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Abstract-We present a novel, robust and accurate blood velocity estimation technique that is implement- 
able by elementary digital signal processing. In this technique, echoes from repeated firings of a transducer 
are resampled along a set of predetermined trajectories of constant velocities, called “butterlly lines” 
because of their intersection at a reference range. The slope of the trajectory on which the sampled signals 
satisfy a predetermined criterion appropriate for the type of signal in question, provides an estimate of the 
velocity of the target. The search for this trajectory is called “butterfly search,” which can be carried out 
efficiently in a parallel processing scheme. The estbuator can be based on the RF echo, its envelope, or its 
quadrature components. We present the theory of the butterlly search and some prelhuiuary results. The 
buttertly search on quadrature components has shown superior noise immunity, with relatively few succes- 
sive scan lines, aud was found to outperform all the common time domain and Doppler techniques in 
simulations and phantom experiments with strong noise. The butterily search can overcome many disadvan- 
tages faced by the present day techniques, such as the stringent tradeoff criterion between imaging resolution 
and velocity resolution implicit in Doppler techniques, and the need for computation-intensive operations. 
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INTRODUCTION 

Real-time transcutaneous blood flow velocity measure- 
ment plays a major role in the diagnosis of many vascu- 
lar diseases, especially cardiac diseases. Pulsed Dopp- 
ler ultrasound has long been used as the method of 
choice for this purpose. A reflected ultrasound wave 
undergoes a Doppler shift in frequency if the reflector 
moves toward or away from the receiver. The shift fd 
can be expressed by: 

fd = 
2u,cos 8 
-Al (1) 

C 

where f0 is the frequency of the continuous emitted 
wave, u0 is the velocity of the reflector, c is the velocity 
of the wave in medium and 8 is the angle between the 
direction of movement of the reflector and the direction 
of the beam. However, the conventional pulsed Dopp- 
ler and color Doppler machines do not use the Doppler 
shift for estimating the velocity, since range resolution 
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cannot be obtained with continuous-wave isonation. In 
the past, several different techniques have been pro- 
posed and some have been implemented in clinical 
pulsed imaging instruments. Among the most common 
of them, some make use of the change of phase of a 
reflected signal (Doppler techniques -Angelsen 198 1; 
Kasai et al. 1985; Magnin 1986) while many others 
make use of the time shift in the envelope or RF signals 
using correlation methods (time domain techniques- 
Bonnefous and Pesque 1986; Embree and O’Brien 
1990; Foster et al. 1990; Pesque 1989). However, all 
of them require various tradeoffs. With the Doppler 
techniques, a relatively long tone burst is needed to 
accurately measure the velocity. This decreases the 
flow imaging resolutions. In time domain techniques, 
correlation windows must be fixed, and extensive cal- 
culations over many echo pairs are required. More re- 
cently, an important matched filter approach to a maxi- 
mum likelihood estimator of velocity was developed 
by Ferrara and Algazi ( 1991a,b). 

Typical values of the signal-to-noise-ratio (SNR) 
are in the range of 0 to 20 dB, since blood backscatter 
is weak. So, the estimation techniques must perform 
well in noisy situations. Computational complexity is 
another issue in evaluating the merits of an estimation 
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technique. Finally, the number of successive scan lines 
required to arrive at a velocity estimate is important 
since this relates to the color flow imaging rate of 
an instrument. The method proposed herein combines 
some of the best features of time domain and Doppler 
methods. The method is readily realizable in hardware 
without extensive correlation calculations. It performs 
well with a wideband pulse in the presence of noise 
and requires fewer successive lines than many other 
techniques. The method is described after a brief re- 
view of the prior developments. All the techniques are 
discussed for a moving point scatterer for convenience. 

BACKGROUND 

Doppler ultrasound 
Pulsed Doppler systems transmit a short sinusoi- 

dal burst instead of a continuous sinusoid. By gating 
the received signals to correspond to the pulse’s time 
of flight to the point of interest, one can interrogate a 
small sample volume instead of the entire length of 
the beam. It is lucidly described in a tutorial article by 
Magnin ( 1986). 

Samples of the Doppler signal are obtained by 
sampling the echo at a fixed range. For the purpose of 
illustration, let us consider an object moving toward 
the transducer (for simplicity, a point target is being 
used for all illustrations). As the object advances, the 
phase changes corresponding to the distance the target 
has moved between successive samples. If the velocity 
u. is constant, then the nth RF A-line from a point 
spread target would have the form 

t - 2 _d + 2n 3 T 
C C 

t-2i+2n3T 
c C 

n=0,1,2 ,..., N- 1. (2a) 

In discrete time representation 

i d 
- - 2 - + 2n 2 T 
.G C C 

(2b) 

where A is the signal amplitude, n is the index for the To estimate the mean frequency, rate of change 
repeated echo lines (slow-time index), T is the pulse of phase of the autocorrelation function taken along 
repetition period,ffis the fast time sampling frequency, the “slow time” axis (shown in Fig. 1) can be used 
d is the initial distance of the object from the trans- (Kasai et al. 1985) 

ducer, w. is the angular center frequency, r(t) is the 
envelope of the transmitted pulse which maximizes at 
t = 0 and the factor of 2 in the expression comes from 
the round-trip travel of the wave. Time-axis origin is 
reset each time the transducer fires. System effects are 
neglected. We will use the terms “slow time, fast 
time” to refer to samples taken along the (n, t) direc- 
tions, respectively. 

