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ABSTRACT

The Gibbs random field (GRF) has been proved to be a simple and practical way of parameterizing the Markov
random field (MRF) which has been widely used to model an image or image related process in many image processing
applications. In particular, Gibbs random field can be employed to construct an efficient Bayesian estimation that often
yields optimal results. In this paper, we describe how the Gibbs random field can be efficiently incorporated into
optimization processes in several representative applications, ranging from image segmentation to image enhancement.
One example is the segmentation of CT volumetric image sequence in which the GRF has been incorporated into K-means
clustering to enforce the neighborhood constraints. Another example is the artifact removal in DCT based low bit rate
image compression in which GRF has been used to design an enhancement algorithm that smooths the artificial block
boundary as well as ringing pattern while still preserve the image details. The third example is an elegant integration
of GRF into a wavelet subband coding of video signals in which the high-frequency bands are segmented with spatial
constraints specified by a GRF while the subsequent enhancement of the decompressed images is accomplished with the
smoothing function specified by another corresponding GRF. With these diverse examples, we are able to demonstrate
that various features of images can all be properly characterized by a Gibbs random field. The specific form of the
Gibbs random field can be selected according to the characteristics of an individual application. We believe that Gibbs
random field is a powerful tool to exploit the spatial dependency in various images, and is applicable to many other
image processing tasks.
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1. INTRODUCTION

Markov random field has been used to model various images in many image processing applications. As proved
by the Hammersley-Clifford theorem' , the Gibbs distribution provides us with a simple and practical way of specifying
MRFs through certain potential functions. An appropriate form of the potential function will enable the Gibbs random
field to be efficiently used to construct an optimal Bayesian estimation in a variety of image processing tasks. In this
paper, we will present several applications in which GRF has been incorporated into specific problems to yield optimal
results. With these diverse examples, we are able to demonstrate that various features of images can all be properly
characterized by a Gibbs random field.

The objective of this paper is to show how versatile the Gibbs random field can be with its simple and practical
way of parameterization. In general, a GRF can be described by a potential function such that the characteristics of the
image are appropriately modeled. Often the choice of a specific form of the potential function depends not only on the
type of image data being used, but also on the individual application of image processing techniques. The applications
presented in this paper serve as examples as how a specific form of GRF can be selected according to natures of each
estimation problem. The successful application of GRF to these individual estimation problems also reveals that many
ill-posed inverse problems become solvable with the incorporation of GRF into their regularization processes.

In the segmentation of CT volumetric images, GRF is employed to specify spatial constraints in order to avoid
mis-clustering caused by the impulse noise that is often introduced in the process of image acquisition. Without GRF
based spatial constraints, the K-means clustering is not able to correctly label a pixel whose gray level is significantly
different from the cluster mean due to the noise in the image. In addition, different clusters at different locations may
have similar intensity appearance while same cluster may have different intensity appearance at different locations due
to the inhomogeneities introduced in the imaging process. The GRF based 3D spatial constraints employed in the

O-8194-1638-X/94/$6.OO SP1E Vol. 2308 / 1289

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/09/2015 Terms of Use: http://spiedl.org/terms



segmentation of the volumetric CT images enable us to develop an adaptive clustering algorithm capable of segmenting
noisy images with spatial varying inhomogeneities. The extracted left ventricle chamber is consistent with both given
image data and the left ventricle anatomy.

In the removal of artifacts in DCT coded images at low bit rate, GRF is used as an image model to distinguish
artificial block boundary from image details. At low bit rate, the block-based DCT compression schemes generate
artifacts known as the blocking effect in general and the ringing effect for high contrast images, such as text. In addition
to a novel scheme which attempts to recover the DC components of each block from the coded ones, a special form of
potential function, Huber minimax function, is used in the subsequent smoothing algorithm. A simple parameterization
of the Huber minimax function allows the appropriate differentiation of artifacts from image details. The characteristics
of this function enables the smoothing of the artifacts while preserving the image details. With such GRF modeling,
we are able to obtain good reconstruction based on the decompressed image in terms of both visual observation and
PSNR improvement.

