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ABSTRACT

We present in this paper a study of subband analysis and synthesis of volumetric medical images using
3D separable wavelet transforms. With 3D wavelet decomposition, we are able to investigate the image
features at different scale levels that correspond to certain characteristics of biomedical structures contained
in the volumetric images. The volumetric medical images are decomposed using 3D wavelet transforms to
form a multi—resolution pyramid of octree structure. We employ a 15—subband decomposition in this study,
where band 1 represents the subsampled original volumetric images and other subbands represent various
high frequency components of a given image. Using the available knowledge of the characteristics of various
medical images, an adaptive quantization algorithm based on clustering with spatial constraints is developed.
Such adaptive quantization enables us to represent the high frequency subbands at low bit rate without losing
clinically useful information. The preliminary results of analysis and synthesis show that, by combining the
wavelet decomposition with the adaptive quantization, the volumetric biomedical images can be coded at low
bit rate while still preserving the desired details of biomedical structures.
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1. INTRODUCTION

The rapid development of 3D and 4D medical imaging techniques has produced tremendous amount of
medical image data that can overwhelm the storage and transmission capabilities of conventional archiving
systems. Image compression has now become mandatory for various medical picture archiving and commu-
nication systems. Unlike other image compression applications, compression of medical images is usually
required to be lossless. However, lossless compression techniques often provide inadequate compression ratios
for many types of medical image coding applications. The lossy compression techniques are acceptable for
medical applications only if the clinical useful information can be preserved in the encoding and decoding
processes [1]. We present in this paper the study of subband analysis and synthesis of volumetric medical
images using 3D separable wavelet transforms. With the proposed 3D wavelet decomposition and an adaptive
quantization scheme, the volumetric medical images can be coded at low bit rate while still preserving the
desired details of biomedical structures.

Recently, the wavelet transform has been successfully applied to subband image and video coding
applications [2, 3, 4, 5]. The excellent localization in both spatial and frequency domains have made the
application of wavelet an ideal choice to the analysis and synthesis of various medical images. In this research,
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the volumetric medical images are decomposed using 3D wavelet transforms to form a multi—resolution
pyramid of octree structure (in contrast to quadtree structure in 2D case). We employ a 15—subband
decomposition in this study, where band represents the subsampled original volumetric images and other
subbands represent various high frequency components of the given image. The wavelet decomposition of
the volumetric image provides us a hierarchical structure of subimages whose features correspond to the
biomedical structures at different levels. Such decomposition enables us to identify the characteristics of the
volumetric image at different scale levels and enable the design of a quantization algorithm suitable for lower
bit rate for coding.

Our adaptive quantization algorithm is based on K-means clustering with spatial constraints modeled by
the Gibbs random field [6, 7]. This quantization algorithm is different from conventional scalar or vector
quantizations in that a pixel is quantized according to two criteria: (1) its gray level, and (2) its neighborhood
information. The neighborhood spatial constraints provide us a flexible and powerful tool for quantization
of high frequency subbands. High frequency subbands usually are sparse and highly structured, but many
isolated impulse like pixels, generally of negligible visual significance, often need considerable bits to code.
With spatial constraints, these impulse like pixels are forced to be clustered as the same class as its neighbors.
The parameters of the Gibbs random field can be related to the medical structures in the images and therefore
can be specified by the available anatomical knowledge of given images. In particular, we have made use
of the relative size of the biomedical structures in order to enforce a reasonable spatial constraint so that no
useful biomedical information is removed in the process of clustering. A great reduction of entropy is obtained
after the constrained adaptive quantization has been applied to the high frequency subbands. The reduction of
entropy indicates that efficient coding schemes can be designed for these sparse and well structured subbands.

The 3D subband synthesis based on the original base band and the quantized high frequency bands has
also been conducted. The synthesized image illustrated that a high quality reconstruction can be obtained from
the reduced entropy high frequency subbands. In particular, the clinical useful information can be preserved
if the parameters of the Gibbs random field are chosen appropriately according to the available knowledge
of the biomedical structures.