To get the in-phase component i ( n , t ) and quadra- 
ture component q( II, t), s( n, t) should be multiplied 
by cos(wot) and sin(w,t), respectively, and then low- 
pass filtered. 

Then, the complex envelope can be shown to be 

f(n, t) = i(n, t) +jq(n, t) 

A 
= zexp’ 

[,(;-n;T)]r{t-2;d+2n;Tj 

= A exp - -j 2~gz:T [ I 

where 6=qexpj ho-d . c 1 (34 
C 

In discrete time representation 

fln,i] =Aexp-j 2w,yt3T [ 1 c 
. (3b) 

If the complex envelope of the reflection is sam- 
pled at a constant range (or equivalently, at a constant 
time t = t,), its peak frequency will be proportional 
to the velocity, provided that no aliasing has occurred, 
and R(w), the spectrum of r(t), maximizes at w  = 0. 
The general concept is illustrated in Fig. 1, where a 
single scatterer is assumed, and the envelope r(t) in 
the figure is nonzero for three and a half periods, and 
it remains constant within that interval. 

Various spectral estimation techniques, including 
FFT, can be used to estimate the peak frequency. MO 
et al. ( 1988) presented a detailed discussion on a few 
maximum frequency estimators for Doppler ultra- 
sound. 
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(a) (b) (4 

Fig. 1. Illustration of quadrature technique. (a) Reflections 
and sampling. (b) Sampled signal, and also the in-phase 

component I. (c) Quadrature component Q. 

1 l+(O) L;=--= 
j R(O) 

4((j) M e.T2 
T 

(4) 

where R ( T ) is the autocorrelation function of the com- 
plex envelope sampled at constant range, and c$( r ) is 
the phase of the autocorrelation function R(T), as we 
can write R( r ) in the following form 

R(T) = 1 R(7) 1 ej8(T’. (5) 

Time domain correlation search 
Since a moving scatterer introduces time shift in 

the reflected ultrasound signal, blood velocity can be 
found by a straightforward cross-correlation search 
technique (Bonnefous and Pesque 1986; Embree and 
O’Brien 1990; Foster et al. 1990). 

For variables X and Y consisting of N discrete 
values, coefficient of correlation pxv can be written as 

P.ryvY[ i 1 
N-I 
C (x[k] - X) (y[k + i] - Y) 

k=O 

/N-l N-I . (6) 

-\I 
k:,, (x[k] - X)2 c (y[Z + i] - F}* 

I=0 

If X and Y are successive RF A-lines, the maxi- 
mum of the cross-correlation coefficient pl,, can be 
used to estimate the time shift between them caused 
by scatterer movement, if any, and equivalently, the 
scatterer velocity. In reality, the true location of the 
maxima of pr;,, may not be constrained within the inte- 
ger increments, and will generally lie between the dis- 
crete maximum and one of the two neighboring points. 
An estimate of the true maximum can be obtained by 
a parabolic interpolation (Foster et al. 1990). To get 
good results from the correlation techniques in the 
presence of noise, some temporal averaging may be 
required. 

Bohs and Trahey ( 1991) proposed to use the sum- 
absolute-difference (SAD) for flow imaging. It is com- 
putationally simpler than the cross-correlation search, 
but performs nearly as well. The displacement between 
successive RF A-lines is estimated by finding the mini- 
mum of SAD. Sum-absolute-difference for one-dimen- 
sional signals is given as 

N-l 

E,Ji] = c Ix[k] - y[k + ill. (7) 
k=O 

Pesque ( 1989) proposed using first order Taylor 
series expansion of the reflections from a moving target 
to estimate the time shift between successive firings. 
This method requires the calculation of the first deriva- 
tive of the signal, and the calculation of derivatives is 
poorly conditioned in the presence of noise. 