In the 3D subband video coding, GRF is used in both encoding and postprocessing of decoded images. At the
encoding end, a video sequence is decomposed into temporal subbands and each temporal subband is further decomposed
into spatial subbands respectively. According to the characteristics of the high frequency subbands, a segmentation based
adaptive quantization is designed to reduce the activity of these subbands while still preserve the visually significant
components. By a proper parameter selection for the GRF incorporated in the segmentation, quantization of the high
frequency subbands yields large homogenous regions by eliminating the isolated singular value pixels and thus achieves
higher compression ratio. At the receiving end, the reconstructed images using the segmented high frequency subbands
can be postprocessed with the same GRF based approach to remove the resultant impulsive noise in the reconstructed
images while still preserving the image details. The elegant integration of the segmentation and the enhancement, both
based on GRF, makes it possible for the transmission of a high quality video signal with high compression ratio.

Following notations will be used throughout the subsequent sections: Uppercase letters are used for random variables
and lowercase letters for the corresponding realizations; A random field X will be defined on a set of sites 8, i.e. a set
of NxN points; A pixel at site s is denoted by X E 1; Bold uppercase letter is used for matrices or transformations.

2. BAYESIAN ESTIMATION BASED ON GIBBS RANDOM FIELD

In image processing applications, many problems require the estimation of an image or other 2D field X from
corrupted data Y . These inverse problems are generally ill-posed. Prior information is often very useful in forming a
regularized process so that optimal results can be obtained by solving the regularized problem.

A widely used approach to these problems is the Bayesian estimation that incorporates prior information through
an a priori distribution for the random field X. The estimation usually can be significantly improved by exploiting
prior information about the characteristics of X. The prior information is often represented by a GRF which can be
incorporated into the Bayesian estimation schemes. An appropriate choice of the potential function for the GRF would
generally enable the estimation to be implemented efficiently.

2. 1 . General form of Gibbs random field

Gibbs distribution is an explicit expression of the MRF in the form of

g(x) = ex{_Vc(x)} (1)
eEC

where Z is a normalization constant and VC i5 certain clique potential for clique c. In image processing applications,
clique c is a local group of pixels while C is the set of all such local groups. The neighbors of s is denoted byEls C S
where S is the set of all sites. If c is defined such that Vs,r E c, s and r are neighbors, then the clique has the
property that

Vs,rES, s3s rE assE 3r (2)
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Moreover,
Vs 8, p(Xs I Xr, 7 s) = P@1Ls Xr, 1 E as) (3)

is the essential property of an MRF upon which we build the image model.

Recently, because of the equivalence between MRF and GRF, many researchers have focused on MRF's in the
form of the general Gibbs distribution2

logg(x) = — i: bsrp(IX8 _ XrI) + constant (4)
{s,r}EC

where ) is a scaling factor and p( .) is preferably monotonous. In the following, we will discuss two major types of
potential functions: non-convex and convex potential functions.

2. 1 . 1 . Non-convex potential functions

Many non-convex potential functions used in GRF based image modeling are of simple forms. One such function
used to represent image continuity is written as

V I \ — I if x8 x and s, t EC) f x Xj and s, t E c

Note that here Xt and x8 represent the clusters to which pixels t and s belong, c represents a designated neighborhood
system. This function is very effective, especially when employed in the segmentation algorithms3 . By switching
between the parameters /3 and —/3, this potential function can be used to enforce desired spatial constraints if appropriate
neighborhood system c and parameter j9 are chosen.

Another nonconvex function4 is given as

p(L) = min{IzI, T} (6)

where L represents the difference of gray level values between two pixels and T is a parameter such that the equal
penalty region beyond T allows sharp edge to be preserved. However, this function only belongs to C° and the transition
is not smooth. The theoretical and practical disadvantages may lead to some unnatural results, e.g. edges of magnitude
larger than a threshold are sharp yet those of lower magnitude are smooth.

2.1 .2. Convex potential functions

Convex functions are often chosen for practical as well as theoretical reasons. A convex constrained optimization
problem is usually desired because there exists a unique, stable solution to such problem and it can be optimized efficiently.
In addition, convex functions with smooth transition result in desired continuity. Some examples are shown in Figure 1.