The proposed analysis and synthesis approach has been applied to a set of volumetric MR brain images.
The preliminary results of analysis and synthesis using 3D wavelet decomposition and adaptive quantization
with spatial constraints suggest that the volumetric biomedical images can be coded at low bit rate without
losing clinically significant visual information.

2. SUBBAND ANALYSIS AND SYNTHESIS OF 3D IMAGES USING WAVELET

Subband coding was initially developed for speech coding by Crochiere in 1976 [8], and has since proved
to be a powerful technique for both speech and image compression. The basic principle of subband coding
is to decompose the signal spectrum into several frequency bands, and then code and transmit each band
separately. The extension of the subband coding to multidimensional signal processing was introduced in
[9] and the application for image and video compression ha been attempted with much success [10, 11,
12]. In image coding applications, the subband decomposition is accomplished by passing the image data
through a bank of bandpass analysis filters. Since the bandwidth of each filtered version of the image data
is reduced, they can be subsampled at its new Nyquist frequency, resulting a series of reduced size subband
images. Each subband image can then be coded, transmitted over the communication system, and decoded
at the destination. These received subband images are then upsampled to form images of original size, and
passed through the corresponding bank of synthesis filters, where they are interpolated and added to obtain
the reconstructed image.
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3D subband coding was originally proposed in [13] as a promising technique for video compression. With
separable filters, 3D analysis and synthesis are carried out as a cascade of temporal, spatial horizontal, and
spatial vertical unidirectional filters in a tree structural manner. Such cascade of filtering may be repeated for
certain frequency subbands in order to achieve high compression rate. Important advantages of 3D subband
coding include the low computational complexity and easy parallel implementation [13, 14].

In the following, a procedure for the decomposition of volumetric images by the 3D subband scheme is
described. The volumetric decomposition of images is accomplished by passing the 3D image data through the
same wavelet filter in horizontal, vertical, and normal directions, respectively. This is different from the scheme
used to decompose video signals where the filter bank used for temporal decomposition is usually different
from the filter bank used for spatial decompositions. In contrast to the quadtree structure in 2D decomposition,
the volumetric subband decomposition results in a multi—resolution pyramid of octree structure. The analysis
and synthesis are carried out according to the structure of octree decompositions.

2.1. Octree Decomposition of Volumetric Subband

In video signal coding, the temporal decomposition is usually based on the 2—tap Haar filterbank [3,
13] and results in a 11—band 2D subband structure. Such decomposition of video signals is not of true 3D
characteristics since the lowpass and highpass 2—tap Haar filterings are basically the average and difference

operations.

We propose a true 3D decomposition of volumetric image data which results in 15—band octree structure.
The original volumetric image set is passed through a bank of unidirectional bandpass filters respectively so
that the bandwidth of the resultant filtered image set is reduced. The filtered image set can now be subsampled
along the filtering direction at its new Nyquist frequency, obtaining a series of reduced size subband image
sets. In the case of volumetric image decomposition using two subbands along each direction, one cycle of
horizontal, vertical, and normal flittering produces 8 subbands (LLL, LLH, HLL, HLH, LHL, LHH, HHL,
HHH) of octree structure. Upon one cycle of decomposition, the lowest frequency subband may be further
decomposed in the same fashion. Figure 1 shows a 15—band octree structure decomposition for volumetric
image set in which the lowest frequency subband after first cycle is further decomposed.

In general, the type and length of the filters can be the same for all three spatial directions. However, in
the case of medical images, the filters applied to each direction may be different considering that the physical
resolutions along different directions are often different for a given set of volumetric image data. For example,
many medical images are composed of a stack of 2D images in which the resolution between the stacks is not

as high as the pixel resolution within the 2D images. A different filter with appropriate type and length may
be used for the decomposition along the normal direction, or the direction of stacking. Such variation of filter
selection is analogous to subband video coding in which the temporal filters are different from spatial filters.