Wideband maximum likelihood estimation ( WMLE) 
This estimator, developed by Ferrara and Algazi 

( 1991a,b), incorporates correlation in the context of a 
classical matched filter. However, unlike cross-cotrela- 
tion techniques, which use only shift in time, wideband 
MLE utilizes both the time and frequency shift embod- 
ied in a matched filter to estimate velocity. The likeli- 
hood function for a point target is given by 

l(u) = Iz s:., r’(t)S’* t - T” 
k 

- kT[ 1 + 2 F])exp(jnut)dtl’ (8) 

where s’ ( * ) is a delayed version of the complex enve- 
lope of the transmitted pulse (including effects of signal 
propagation and scattering), r’ ( t) is the complex enve- 
lope of the received signal, rC, corresponds to the round- 
trip travel time, and g = 2wJc. In this expression, the 
time origin is not reset after each transducer firing. 

The velocity estimate can be obtained from the 
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maximum of I(u), or using the following expression 
that would give the mean velocity 

Other methods 
The previous sections presented an overview of 

some widely discussed techniques for blood velocity 
estimation. There are many excellent review and appli- 
cation articles on both Doppler (Angelsen 1981; Vait- 
kus and Cobbold 1988; Vaitkus et al. 1988) and time 
domain methods (Hein and O’Brien 1993 ) . 

Some other approaches have been discussed. Bar- 
ber et al. ( 1985) proposed a time domain processing 
scheme of the quadrature components to detect the 
Doppler frequency. Baek et al. (1989) proposed 
tracking mean frequencies along the spatial axis with 
the assumption of continuity of flow to solve the fre- 
quency aliasing problem. de Jong et al. ( 1990) devel- 
oped an interpolation method which calculates the cor- 
relation coefficient only at five points in the vicinity 
of the maximum, and use an interpolation algorithm 
to evaluate the location of correlation maximum from 
these points. This method requires significantly less 
number of computations compared to correlation 
search. However, it does not work well with large 
bandwidth signals, and suffers from aliasing. 

Fan and Evans ( 1994) proposed a Wigner distri- 
bution function method that uses a pseudo-instanta- 
neous mean frequency. Wigner distribution function 
does not require the analyzed signals to be stationary. 
The instantaneous frequency derived using the Wigner 
distribution function suffers from spike problems and 
is quite unstable when the input signal contains more 
than one frequency component which is usually the 
case for Doppler signals. The proposed pseudo-instan- 
taneous mean frequency can overcome these problems. 
Wilson ( 199 1) introduced a broadband pulsed Doppler 
scheme using 2-D Fourier transform in slow time, fast 
time. A method to overcome the frequency aliasing 
problem was also discussed. Sturgill ( 1990) developed 
a maximum entropy velocity estimation strategy in 
which an average power spectrum of the series of re- 
ceived signals is calculated by fitting a polynomial to 
the series of received echoes. A peak center frequency 
shift associated with the data for each point is derived 
from the power spectrum that is used to produce a 
velocity estimate for that point. 

THE BUTTERFLY SEARCH 

RF or envelope search-a time domain technique 
We propose a simpler technique where a search 

is performed along trajectories that describe lines of 

direction of 
reflector movement 

L 

2\ 

Fig. 2. Illustration of movement of envelope on the time 
frame with the movement of the scatterer. 

constant velocity in two-dimensional (slow time, fast 
time) space. In Fig. 2, the envelope of echoes from a 
single reflector is shown. As the reflector moves, the 
echoes are time-shifted. Consider a reference sample 
point at the middle of a few successive A-lines. Then 
sample at different delays between successive A-lines, 
or on different trajectories ( “buttertly lines” from the 
shape indicated in Fig. 3). If the delay trajectory 
matches the scatterer movement, that is, on the butter- 
fly line corresponding to the correct velocity, all the 
data samples would have the same value and their 
variance will be zero. To take the presence of noise 
into account, however, the butterfly lines on which the 
variance is minimum is searched for. The concept is 
clearly illustrated in Fig. 3 (where the RF pulse has 
Gaussian envelope). The solid line is the correct but- 
terfly line, and on it, all the samples have the same 
value, and hence, zero variance. 

Using the same notation as used previously, the 
envelope e( n, t) for the n th RF A-line 

t - 2 _d + 2n u” T 
C C 

n = 0, 1,2,. . . , N - 1. (10) 

To sample e( n, t) at its maximum value over 

increasing n, the quantity t - 2 _d + 2n u” T should 
C C 

be zero, since r( ) maximizes at t = 0, i.e. 
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reflector movement 0 
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signifying~diffemnt 
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Fig. 3. Illustration of butterfly search (on envelope). Only 
on the solid line will all the samples have the same value. 

t-2d+2n%=o. (lla) 
C C 

In discrete time form 

--2d+2nV07-4 i 

ff c C 
(lib) 

However, i can have only integer values, and thus, 
a point on the butterfly line may lie between two suc- 
cessive values of i. Linear interpolation between suc- 
cessive sample points can be used in such cases to 
estimate the signal value on the butterfly line. 