'Generalized_Gaussian Markov random_field

It has been proved2 that a proper model of scale-invariant property is of the form

p(L) = IL\i (7)

where L also represents the difference of gray level values between two pixels. This is called Generalized Gaussian
Markov random field (GGMRF) with parameter p controlling the character of the GRF. Large values of p tend to smooth
the discontinuities while smaller ones tend to preserves them. The derivative of p(.) represents the attraction between
two pixels with gray levels separated by zi and is called the influence function. Influence function is also an indication
of image smoothness. Generally, p(.) belongs to C2 except when p is 1. Note that p=2 reduces the model to Gaussian
Markov random field (GMRF). Because of the analytical advantages, GMRF has been widely used. However, the linear
lowpass filtering nature of GMRF tends to blur the image edges and other details excessively and indiscriminately. This
is due to the quadratic term which grows too quickly with respect to the difference of pixel values and therefore imposes
excessive penalty to edges.
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\t\t
T = 1 (HMRF) p = 1.2 (GGMRF)

Figure 1 : Some potential functions

•Huber Markov Random Field

Non—Gaussian MRFs are of great interest because they can potentially model different contents and features in an
image. One such convex function known as Huber minimax function has been investigated.

j'2,
p( )—T2+2TI_T >T (8)

For Li's greater than T, the linear segment of the function imposes lighter penalty and thus allows sharp transitions such
as edges. Note that Huber function is in C', so the influence function is continuous. The MRF characterized by Huber
minimax function is referred to as Huber Markov random field (HMRF)5 (see Figure 1). The parameter T controls not
only the threshold to switch from quadratic to linear, but also the slope of the linear weighting. This is due to the C'
continuity imposed by such convex function.

2.2. Maximum a posteriori estimation

Maximum a posteriori (MAP) has been a powerful estimation tool based on the observed image data Y and a
reasonable a priori distribution of the 2D random field Z. An MAP estimation can be written as:

1= argmaxp(z y) . (9)

Using Bayes' rule, the a posteriori probability can be expressed as

p(zy) O( p(yz)p(z) . (10)

The a priori distribution p(z) is often modeled by a Gibbs random field which can be characterized by a neighborhood
system and a potential function. The optimization can also be conveniently expressed using the log-likelihood function

I=argmax{logp(y z)+logp(z)} . (11)

Note that, without the a priori distribution p(z), the estimation scheme becomes a maximum likelihood estimation
(MLE). MLE is often used as the initial estimate in the iterative MAP estimation. Various distributions of p(yz)and

p(y) have been proposed for different types of applications. However, all MAP estimation schemes share the same
principles of optimization.

2.3. Optimization technique: iterative conditional mode (1CM)

The local characteristics of an image is combined with the given image data to construct an MAP estimation
of the original image. Certain large-scale characteristics of the model is often induced in choosing a non-degenerate
field to describe the local properties of the scene6. In general, Markov random field exhibits positive correlations over
arbitrarily large distances when adjacent pixels are very likely to be of same color or intensity. To avoid such large-scale
characteristics is one of the major concerns in choosing the optimization techniques.
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Some of the optimization techniques may lead to undesired computation and convergence difficulties1 . Simulated
annealing, while it can guarantee the convergence to the global optimum, is computationally demanding and may
be impracticable in many applications. Gradient descent is less computationally demanding but it can not guarantee
the convergence to the global optimum. The computation burden using both these techniques is enormous while the
reconstruction may suffer from some undesired large-scale properties of the random field because of the simultaneous
optimization of the objective function.

Fortunately, the difficulties in the GRF based optimization processes can be overcome by selecting an optimization
technique known as Iterative Conditional Mode (1CM)6. This method is computationally inexpensive and invulnerable
to the large—scale characteristics. It was first proposed as an approximation to the Bayesian estimation that has overall
maximum probability and later established as a distinct optimization method in its own right yielding an estimation that
has maximum probability at each individual pixel. A single cycle of 1CM only requires the successive minimization
of the objective function at each pixel. Note that each pixel has only a few neighbors and is highly restricted by the
consistency constraint identified by the H-C theorem. As Besag pointed out, the dependence of the estimation on only
the local characteristics is ensured by the rapid convergence6 of the 1CM implementation and the undesired large-scale
characteristics is minimized.