2.2. Subband Analysis and Synthesis Using Wavelet

Subband analysis and synthesis of signals can be accomplished by the application of various filters,
including quadrature mirror filterbanks, hR filterbanks, and FIR filterbanks. With separable filters, 3D analysis
and synthesis are carried out in a cascade fashion on each spatial direction. With the decomposition of octree
structure, the analysis generates high frequency subbands containing horizontal, vertical, normal, and mixed
diagonal high pass energy appeared as directional edges. To minimize the distortions caused by filtering, the
filters are often required capable of perfect reconstruction. In practice, the perfect reconstruction is defined
such that the reconstructed signal after synthesis is a perfect replica of the input signal, in the absence of
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Figure 1: A two-level octree structure of the subband decomposition of a volumetric
image. The LLL subband and LLL-LLL subband cannot be labeled due to occlusion.
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coding and transmission loss, with certain delay. Such perfect reconstruction condition can be written as:

(1)

where X(z) denotes the original signal, t(z) the synthesized signal, and k the delay.

In this research, wavelet filter is applied to decompose and reconstruct the volumetric medical images. It
has been shown in [4, 5] that the wavelet transform corresponds well to the human psychovisual mechanism
because of its localization features in both space and frequency domains. Moreover, the regularity and
orthogonality of wavelet bases enable the reconstruction of medical images with high visual quality at very
low bit-rate. The specific filters used in this research are an example of biorthogonal wavelet bases [5]. The
lowpass analysis and synthesis filters can be expressed as:

Hi(z) = hzTh and Gi(z) = gz (2)

where,

(h0,h1,h2) = (, , —) (3)

and
(17 73 3 3 \\

(go, g±i, g±2, g3) = , —, —). (4)

If the highpass analysis and synthesis filters are written as:

Hh(Z) = and Gh(Z) = (5)

then, their coefficients are related to those of the lowpass analysis and synthesis filters under following
constraints: - / 1\ThJ— 1) Itn+1

=
(6)

=
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to ensure the perfect reconstruction.

3. CHARACTERISTICS OF THE SUBBAND DECOMPOSITION

The subband analysis has not resulted in any reduction of bit rate required to represent the video signal.
However, such analysis yields a desired decomposition of spatial spectrums into several frequency subbands.
Through exploiting the characteristics of the decomposed subbands, an effective image coding algorithm
can then be developed to represent the volumetric medical images at low bit rate without losing clinical
useful information. Since the decomposed subbands exhibit quite different frequency responses from one to
another, the coding strategy for each of them need to be carefully designed to fit individualized requirement
in reducing the bit rate.

3.1. General Characteristics of the Decomposed Subbands
For the 15—band octree decomposition of the volumetric medical images, the characteristics of each band

is summarized as follows:

1 . Band 1 is the low resolution representation of the original image and has similar characteristics in
histogram, but its bandwidth has been significantly reduced. For the 2—level decomposition to generate the
octree structure, the bandwidth is only of the original bandwidth for each direction, thus its sampling
rate requirement is reduced by same factor. It can be efficiently coded using DPCM since the lowpass
filtered image is fairly smooth already. Block DCT coding is also expected to perform well for such
band-limited image signal.

2. Bands 2-14 contain certain high frequency components of the volumetric images. Each image of these
bands is highly structured and composed of different amount of 'edges" and 'impulses' corresponding to
the features of original image at different scales and the directions of analysis filters. In particular, bands
2—7 usually contain more energy than the rest of them, and would need more bits to represent.

3. Band 15 represent all three spatial high frequency components of the volumetric images. It usually
contains very low signal energy and is less significant than the rest. It can be discarded during the coding
without visible distortions.

3.2. Representation of High Frequency Subbands

The design of an efficient coding algorithm utilizing the features of the decomposed subbands has been
recognized as an effective way of increasing the compression ratio. In particular, many attempts in low bit
rate subband coding have been concentrated in the study of characteristics of the high frequency subbands so
that the features of these subbands can be made useful in designing low bit rate coding algorithms [3, 15, 16,
17]. When the decomposition is accomplished by the separable wavelet filters, the high frequency subbands
exhibit excellent directionally localized structures which can be exploited to generate efficient representation.