Let us define eev[n] to denote the resampling of 
the envelope along the butterfly line for velocity u to 
estimate the velocity at depth d 

eBv[n] = e(n, t)6 t - 2 !f + 2n u T . (12) 
c C 

Here we assume that the impulse train of the sam- 
ple function is implicitly followed by a conversion to 
a discrete time sequence (a C/D conversion in the 
conventional sense) (Oppenheim et al. 1983 ) . Thus 

eh,,[n] = Ar(0). (13) 

Thus, in the absence of noise, eevo[n] maximizes 
to a constant value for all n. In other words, the vari- 
ance of eh,,[n] is zero. In the presence of noise, how- 
ever, this variance is expected not to be zero but a 
minimum on the correct butterfly line corresponding 
to uo. Or, in other words, given the butterfly line with 
minimum variance, the slope can be used for the scat- 
terer velocity estimation. 

The estimated velocity would be found as follows 

0 = min (var(e,,[n])) (14) 
” 

where var( eeU[ n] ) is the variance of the envelope sam- 
pled on the butterfly line corresponding to velocity u. 

We note that the symmetric butterfly centered in 
slow time (Fig. 3) can be replaced with a “V” or 
“inverted V” shaped orientation of search lines ema- 
nating from the last or the first scan line (Fig. 4). 

The same method can be applied to the RF signal. 
The estimated velocity would then be found as follows 

0 = min (var(s,[n])} (15) 
” 

where 

s,Jn] = s(n, r)6 r - 2 d + 2n v T 
( C 1 

. (16) 
c / 

directionof b 
reflector movement 

0 * 

1 

2 

3 

4 

Fig. 4. Alternate butterfly search style (“inverted Vee” 
search). Only on the solid line will all the samples have the 

same value. 
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Fig. 5. Illustration of butterfly technique applied on the quad- 
rature components (one shown). Only the solid line would 

sample a constant amplitude sinusoidal function FsUO [ n] 

Butte& search on quadrature components-a hybrid 
technique 

The butterfly search on RF and envelope signals 
are time domain methods. In the butterfly search on 
quadrature components, the aspects of time domain 
and frequency domain analyses are combined. The 
concept is that, for a single target moving at a constant 
velocity, the quadrature components sampled along the 
correct butterfly line will be single frequency sinu- 
soids. The frequency of these sinusoids depends on 
target velocity. So, for each velocity there is a unique 
correct butterfly line and the complex envelope sam- 
pled on that line will have a unique frequency. Thus, 
we conduct a search where the complex envelope sam- 
pled on each butterfly line will be checked for the 
unique frequency that the sampled complex envelope 
would have if the target had velocity corresponding to 
that butterfly line. The method is illustrated in Fig. 5. 

From eqn (3a), the complex envelope is 

J(n, t) =A”exp - j[2wfl:T] 

t-2$+2n3T . (17) 
c C 

Following the previous discussions concerning 
the RF or envelope search, let us define F,J II 1 to denote 
the resampling of the complex envelope along the hut- 
terfly line for velocity u to estimate the velocity at 
depth d 

fBu[n] = F(n, t)S t - 2 d + 2n z T 
( c c 1 

=iiexp-j{24$~T}r(Zn~I.). (18) 

Then, the complex envelope along the correct 
sampling trajectory is given by 

fBuo[nl =Aexp -j 2w@;T r(O). (19) 
L “Ol 

Thus, as also depicted in Fig. 5 (which illustrates 
the technique as applied for a single point spread target 
with no noise present), the complex envelope along 
the correct butterjly line would sample a single fre- 
quency constant amplitude complex exponential with 
respect to the index n. And, for each velocity, on the 
correct butterfly line, that distinct frequency is unique. 
Thus, the signal energy on the correct butterfly line 
would be concentrated at that frequency. With noise 
present, that particular frequency would still be ex- 
pected to have the maximum energy. If we examine 
each butterfly line for the power contained in the fre- 
quency corresponding to that line, normalized by the 
total power, the maximum should occur on the correct 
line (u = uo). 

To illustrate this, we assume the situation of Fig. 
5 and examine samples along other butterfly lines. On 
an incorrect line, the butterfly sampled complex enve- 
lope is given by eqn ( 18) for u f uo. As S,[ n] varies 
with n, these signals are now amplitude modulated. 
Here, the spectrum of fBV[ n 3 would have the maximum 

at w = -2wo “0 T, and not at w = -2w, 2 T, although 
C C 

the energy would be spread according to the spectrum 
of the envelope term r( ) . 

We determine the normalized frequency-specific 
energy along each butterfly line by applying orthogo- 
nality and Schwartz’s inequality. For each butterfly 
line the following ratio is evaluated 

I I 
2 

2: fBu[n]ej2won(ulrlT 

n 

L(u) = 
z l~dnl12 

(20) 
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where fB,[ n ] is given by eqn ( I 8 ) and, L (u ) maximizes 
only at u = ug. The derivation of L(u) is given in the 
Appendix I. 