3. SEGMENTATION OF CT VOLUMETRIC CARDIAC IMAGES

The 3D image data used in this research are a sequence of CT volumetric data of 16 volumes each contains 95
90x90 slices. Each volumetric element, or voxel, represents a 0.9 (mm)3 cube of tissue. To bring out the left ventricle
chamber as a bright object, a Roentgen contrast agent is injected into the right atrium several seconds prior to the scanning
of the heart. The left ventricle chamber appears in the CT volumetric images as a large, bright, smooth, solid region,
varying in size and shape over time, approximately attached to the left atrial chamber and aorta through the valves, and
separated from the myocardium by a strong, but blurred and noisy, interface.

3. 1 . Adaptive K-means clustering with GRF based spatial constraints

Traditional statistical image segmentation algorithms, from thresholding to K-means and even Fuzzy K-means
clustering, all classify the pixels into clusters based only on their intensity values. Each cluster is usually characterized
by a constant intensity and no spatial constraint is imposed. In practice, images are usually noise contaminated version
of the reflected density function, and the image intensity of the same class may change over space due to some physical
constraints of the imaging system. In many biomedical applications, even though the relative intensity is evident
for different clusters within a small neighborhood, different clusters at different locations may have similar intensity
appearance due to the inhomogeneous of the imaging media. Traditional K-means fails here because of the low signal-
noise-ratio in these CT images. The ability of being adaptive to the local intensity distribution is generally required for
a robust image clustering algorithm to obtain the correct clustering results. In addition, certain spatial constraints are
needed to avoid mis-clustering caused by the noise introduced in the imaging process, since a pixel generally tends to
belong to same cluster as most of its neighbors unless it is on the edge of a sharp region transition.

The proposed adaptive K-means algorithm is based on the segmentation algorithm proposed recently by Pappas3.
His algorithm includes the 2D spatial constraints characterized by Gibbs random fields, and the adaptive estimation of
local means of each region. We have extended Pappas' algorithm in two important aspects. We have developed 3D spatial
constraints to suit the volumetric nature of the image data. We have also enhanced the adaptive clustering algorithm to
account for the varying characteristics of both the local means and local variances.

3.1. 1. Incorporation of Gibbs random field

In image segmentation, the goal is to produce a robust labeling of each pixel. Therefore, a non-convex potential
function defined by Equation (5) is suitable to enforce the spatial continuity of the labeled regions. For a 2D image
defined on the Cartesian grid, a simple neighborhood system of a pixel is represented by its 4 nearest pixels. For a
3D image, an extension of 2D neighborhood system indicates that the neighborhood of a voxel can be represented by
its 6 nearest neighbors. If we model the conditional density as a Gaussian process with spatially varying mean p and
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variance at a pixel location s, and denote a given image by y and a segmentation of this image by x, then the overall
a posteriori probability function will be:

p( y) =exP{_(Ys )2 _V(x)} (12)

The first term corresponds to the adaptive capability that forces the segmentation to be consistent with local image
distribution with locally estimated mean p and variance o. The second term corresponds to the spatial continuity
constraint characterized by the clique potentials within a given 3D lattice.

In biomedical image segmentation tasks, the a priori knowledge of the structure—of—interest is usually available
since we often study certain biomedical structures with known anatomical information. The anatomical information
is then used in the design of K-means clustering to set the value K and to parameterize the GRF. In the case of CT
volumetric image data, K is set to 4 according to the available knowledge of the cardiac structure with the brightest
cluster corresponding to potential left ventricle chamber. We assign the same 3 to the clique potentials both within a
cross section and between cross sections, since the sampling lattice of the CT volumetric data is uniformly structured.
3 is also set to be inverse proportional to the variance of each cluster because it makes sense that a cluster with large
variance needs a large 3 to bind its samples together.

3.1.2. The segmentation and beyond

The proposed adaptive clustering algorithm applied to the CT volumetric data is implemented using 1CM. First, an
initial segmentation x is acquired through the simple K-means algorithm. Then, overall probability function is maximized
on a point-by-point basis, with the and the being updated after each iteration. Therefore, the optimization is
accomplished through alternating between MAP estimation of the clustered regions and iterative update of the cluster
means and variances. Such alternating process is repeated until no pixel changes classes.