Several features of these subbands should be taken into consideration for an efficient representation. One
feature of these high frequency subbands is their less significant perceptual responses and hence can often
afford coarse quantizations. Such coarse quantization would result in less bits to code the image with negligible
distortions in the synthesized images. Another feature of the high frequency subbands is their well defined
structures corresponding to properties of the bandpass filters. The structure of high frequency subbands usually
appear as sparse "edges" and "impulses" that correspond to few strong discontinuitiesof the intensity changes
along respective spatial directions. When the wavelet filters are used to decompose the volumetric image,
the simultaneous localization in both frequency and spatial domains produces "edges" and "impulses" with
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even better contrast. In addition, these sparse "edges" and "impulses" exhibit their well defined directional
arrangement in accordance with the direction of the filters applied to obtain these subbands. Utilization of such
directional feature has been proposed in [18] that resulted in corresponding scanning scheme for runlength
coding of subbands at different directions.

In the case of medical images, the strong edges with certain spatial extent in the decomposed high
frequency subbands usually correspond to the biomedical structural patterns of clinical significance. However,
the weak edges and impulses are often resulted from the noise or negligible image discontinuity patterns. It is
evident that the quantization of these high frequency subbands should be designed such that the strong edges
with certain spatial extent should be preserved while the weak edges and impulses should be merged with their
neighbors. Unfortunately, traditional quantization schemes, either scalar quantization or vector quantization,
would not be able to achieve this goal. This is because the scalar quantization does not recognize whether
the given pixel is of impulse nature while vector quantization need a codebook generated before hand by
training which would not adapt to the given signal. Therefore, an adaptive quantization scheme capable of
identifying the spatial extent of an edge should be applied to these high frequency subbands to obtain the
desired quantization.

4. ADAPTIVE QUANTIZATION WITH SPATIAL CONSTRAINTS

We propose here a novel approach for the adaptive quantization of high frequency subbands based on the
concept of K-means clustering with spatial constraints. Our approach uses the Gibbs random field to enforce
neighborhood constraints in order to remove those "impulses" whose contributions to the reconstruction are
negligible, but would otherwise need considerable amount of bits to code. In the following, the adaptive
clustering algorithm applied to high frequency subbands as an adaptive quantization is described and the
implementation of this estimation algorithm as well as the selection of parameters are discussed.

4.1. Adaptive Clustering with Gibbs Random Field Model

The adaptive clustering algorithm with spatial constraints is applied to the high frequency subbands to
obtain the desired quantization. This algorithm is a 3D extension of the K-means clustering scheme proposed
in [6] with enhanced adaptability. It has been shown in [7, 19, 20] that images can be modeled as a Gibbs
random field and image segmentation, or clustering of image pixels, can be accomplished through a maximum
a posteriori probability (MAP) estimation technique. According to Bayes' theorem, the posterior probability
can be expressed as:

p(x(y) oc p(yx)p(x) (7)

where p(x) is the a priori probability of the clustering, and p(ylx) represents the conditional probability of
the image data given the clustering. The Gibbs random field can be characterized by a neighborhood system
and a potential function. A Gibbs random fields constrained image clustering is accomplished by assigning
labels to each pixel in the given image. A label x = i implies that the pixel s belongs to the i-th class of
the K classes. Therefore, we have:

P(XsIXt, Vt s) = p(x8xt, t E N8) (8)

where N8 represents the defined neighborhood for pixel s. Associated with each neighborhood system are
cliques and their potentials. A clique C is a set of sites where all elements are neighbors. If we consider that
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a 2D image is defined on the Cartesian grid and the neighborhood of a pixel is represented by its 4 nearest
pixels [21], then the two-point clique potentials are defined as:

, fi3, ifx5=xtands,tECV(x)= (9)