We estimate the velocity by finding the maximum 
of L(u). 

0 = max {L(u)) (21) 

and the mean velocity can be estimated by finding the 
following weighted mean Variance detector fores,ln ] 

11 ----------- 1 
c ir,L(iri) 

if= 1 
2 L(tij) . (22) 

Despite the fact that our technique uses quadrature 
components for the estimation, it does not have the 
aliasing problem. Although the frequency along a but- 
terfly line can be the same as that on other lines of 
different velocities due to aliasing, the frequency-spe- 
cific energies on these incorrect lines are reduced by 
severe amplitude modulation and interference from the 
neighboring scatterers. The results in the later sections 
will demonstrate that the butterfly search on quadrature 
components does not have the aliasing problem. We 
note also that a wideband pulse increases the discrimi- 
nation of velocities in the butterfly search. This is in 
marked contrast to “Doppler” techniques where a 
short, broadband pulse produces unwanted spectra1 
spreading and other problems. For either envelope, or 
RF, or complex envelope search, if a finite number of 
butterfly lines are directly implemented in hardware, 
there will be a quantization effect in the velocity esti- 
mates. However, we can minimize this effect by taking 
large number of lines. A compromise between quanti- 
zation error and computational complexity can be 
made. 

Fig. 7. Schematic hardware diagram for butterfly search on 
envelope: (a ) generating butterfly sampled envelope eBU[ n ] ; 

(b) processing eBc[n] to extract ii. 

implementation is possible without the use of correla- 
tions, transforms, iterations or any other complex algo- 
rithms. The implementation is quite straightforward. 
For any signal r(n, t), rBU[n] is easily sampled as 
shown in the butterfly sampler in Fig. 6. For envelope 
processing, envelopes are sampled at the butterfly sam- 
pler banks following envelope detection. Each butterfly 
sampler is connected to a variance detector. The out- 
puts of the variance detectors are fed to a minimum 
detector. The velocity corresponding to the variance 
detector producing the minimum, is the estimated ve- 
locity. The schematic diagram is shown in Fig. 7. 

For the RF processing, the schematic hardware is 
identical to the one shown in Fig. 7, except that the 
envelope detector is removed. 

A block diagram of a possible hardware realiza- 
tion of butterfly search on quadrature components is 
shown in Fig. 8. Following the quadrature demodula- 
tion step, fBv[n] are sampled at the butterfly sampler 
banks. The output from each sampler is then fed to 
a “correspondence detector” involving the following 
steps: multiplication by an appropriate complex expo- 
nential, summation (over index n) , followed by mag- 
nitude square and a normalization by a quantity that is 
derived by feeding f&n] through a magnitude square 
followed by summation (over index n) . The LC u ) val- 
ues thus produced are input to a maximum detector. 
The velocity corresponding to the maximum L(u) is 
the estimated velocity. 

HARDWARE IMPLEMENTATION 

This technique has an obvious advantage over 
many of the existing techniques since direct digital 

ii- 

X rev [n 1 

{t- 2$2n:T) 

Fig. 6. Butterfly sampler. 
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Fig. 8. Schematic hardware diagram for quadrature butterfly 
search: (a) generating butterfly sampled complex envelope 

PBv[ n] ; (b) processing P&[ n] to extract 0. 

SIMULATION METHODS AND RESULTS 

Some simulation results for the common time and 
frequency domain techniques and tbe proposed tech- 
nique are given in this section. Results for a single 
realization of a high noise case are given for quadra- 
ture, autocorrelation, cross-correlation, SAD and but- 
terfly techniques with three fast lines. Constant, uni- 
form velocity was used in these simulations. A line of 
1024 scatterers was used, which amounted to - 15 mm 
of tissue. 

We used a Gaussian RF pulse, with center fre- 
quency fo = 5 MHz, 0 = 1.41 MHz and fs = 50 X 
106/s (PRF = 5 KHz). The pulse is shown in Fig. 9. 

The pulse can be expressed in continuous time 
domain as 

s( t ) = 2kGae -z(nor)zCOS (27&f) (23) 

from the equivalent frequency domain representation 

e-l/202’f-f0~* + e-112&+f$** (24) 

The 60-dB pulse width for the pulse is WmdB = 
1.18 
- = 0.84 ps, which is equivalent to 42 samples, or 

OIT63 mm of tissue, whereas the lo-dB bandwidth of 
the pulse is WrOdB = 3.04~ = 4.28 MHz. 

The pulse was convolved with a line of random 
scatterers to produce a fully developed speckle. RF A- 
lines were quantized at ten bits. One envelope of a 

-1.0 I I / J 
-0.50 -0.25 0.M) 0.25 0.50 

Time @IS) 

Fig. 9. Pulse fired by the transducer; 0 = 1.41 MHz. 

scan line is shown in Fig. 10. There was no additive 
noise. 