There exist a number of differences between this algorithm and that of Pappas. One important difference is the
introduction of iterative estimation of cluster variances in the process of optimization. The assumption of the changing
variance and the implementation of estimation scheme allow us to account for the noise levels to change from one local
area to another, and from one cluster to another. This additional feature of the proposed scheme enhances the flexibility
of the adaptive K-means clustering algorithm, since, in practice, the variances of different clusters are generally different
and the variance of a specific cluster also changes with location. Second one is the choice of the parameter of the Gibbs
random field. It is evident that the parameter is related to the image contents as well as imaging conditions. According to
biomedical structure and known imaging condition, we are able to choose the parameter 3 such that the spatial constraint
is strong enough to smooth out the noise while still preserving the structural details. Upon the completion of the adaptive
K-means clustering, subsequent processing may be necessary if the given biomedical images contain certain structures
that are anatomically separate but statistically indistinguishable. In the case of cardiac images, we have also designed
a knowledge-based morphological operations in order to distinguish the left ventricle from left atrium and aorta. The
discussion of such operations is beyond the scope of this paper7.

3.2. Results and discussion

We have successfully applied the proposed segmentation algorithm to the volumetric cardiac images. The volumes
of left ventricle extracted using this approach compare favorably with those obtained using traditional K-means method
(Figure 2). It can be seen that the segmented regions are not be as homogeneous if the GRF based spatial constraints
are not enforced. In addition, the 3D spatial constraints also help to propagate structural information from a slice to its
neighboring slices, allowing the algorithm to handle the spatial varying gray level distributions.

This automatic extraction is fast, reproducible, without operator bias and suitable for further processing and analysis.
In addition, the temporal changes of the shape of the biomedical object will undoubtedly provide another constraint
which can be used to better resolve the image ambiguity.
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Figure 2: Comparison of the segmentation results: 1 . original CT images;
2. K-means segmentations; 3. Adaptive K-means segmentations; 4. Final segmentations (left ventricle).

4. ARTIFACTS REMOVAL IN LOW BIT RATE DCT-BASED IMAGE CODING

Block-based Discrete Cosine Transform has been the most popular transform in a variety of image and video
compression applications. In low bit rate applications, high compression ratio is desired and usually achieved by
coarse quantization and truncation of the high frequency coefficients that are considered visually less significant8' 9•
Consequently, two major artifacts known as blocking effect and ringing effect are generated and they severely degrade
the image quality.

One major artifact is the blocking effect which appears as perceptible rectangular block structures in the reconstructed
image. Several techniques have been proposed to remove blocking effect10. Many filtering techniques are essentially
applying smoothing algorithms to the blocky image which also smooth the original image details. To avoid oversmoothing
of the edges, a scheme was proposed by first estimating the edge segments in the compressed image before .
However, the estimation is very challenging, especially in the case of low bit rate coded images when it is very hard
to differentiate true edges from the artifacts. Other techniques attempt to formulate the removal of blocking effect as
a constrained image restoration problem'2' 13, 14 Another type of artifact is the ringing effect which appears as ringing
pattern around sharp edges in the image. In order not to blur these images, an edge-preserving nonlinear filtering is
desired. However, there has been little investigation on this aspect until recently'5.

Our artifacts removal technique is based on the convex constrained restoration with GRF model. The Huber minimax
function is chosen to distinguish artificial block boundary from image details. With GRF, in particular the HMRF, we
are able to devise an enhancement technique suitable for the artifact removal in low bit rate coded images.

4.1. Convex constrained restoration with HMRF model

In general, the DCT based image coding can be modeled as

Y=Q[H(Z)] (13)

where Z is the original image, H is the unitary DCT transform, Q[.] is a scalar quantization operation. Y now consists
of quantized coefficients which generally need fewer bits to represent. Note that Q[.j is a many-to-one mapping as well
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as the source of distortion in the compressed image. The conditional probability of the compressed Y given the original
image Z, P(YIZ), is a uniform density and can be written as

P(YIZ)={' :; (14)

The Huber-Markov random field model has been utilized to formulate a convex constrained restoration problem. Such
technique has been shown able to smooth the artificial discontinuity across the block boundary'3 while preserving
the remaining details of the original image. Since the conditional density is of the form given in Equation (14), the
optimization is simplified to

