im-
age. This produces an initial conversion of binary to gray
without adding noticeable blur. Some dot structure seen in
the halftone image is maintained. This is high frequency
and not displeasing. The introduction of gray-scale infor-
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mation (with minimal blurring) provides an increased ca-
pacity for edge detection, which leads us to the second stage,
smoothing by means of a local statistical-based smoothing
algorithm. Since edges are more easily detected, such
smoothing operators can yield better results than those op-
erating on the halftone image directly. Lee’s additive noise
filter?S is used with a 5x 5 kernel and K set at 800 (see Fig.
6). Mu and sigma are the local mean and standard deviation
calculated within the 5 x5 kernel. For these values, an ac-
ceptable degree of smoothing occurs throughout the image.
Acceptable implies that the filtered image does not contain
artifacts associated with low-pass operations such as blotch-
ing or blurring. The third step is an impulse remover used
to locate and make relative adjustments to any pixels not
associated with edges, which deviate strongly (+ 30 or greater)
from the expected value of the neighborhood. Only a small
percentage of the pixels are modified (in our examples,
fewer than 2.0%). Figure 6 shows a block diagram repre-
sentation of the cascade algorithm, where MAXVAR is an
adjustable threshold on local variance, below which the
algorithm adjusts pixel values.

Our algorithm as thus far described, does not accurately
reproduce gray levels near the extremes. Reproducing the
extreme gray-scale levels would require unusually long run-
lengths. For an arbitrary number of consecutive black pixels,
for example 10, the region may be associated with a small
area of the image that is near solid black ( g=0), but the
limited area run-length quantizes the pixels to 1/(10+1),
or g’ =23. Hence, we remap the pixels near the extremes
(0 and 255) with a simple exponential shift toward these
extremes.
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Fig. 7 Reconstructed gray-scale of the “bear" image, derived from
the halftone rendering in Fig. 2 by means of the cascaded algorithm,
which does not make use of mask information.

258 T T T T T T T T T T T T =

224 -

- - -
"~ -
2 3 H

Pixel Gray Level

" i L n " i "
0 B0 %0 100 110 120 130 140 150 160 170 180 130 200

Pixel Position

Fig. 8 Original gray levels (solid line) and reconstruction using the
cascading of three different inverse-halftone algorithms (boxes) from
scan line 300 of the “bear” image.

Figures 7 and 8 illustrate the gray-level reconstruction
of the bear derived using this technique. Notice the **soft’’
quality of the reconstructed image, the accuracy of repro-
duction at the edge and flat image regions, and the lack of
obvious and annoying artifacts.

This sequence of operations can be modified to include
use of the mask information, if it is available. However, it
is advantageous to be able to reconstruct without knowledge
of the mask. For example, halftone images generated using
error diffusion techniques, which do not use a mask. can
be reconstructed by means of this technique. Also, the in-
clusion of mask information may lead to beating and aliasing
problems if the mask is not properly realigned to the position
it was at when halftoning was performed.

Fig. 9 A 512512 pixel halftone image of “girl,” derived using a
blue noise mask.

Fig. 10 A 512 x 512 pixel gray-level reconstruction of halftone “girl.”
Reconstruction derived using the cascade algorithm.

4 Resulis

At the beginning of this paper, we presented three goals
that we believed inverse halftoning would play an important
role in achieving. Those goals were to produce a visually
acceptable gray-scale rendition of the halftone image suit-
able for continuous display devices. to allow elementary
image processing algorithms to be applied to binary images,
and to allow the conversion between halftone methods.
Figures 9 (halftone) and 10 (inverse-halftone) highlight
the results of the cascade algorithm. Notice how the halftone
image has been softened and appears more natural with little
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Table 1 The mse associated with each stage of the cascade al-
gorithm for the "bear,” “girl,” and "Lena” inverse-halftone reconstruc-
tions.

Normalized mse values for cascade algorithm
Bear Lena Girl
Halftone 0.6788 0.7645 0.3205
Stage 1 0.0949 0.0839 0.0384
Stage 2 0.0514 0.0413 0.0225
Stage 3 0.0464 0.0380 0.0216

Fig. 11 A 512x 512 pixel clustered dot halftone of gray-scale “girl.”

additional blur, false contouring, or blotching artifacts. Ta-
ble 1 provides a comprehensive look at the normalized mse
for both **bear’” and “‘girl’’ at each stage of the cascade
algorithm, as well as the well-known **Lena’ image.

A 512 %512 clustered dot halftone of the original gray-
scale girl image is shown in Fig. 11. Figure 12 shows the
results of converting the blue noise mask-generated halftone
image of **girl”” in Fig. 9 into a clustered dot halftone image
by using the reconstructed gray-scale girl image shown in
Fig. 10. Thus, it is possible, using the techniques described
herein, to interconvert from dispersed dot to clustered dot
techniques. However, when the original binary image is
clustered dot, the interconversion is less successful because
the inverse halftone reconstruction is usually of poorer quality.

5 Conclusions

A comprehensive investigation of digital inverse-halftone
techniques has been presented. It was shown that for dis-
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Fig. 12 Clustered dot halftone of “girl” derived by conversion from
blue noise mask halftone of image in Fig. 9 (facilitated by inverse
halftoning).

persed dot halftone techniques, information about the mask
was not essential for generating reasonable estimates of the
original gray-scale images. Fundamentally, when the only
information available is the binary image itself, some neigh-
borhood operation must be used. It has been shown that one
such operation, adaptive run-lengths of 1°s and 0’s (ABRL),
is particularly useful in facilitating gray-scale reconstruc-
tions. A three-level cascade algorithm comprised of ABRL,
statistical smoothing, and impulse removal has been very
effective in generating inverse-halftone images. In cases
where the halftone mask structure is known, the mask can
be used to yield improved gray-scale estimations of halftone
images.

A gencral problem of halftone images is that they are
not easily manipulated. Inverse halftoning has been found
to be a plausible method for facilitating halftone manipu-
lation. In some instances, manipulation complexity may
depend on the exactness by which the original gray-scale
image can be approximated. However, it should be restated
that reconstructions do not need to be exact. The techniques
presented here have been successful in allowing halftone
images to be displayed as gray-scale images, allowing the
application of elementary image processing algorithms to
halftone images, and allowing interconversion of halftone
techniques. We believe that the results presented here are
not yet optimum, and that further investigation of the in-
verse-halftone process can lead to increased accuracy in,
and capabilities for, halftone manipulation.
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