L(u) [eqn (20)] vs. u with four RF lines is shown 
in Fig. 11. The actual scatterer velocity is -75 cm/s, 
and there was no additive noise. L(u) exhibits a sharp 
peak at -75 cm/s, as expected. The subsidiary peaks 
at aliasing interval of 75 cm/s are seen. In general, as 
the number of RF lines decreases, the peak broadens 
and the subsidiary peaks increase. Addition of noise 
brings up the base level. 

Graphs of var(s&[n]) vs. u (for RF processing) 
and var( efi[n]) vs. u (for envelope processing) for 
four RF lines are shown in Fig. 12. No additive noise 
is present, and the actual velocity is -75 cm/s. 
var( s&[ n]) shows a sharp notch (close to zero) at -75 
cm/s. var(eBV[n]) reaches the minimum at -75 cm/s. 
In general, tbe notches broaden as number of RF lines 
decreases. In general, the addition of noise makes the 
notch less distinct as a global minimum. 

01 J 
5.00 6.25 7.M 8.75 IO.00 

Time (pS) 

Fig. 10. Envelope of an RF A-line from the simulated data. 
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Fig. Il. Z,(u) vs. u, for four RF lines. Actual velocity is -75 
cm/s, no additive noise present. L(u) maximizes at -75 cm/s. 

The performances of different estimation tech- 
niques on the simulated data for three RF lines are 
shown in Figs. 13 to 17. The SNR was 0 dB. These 
are very unfavorable conditions which test the ro- 
bustness of each technique. The estimation is done 
only at one range. Each simulation used a constant 
velocity and the range of simulations was -83.75 cm/ 
s to 83.75 cm/s. As expected, both quadrature FFlY and 
autocorrelation (Fig. 13 ) methods suffer from aliasing 
problem, which limits their range of accurate velocity 
estimation. However, neither method was very accu- 
rate even within the nonaliasing interval (-37.5 to 
37.5 cm/s). 

2.5m-e 

z&+6 
I VV L ’ 

*..5s*6 . 
> /_-.------__ 

,/ , -- ._-- 
l.@M . : ----- --___ __ , 

‘.* ,,: 
5.oc+5 - ,f 

Fig. 12. Variance of RF (solid line) and envelope (dashed 
line) on the butterfly lines corresponding to velocity u. Num- 
ber of RF lines = 4. Actual velocity is -75 cm/s, with no 
additive noise present. Variance minimizes at -75 cm/s. 

-30 

-40 ’ I 
-100 -80 -60 -40 -20 0 20 40 60 8” 100 

Velocity (adsa) 

pi!izq 

Fig. 13. Performance of m quadrature and autocorrelation 
method. Number of RF lines = 3, SNR = 0 dB. 

With the same conditions, the correlation and the 
SAD (Fig. 14) methods on RF signals perform simi- 
larly. One obvious advantage was that neither tech- 
nique suffer from aliasing. 

The butterfly search on RF (Fig. 15 ) did a fairly 
accurate estimation over the entire range of investiga- 
tion. Butterfly search on quadrature components (Fig. 
16) works well compared to other techniques and, it 
outperforms the butterfly search on RF slightly. The 
butterfly search on envelope (Fig. 17) did not perform 
well. Note that none of the butterfly techniques suffer 
from aliasing. 

PHANTOM EXPERIMENTS AND RESULTS 

Estimation results from an experiment involving 
progressively moving a phantom is given in this sec- 
tion. In the experiment, the phantom is repeatedly 
moved in a computer-controlled set-up between data 
acquisitions by a fixed amount to simulate velocity. In 
such an experiment, no velocity profile would be pres- 
ent. But, it is possible to generate precise motion in 
such a set-up. The experiment was done first with no 
transverse motion. Afterwards, off-axis motion was in- 
troduced to observe its effect on the estimation. A 
panametrics transducer was used for the scanning. The 
center frequency was 4 MHz and the sampling fre- 
quency was 40 MHz. The data were quantized at ten 
bits. A total of 2048 sample points were collected for 
every transducer firing. The beam width at the depth 
of consideration was -1 mm. The pulse duration was 
1 ps (PRF = 5 KHz). The phantom used was a tissue 
mimicking material from ATS labs (Norwalk, CT). 
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Fig. 14. Performance of correlation and SAD search tech- 
niques applied on RF. Number of RF A-lines = 3, SNR = 

0 dB. 

Fig. 18 shows the performance comparison of but- 
terfly search on quadrature components, butterfly 
search on RF signal and RF cross-correlation with no 
transverse motion present. The number of RF A-lines 
used in the estimation was three. The butterfly search 
on quadrature components produced the most accurate 
estimates, followed in terms of accuracy by the butter- 
fly search on RF signal and RF cross-correlation. The 
estimations were done at a depth of 2.85 cm. The SNR 
was calculated to be - 1.65 dB at this depth. A butterfly 
search on quadrature components was found to work 
well, even in the presence of such strong noise. 