For a 3D image, a straightforward extension of 2D neighborhood system indicates that the neighborhood a
voxel can be represented by its 6 nearest neighbors [22]. A Gibbs distribution can then be defined as:

p(x) o exp {- V(x)} (10)

where V is a certain clique potential for clique C. For a 4x4x4 3D lattice, there will be 24 cliques within
each 4x4 cross section, and 16 cliques between two cross sections. The total number of two-point cliques
for such 3D lattice is therefore 144. If we model the conditional density as a Gaussian process with mean

11s and variance o at a pixel location s, then it can be written as a spatial varying density function with
respect to pixel location s:

I 1 2'1
p(yx) o exp — (Ys Ls) (11)

2a8 j

Then, the overall probability function will be:

p(x) o exp {-(Ys )2 V(X)} (12)

There are two components in the overall probability function. One corresponds to the adaptive capability
that force the clustering to be consistent with local image distribution with locally estimated mean and

variance a. The other corresponds to the spatial continuity constraint characterized by the clique potentials
within a given 3D lattice.

4.2. Implementation of the Adaptive Quantization

MAP estimation based adaptive K-means clustering can be implemented using various optimization
techniques depending on the specific applications. The proposed adaptive clustering algorithm for the
quantization of high frequency subbands is implemented using the method of iterative conditional mode
[23]. First, an initial clustering x is obtained through the simple K-means algorithm. Then, overall probability
function is maximized on a point-by-point basis, with the mean ,u and the variance o of each cluster being
updated after each iteration. Therefore, the optimization is accomplished through alternating between MAP
estimation of the clustered regions and iterative update of the cluster means and variances. Such alternating
process is repeated until no pixels change classes. The result is the optimal clustering of the given high

frequency subbands.

The parameters in this adaptive clustering are chosen according to the characteristic of the high frequency
subbands. Different 3's are used for different directions when the clustering is applied to those subbands
with clear directional edges while single 3 is used when the clustering is applied to subbands with no strong
directional edges. Such flexible choice of parameters allows us to preserve those strong edges which often
represent certain clinically useful information.
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With Gibbs random field as the spatial constraint, the adaptive clustering algorithm is applied to obtain
5 levels of quantization with the gray level of each pixel being replaced by the mean of the cluster that pixel
belongs to. Since the histogram of the high frequency subbands is approximately of Laplacian distribution
with zero mean, the quantization levels are almost symmetrically distributed with the middle one close to zero.
For display purpose, the zero valued mean is represented by the midgrey gray level, while negatively valued
means are represented by dark gray levels and positively valued means are represented by bright gray levels.

5. PRELIMINARY RESULTS WITH VOLUMETRIC MR BRAIN IMAGES

The proposed scheme for subband analysis and synthesis of volumetric medical images has been applied
to 3D MR brain images. The MR image data set is provided by the Department of Neurology, University
of Rochester Medical Center. The MR imaging is performed using a GE Signa 1 .5Tesla superconducting
system. This MR image set contains 60 slices, each with a matrix of 256 x 256 pixels. A typical slice from
this brain image set is shown at the left of the Figure 2.

The given image volume is passed through a combination of highpass and lowpass wavelet filters along the
horizontal, vertical, and normal directions, respectively. The filtered image volume is then subsampled at each
directions to generate a smaller volume ( of the original). All eight smaller volumes are arranged according
to their frequency components as shown in Figure 1 . The resultant LLL subband is further decomposed in
the same fashion to generate a total of 1 5 subbands.