Z=argmin>V(Z)
cEC

= argmm >: i: p(Zmn _ Zkl)
1<m,n<N k,lEcmft

where p(.) is a proper Huber minimax function as given in Equation (8), c is the 8-neighborhood of the current pixel
at (m,n) and N is the dimension of the image, 2 is the constraint space

Z={Z: y=Q[HZ]} . (16)

The parameter T in the potential function p(.) controls how much discontinuity is allowed. Below the threshold, the
quadratic term represents a least square fit smoothing of the areas with relatively similar intensities. If the difference is
above the threshold, a linear cost function is used to preserve the discontinuity of the original image.

4.2. Implementation of HMRF based restoration

A major advantage of the HMRF in the restoration over other type of GRF is its ability to switch the weighting
according to the difference of gray level between current pixel and its neighbors. However, this switch property is still
inadequate when we need to distinguish image details from the artifacts. A single value of T can not accurately describe
all the discontinuities, including both artifacts and true image edges. In DCT-based coding, the mechanism that generates
the artifacts and the locations of these artifacts are known. We can use these information to develop a variation of the
HMRF model. The discontinuity inside each image block is produced in a different way from those along the block
boundary regions. Therefore, two kinds of discontinuities should be treated separately. In this research, larger parameter
Ti is chosen for the local HMRF model for those pixels in the boundary regions in order to smooth the artifacts, while
a moderate T2 is applied to the inner block regions'6.

Because of the convexity of Huber function, a convex constrained restoration problem is formed based on MAP
estimation and the received data. The MAP estimation produces a smoothed update of the initial image obtained using
standard decompression. Then, the estimated result is projected back to the constraint space by forcing the coefficients
fall into the original quantization interval. The projected image is then obtained by taking inverse DCT of the projected
coefficients. Improvement of image quality is obtained through the iterative 1CM reconstruction.

4.3. Results and discussions

We adopt a specific DCT coding scheme9 in all the experiments leading to Table 1 . The coding of DCT coefficients
is done by first applying zonal sampling and then quantization using uniform quantizers. We use this quantization scheme
because it is able to produce more severe blocking effect and ringing effect than other tables8' 12while still retaining
relatively high PSNR at the same bit rate.

We have applied our approach to two groups of test images'6. Group 1 consists typical gray scale images and
is used to verify the capability of this algorithm in reducing the blocking effect. Group 2 consists of high contrast
images to verify the ability of the algorithm in reducing the ringing effect. By using 1CM to implement the smoothing
algorithm, the localized spatial constraint can be efficiently enforced. With T1=5 and T2=1O, this algorithm usually
reaches convergence within 10—20 1CM iterations. Table 1 shows the bit-rate and the corresponding PSNR for each test
image. The PSNR improvement is significant in both two groups, and the preservation of image details is evident using
this HMRF based restoration. Note that this algorithm succeeded in the very challenging image "resolution chart" which
contains details in a wide range of scales. Without GRF based filtering, linear lowpass filtering will blur the image
details and even cause the degradation of PSNR.
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Table 1 The PSNR evaluation of the results

Figure 3: Comparison of theartifacts reduction: 1. original "lena" image; 2. standard decompression; 3. enhanced
decompression; 4. original "resolution chart" image; 5 standard decompression; 6. enhanced decompression

5. 3D SUBBAND VIDEO CODING WITH SEGMENTATION IN HIGH FREQUENCY SUBBANDS

Video coding and communication has received great attention recently. We developed a novel scheme based on a
3D subband decomposition of video signal targeting the ISDN applications such as videoconferencing at 384 kbps bit
rate. The advantage of 3D subband coding is that it avoids motion estimation and motion compensation, and does not
generate visually annoying "blocking effect" even at low bit rate.