Fig. 19 shows the effect of off-axis movement on 
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Fig. 16. Performance of butterfly search on quadrature com- 
ponents. Number of RF lines = 3, SNR = 0 dB. 

the axial velocity estimation. The actual simulated 
axial velocity was -25 cm/s and three RF A-lines had 
been used. The estimations were done at a depth of 
1.5 cm. The SNR was calculated to be -25 dB at 
this depth. So, the estimation errors can primarily be 
attributed to transverse motion. The plot shows percent 
error magnitude vs. off-axis velocity. The error magni- 
tudes were averaged over 14 cases. Complete speckle 
decorrelation, caused by large transverse motion, oc- 
curred around an off-axis velocity component of 750 
cm/s. Both butterfly search on quadrature components 
and RF correlation search perform acceptably well be- 
low this velocity. Once speckles are completely decor- 
related, the estimation algorithms fail and the value of 
the error is random. The autocorrelation technique had 

-100 -80 -60 -40 -20 0 20 40 60 80 100 

Velocity (cmhec) 

Fig. 15. Performance of butterffy search on RF. Number of 
RF lines = 3. SNR = 0 dB. 

Fig. 17. Performance of butterfly search on envelope. Num- 
ber of RF lines = 3, SNR = 0 dB. 
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Fig. 18. Performance of different techniques in phantom 
experiment. 

larger error than the other two before decorrelation 
occurred. However, this did not have the wild errors 
at higher off-axis velocities. The autocorrelation esti- 
mator, unlike the other two, produces estimates within 
the nonaliasing interval only. Within the range where 
complete speckle decorrelation has not occurred, there 
is a trend of the estimates to deviate more as the off- 
axis velocity increases. 

For the estimations using both simulated data and 
phantom data, the data window for cross-correlation 
was about six wavelengths. To make the comparison 
meaningful, spatial averaging over six wavelengths 
was done on all techniques, which was equivalent to 
about 1 mm of tissue. Spatial averaging improved the 
performance because the additive noise was uncorre- 
lated. 

DISCUSSION AND CONCLUSIONS 

A novel “butterfly search” technique for velocity 
estimation has been proposed. This technique has ex- 
cellent noise and aliasing immunity, and is easily im- 
plemented in hardware with elementary digital opera- 
tions. It does not suffer like the frequency domain 
methods with wider bandwidth pulses. So, there is no 
need for “toneburst” Doppler transmission. The per- 
formance graphs presented provide evidence that the 
butterfly search on quadrature components improves 
the accuracy of velocity estimation in high noise envi- 
ronments with few samples. The fact that it can per- 
form so well even with only three RF A-lines (which 
would improve the frame rate of color Doppler im- 
aging) in the presence of significant noise (SNR -0 
dB) is promising. However, the results shown are from 
just one realization of noise with moving scatterers. A 
more complete statistical analysis of competing esti- 
mators (with both simulations, and experimental re- 

sults) over an ensemble of echoes is the subject of 
further investigation. 

Although our approaches to the butterfly search 
have been derived from a deterministic analysis of the 
signals along a target trajectory, it should be noted that 
the butterfly search can be related to other conceptual 
starting points. An important example is the wideband 
MLE that was proposed and developed by Ferrara and 
Algazi ( 1991a,b). As discussed in the background sec- 
tion, eqn (8) for the WMLE is derived from a frame- 
work that is consistent with the classical matched filter. 
However, under a number of specific assumptions and 
modifications, eqn ( 8 ) could be modified into the form 
of the butterfly search on quadrature components, as 
described in eqn (20). A number of key modifications 
need to be made, including: ( 1) the matched filter 
should be changed to a rectangular window; (2) the 
continuous complex exponential term is changed to a 
discrete form; (3) the higher order term involving u is 
dropped from the argument of tbe complex exponen- 
tial; (4) a denominator normalization term is included. 
These are shown in Appendix II. 

Another conceptual framework that could be re- 
lated logically to the butterfly search is the discrete 
Radon transform which has some uses in beamforming 
(Johnson and Dudgeon 1993). Our butterfly search 
could be considered a search for the maximum output 
value along lines of constant “intercept” of a Radon 
transform, in analogy to the envelope and RF butterlly 
search examples of Figs. 4 and 5. Also, see Durrani 
and Bisset ( 1984) for an overview of Radon transform 
and its properties. 