Band 1 is the low resolution representation of the original image with a significantly reduced bandwidth
due to the two cycles of lowpass filtering. The subsequent adaptive quantization based on K-means clustering
is not applied to band 1 since it contains no high frequency components. However, it is applied to the rest
of the subbands to remove the impulses that are of insignificant visual importance, but would otherwise need
considerable amount of bits to code. By a proper choice of spatial constraint parameters, the clinical useful
information can be preserved during the process of adaptive quantization. Figure 3 shows one representative
slice of the decomposed subbands from the octree structured volume before and after adaptive quantization. It
is evident that the clinical useful information is preserved after adaptive quantization. However, the impulse,
or edges with negligible spatial extent, have been largely removed. The image after adaptive quantization
contains much more homogeneous regions than the corresponding original decomposition. A comparison of
different order of entropy for each subband before and after adaptive quantization is presented in Table 1 . This
comparison indicates that an average reduction of entropy is about 70%. Therefore, the quantized subbands
can be coded at much lower bit rate than the original subbands.

The synthesis is also accomplished using wavelet transforms. In the case of 2—level decomposition, we
start from the LLL subband, where each subband in the second level decomposition of the octree structure is
upsampled and passed through the corresponding synthesis filter. Upon the completion of the LLL subband
synthesis, the first level octree structure is processed in the same fashion. We have obtained the synthesized
volumetric image based on the original base band and the quantized high frequency subbands processed by
adaptive clustering. The preliminary results show that a good quality image can be synthesized in this fashion
but the adaptively quantized high frequency subbands can be represented at much lower bit rate. A typical
slice after synthesis is shown at the right of the Figure 2 with PSNR of approximately 30dB. Visual inspection
also shows that useful biomedical structures at various spatial levels are preserved. In particular, the detail
of strong and clinically important structures remain the same while the noise contained in the given image
has been suppressed.
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Figure 2: Left: A typical slice of brain image (slice 48) from the original volume; Right:
The resultant image obtained after synthesis with the adaptively quantized subbands.

6. CONCLUSION

We have presented in this paper a study of subband analysis and synthesis of volumetric medical images
using 3D separable wavelet transforms. With 3D wavelet decomposition, we are able to investigate the image
features at different scale levels that correspond to certain characteristics of biomedical structures contained
in the volumetric images. The volumetric medical image is decomposed into a 15—subband multi—resolution
pyramid of octree structure. Using the available knowledge of the characteristics of various medical images,
an adaptive quantization algorithm based on clustering with spatial constraints is developed. Such adaptive
quantization enables us to represent the high frequency subbands at low bit rate without losing clinically
useful information. The preliminary results of analysis and synthesis show that, by combining the wavelet
decomposition with the adaptive quantization, the volumetric biomedical images can be coded at low bit rate
while still preserving the desired details of biomedical structures.

Several compression schemes are currently under investigation to code the adaptively quantized high
frequency subbands. These schemes aim at taking advantage of two major characteristics of the processed
high frequency subbands: (1) well structured directional edges due to separable wavelet filters, and (2) large
homogeneous regions due to clustering with spatial constraints. With the reduced entropy, these high frequency
subbands can be coded at much lower bit rate than the original subbands.

Acknowledgement

The authors wish to thank Professor W. Li of the Lehigh University, who kindly provided us a 2D version
of the subband analysis and synthesis programs, and Mr. J. Luo of the University of Rochester, who offered
help in some of the programming.

1552 ISPIE Vol. 2308

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/27/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Figure 3: Left: The decomposed 12th slice (resulted from original slice 45, 46, 47, 48) from the
octree structure of the decomposed volume; Right: The same slice after the adaptive quantization.

Table 1 A comparison of entropy for each subband presented in Figure 3

Original_Decomposition After Adaptive Quantization

Subbands 0th order 1 st order DPCM 0th order 1st order DPCM

LHL 3.94 3.65 4.76 1.57 1.33 2.41

LLH 4.12 3.93 4.41 0.94 0.85 1.11

LHH 2.85 2.61 3.69 0.66 0.59 1.03

LLL-LHL 4.35 3.99 5.05 1.40 1.31 2.24

LLL-LLH 4.41 4.08 4.79 1.35 1.25 1.79

LLL-LHH 3.85 3.63 4.49 1.08 1.05 1.55

Average
Entropy:

3.92 3.65 4.53 1.17 1.06 1.67

Average Entropy Reduction : 70% 71% 65%
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