In 3D subband coding, a video sequence is decomposed into temporal subbands and each decomposed temporal
subband is further decomposed into spatial subbands respectively17. We adopted an 1 1-band tree-structured decomposition
scheme for video signals18. To minimize the computational burden of the temporal filtering needed to process the video
signal, temporal decomposition is based upon the 2-tap Haar filterbank. The temporal filtering results in two subbands:
high pass temporal (HPT) band and low pass temporal (LPT) band. Spatial decomposition, both horizontal and vertical,
is based on multi-tap perfect reconstruction wavelet filterbanks'9. To achieve potential high compression rate, the lowest
frequency band is further decomposed in a tree structure. In our scheme, HPT band is decomposed into 4 spatial
subbands, and LPT band is decomposed into tree-structured 7 spatial subbands.
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5. 1 . GRF based segmentation as adaptive guantization

Upon subband decomposition, each subband would exhibit certain distinct features due to the characteristics of
frequency responses of a particular class of bandpass filters. To best exploit these features, we developed corresponding
coding strategies: baseband is the low resolution representation of the original image and has similar characteristics
in histogram, but its bandwidth has been significantly reduced. It can be efficiently coded using DPCM or DCT. The
coding of the high frequency subbands is critical to the overall coding performance if both high compression ratio and
high quality are expected.

High frequency subbands are sparse and highly structured. Many existing schemes using conventional quantization
methods have tried to exploit the characteristics of high frequency subbands'9' 20,21 but found it difficult to code the
impulse like pixels that often appear in higher frequency subbands.

We proposed an adaptive quantization based on K-means clustering with GRF as spatial constraints. The seg-
mentation of the high frequency subbands and the representation of each pixel by the cluster mean is equivalent to a
data-adaptive quantization process. However, because of the spatial constraints, we are able to generate larger homoge-
neous regions by forcing those impulse like pixels to be of the same cluster as their neighbors. Such spatial constraints
can be adjusted to each resolution level and preferential orientation in order to preserve the visually significant structures
in these subbands. The isolated impulse like pixels, which would otherwise require considerable bits to code, are elim-
mated in the process of adaptive segmentation through the incorporation of Gibbs random field spatial constraint. The
compression ratio of these segmented high frequency subbands can be greatly increased because of the reduced entropy
due to the smoother spatial distribution of each cluster contained in these subbands.

5.2. Coding and synthesis with postprocessing

Different scanning scheme can be performed for individual subband to increase the runlength coding efficiency since
these segmented high frequency subbands are composed of well defined "edges" whose directions usually correspond
to the directions of the highpass filters. Another scheme of increasing the runlength is to partition the subbands into
non-overlapping blocks. Through such partition, local area of zero values can be better exploited to improve the coding
efficiency2° . Hilbert-Peano scan is also proper for this purpose. The performance of different coding schemes with
respect to the qualities of the reconstructed image and the bit rate is currently under investigation.

The reconstructed images from these segmented high frequency subbands would generally contain impulse like noise
because of the previous removal of isolated impulse like pixels due to spatial constraints. Fortunately, a corresponding
GRF can be incorporated in the postprocessing to remove the reconstruction noise while preserving the image details.
The principle of such enhancement is similar to the artifacts removal scheme described in Section 4.

Preliminary results are shown in Figure 4 and 5. The average back-to-back reconstruction PSNR with only 5-level
segmentation is about 33 dB. Both subjective observation and objective measurement show the promise of this method
in high quality video communication22. This is also an excellent example demonstrating that GRF can be integrated into
both subband analysis and subsequent synthesis of video signals, and therefore is versatile for many different applications.

6. CONCLUSION

We have addressed the application of Gibbs random field in several image processing problems. Through these
diverse applications of Gibbs random field, the intrinsic connection between seemingly different image processing
problems is revealed. Although implementation issues may differ from one case to another, Gibbs random field provides
a general form to characterize various spatial dependency and localized features in images. The applications presented
Z this paper also serve as examples as how a specific form of GRF can be selected according to the nature of an
estimation problem. Many ill-posed inverse problems become solvable with the incorporation of Gibbs random field
into their regularization processes.

Gibbs random field can be versatile with its simple and practical way of parameterization. We believe that Gibbs
random field is a powerful tool to exploit the spatial dependency in various images, and is applicable to many other
image processing tasks.
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Figure 4: 7-band decomposition of LPT band of a typical "salesman" frame (high frequency subbands segmented)

Figure 5: Upper-left: original frame; Upper-right: LPT synthesis after segmentation;
Lower-left: HPT synthesis after segmentation; Lower-right: overall reconstruction. (all half-sized)
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