The Radon transform is also known as the r-p 
transform, and is used for seismic data analysis by the 
geophysicists. It is known that the delay-time (T-P) 
parameterization of seismic travel-time data has sev- 
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Fig. 19. Performance of the different estimators when off- 
axis component is present. Number of lines = 3. 
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era1 advantages over the time-distance ( T-X ) represen- 
tation. Many 7--p transform methods are available for 
seismic data analysis. For a comparison, see Kappus 
et al. ( 1990). 

Each conceptual framework, our deterministic 
analysis of trajectory, the matched filter estimator and 
the discrete Radon transformer, gives a unique insight 
into the problem of estimating target velocity, and the 
contribution of this study is in the novel description 
of the problem; the form of unified estimators for enve- 
lope, RF, and complex signals; and the novel hardware 
implementation which is conducive to parallel and 
real-time processing for color imaging systems. 
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APPENDIX I 

Derivation of L(v), and proof that it maximizes only at v = vu: 
Schwartz’s inequality (Helstonn 1960) can be used to show 

that L(v) maximizes at u = v(,. For continuous complex functions 
g,(t) and gAr). 

if 
s 

’ lg,(t)l*dt < 0) and lb 
0 

‘, Igz(t)l’dt < a, (A.l.Ola) 

The equality is satisfied only when 

s,(t) = kg*(t) (A.l.Olc) 

where k is a constant. 
In its discrete form the inequality can be expressed as follows. 

If 

C (g,[n](* -c m and c lgzfnl12 i 03. (A.l.02a) 
n n 



The butterfly search technique 0 S. K. ALAM and K. J. PARKER 669 

then Or 

Cgdnlgdnl ’ 5 c IgJnlizc lgz[nll*. (A.1.02b) 2 P,[n]e ,*w,,n,u,i ,T 
n n n n 

2 I~dnll” 
s(N,,+ I). (A.l.08) 

The equality is satisfied only when 

s,[nl = k*[nl. (A. 1.02~) 

Since 

fdn] =Aexp-j{2w,,n~T}r(2n~T). (A.l.09) 

With reference to eqns ( 18) and (20), let us define 
Or 

” - “” 
-T and 

c 

L(u) 5 (No + 1). (A.1.10) 

Both grin] and g2[ n] become constants at u = t+,. Thus, the 

(A.l.03) 
condition @$ = k is satisfied only at u = uO. And, thus L(v) 5 

L(Q). and the maximum is only at u = u0 

Then, 
APPENDIX II 

c %, I Aexp j 2wfl 1 yT}/2nt”lrjZn5$T)i. 

(A.l.04) 

If there are No + 1 terms in the summations, the first sum on 
the right side of the inequality equals (N,, + 1) 1 A 1’. 

Thus 

(A.l.05) 

Or 

Since 

5 (No + 1) 

(exp-j{2w,,n:T}l = 1. 

(A.l.06) 

(A.l.07) 

Relating the concepts of the butterfly search on quadrature compo- 
nents to the WMLE 

The wideband maximum likelihood estimator developed by 
Ferrara and Algazi t 1991 a,b) is given by 

l(u) = I~J~~ r’(t)s’*(t - 7,, 
1. 

- kT[ 1 + 2f])exp(j2uO:t)dtr. (A.2.01) 

Now assume that a rectangular window of size w is used 
instead of the matching signal s ’ *(. ) , then 

l(u) = c I J 
~,,+rr(,+2,“,~,,+(*/2) 

r’(t)e”4n”“c”dt ‘. (A.2.02) 
I i”+k~l+l,“,r ,,-,wn, 

Next, we include the assumption, f;, v w < 1, to convert the 
c 

complex exponential inside the integral to a discrete exponential that 
remains constant within the integration interval. Then. we take it 
out of the integral 

s $+r-7T,+*(“,,‘,,+,n/2, l(u) = Ce ,2wowr,tn,+Z~“/cl, r’(t)dt ‘. (A.2.03) 
I r”+X7ll+*,“k~,-~b”,Z~ 

With a variable substitution 

X t-.,-kT(1 +2;)]dt1’. (A.2.04) 
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Now, if this integral window is shrunk to a size small enough 
such that the integrand would remain nearly a constant within the 
window. and the integral can be replaced by the integrand multiplied 
by a constant factor w, we obtain 

(A.2.05) 

Next, we assume that uZ/cZ can be neglected, then 

I(“) cd c $p%‘““‘~T& 
I k 

[t-.,-@(I +2;)]/. (A.2.06) 

If the time-axis origin is not reset after each firing. then our 
quadrature butterfly L(v) will have the following form 

Clearly, eqn (A.2.06) and (A.2.07) are similar except for the 
scale factor w, and a normalization factor has to be applied in eqn 
(A.2.06) to convert it to eqn (A.2.07) form. Thus, a relationship 
can be established between the modified form of WMLE and the 
butterfly search on quadrature component implementation. The rea- 
son for a difference in the sign before the 211/c term has not been 
determined. 


