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ABSTRACT

This paper presents a novel and computationally efficient approach to an adaptive mammographic image
feature enhancement using wavelet-based multiresolution analysis. Upon wavelet decomposition applied to a given
mammographic image, we integrate the information of the tree-structured zerocrossings of wavelet coefficients
and the information of the low-pass filtered subimage to enhance the desired image features. A discrete wavelet
transform with pyramidal structure has been employed to speed up the computation for wavelet decomposition
and reconstruction. The spatio-frequency localization property of the wavelet transform is exploited based on
the spatial coherence of image and the principle of human psychovisual mechanism. Preliminary results show
that the proposed approach is able to adaptively enhance local edge features, suppress noise, and improve global
visualization of mammographic image features. This wavelet-based multiresolution analysis is therefore promising
for computerized mass screening of mammograms.

Keywords: Mammography, image feature enhancement, wavelet transform, multiresolution analysis, human
psychovisual mechanism, image processing

1. INTRODUCTION

Early diagnosis of cancers is an essential and important step to reduce mortality from these diseases. For breast
cancer, a leading cause of cancer deaths among women, screen/film mammography is currently considered to be
the best and the most practical radiological technique for early detection of small breast tumors.! The presence of
microcalcification in mammograms is of great clinical importance for radiological diagnosis. Radiologists use this
type of signature to discriminate normal tissues from abnormal or cancerous ones. However, even well-trained
radiologists misdiagnose mammograms by 10%-20% of what they review.> 3

For a realistic mass screening of mammograms, computer-assisted diagnosis (CAD) is desired for a fast and
operator-independent analysis of massive volumes of mammographic images. It has also been shown that the
CAD has the potential to reduce the misdiagnosis rate.* In general, three operations are required in CAD, namely,
noise suppression, feature enhancement, and feature extraction. There are many attempts on CAD with digital
mammography.’~!! However, adaptive and robust algorithms are still needed to integrate these operations.

Wavelet transform has recently been applied to digital mammography for feature enhancement and extraction
with promising potentials.!2"16 The framework of current wavelet-based mammographic image feature enhance-
ment and extraction follows a general pattern: image decomposition with the forward wavelet transform, linear
or nonlinear processing over the wavelet coefficients, and image reconstruction with the inverse wavelet trans-
form. In general, edge-related information 172 is used to guide the linear or nonlinear processing. These edges

* This research is supported by American Cancer Society Grant ACS-IRG-18-38, NSF Grant EEC-92-09615 and a New York State
Science & Tech. Foundation Grant to the Center for Electronic Imaging. Images were provided by the courtesy of the National Expert
and Training Centre for Breast Cancer Screening and the Department of Radiology at the University of Nijmegen, the Netherlands.
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are often obtained from the multiscale edge detectors by smoothing the signal at various scales and detecting
sharp variation points from the extrema of their first-order derivatives and the zerocrossings of their second-order
derivatives. Several researchers 12 14 15 have presented some interesting and encouraging results using wavelet
transform in digital mammography. Laine ef al. used a 2-D dyadic wavelet transform and performed edge-related
analysis on the wavelet coefficients for feature enhancement. Strickland et al. applied the matched filter concepts
to combine with the wavelet transform for the detection of microcalcifications. Both approaches seek to process
the highpass filtered subimages to extract information of maximum coefficients for enhancement purpose. These
processings are executed with full resolution of images at each level without downsampling. In general, the
information at different levels is processed separately without exploiting the information across different levels
as well as the information in low-pass filtered subimage.

It is well known that the wavelet-based image analysis has two distinct characteristics: multiresolution and
spatio-frequency localization.?!> 22 To take full advantage of the wavelet-based analysis, these two characteristics
need to be optimally integrated with the desired image processing tasks. Multiresolution refers to the charac-
teristics of the image analysis such that a feature can appear at different levels of subimages. In the case of
mammographic image analysis, multiresolution analysis allows the feature enhancement and extraction to com-
bine information from several channels at different resolution levels to obtain a robust estimate with efficient
processing. With spatio-frequency localization, an abrupt change in image intensity can appear in highpass filtered
subimages with accurate spatial location. This is quite different from the traditional Fourier analysis since the
spatial information is lost after Fourier transform. In wavelet-filtered subimages, an isolated single-pixel intensity
change can be considered as noise and should be suppressed while abrupt intensity change over relatively large
regions may be considered as image irregularity or edge structures. These structures in mammographic images
usually correspond to the microcalcification details that we would like to preserve.

In this paper, the framework of image analysis also follows the general pattern, that is, the enhancement
is performed on the wavelet-filtered subimages. However, we integrate the information from several channels
and different resolutions to maximize the potential of the multiresolution analysis and to exploit the human
psychovisual mechanism. The cross-band integration is implemented by establishing a zerocrossing-tree for the
purpose of adaptive feature enhancement and noise suppression. Only these coefficients within the zerocrossing-
tree are considered related to mammographic features and are therefore enhanced. The low-pass filtered subimage
is used to guide the enhancement process according to human psychovisual mechanism. Furthermore, instead of
full resolution processing, discrete wavelet transform with pyramid structure has been employed to speed up the
computation for fast wavelet decomposition and reconstruction.

The concept of zerocrossing-tree is based on our observation that the filters for highpass filtering with
orthonormal or biorthogonal bases in discrete wavelet decompositions are of Laplacian-like property, i.e., they
resemble the second-order-derivative operations. Therefore, zerocrossings in wavelet coefficient space describe
the multiresolution edges of the original image. Because of the spatial coherence of image, the same image feature
structure, in general, would appear at different level of subimages. A similar feature structure in a parent subimage
can be found in its corresponding location of the child subimage so that they constitute a parent-child location
relation. Such parent-child location relation can be established as zerocrossing-trees to represent evolution of
the multiresolution edges. The neighborhood configuration has been introduced to obtain the adaptivity to the
local intensity variation. By following the evolutions of these zerocrossings, we will be able to enhancement the
desired image features while, at the same time, suppress the undesired noise.

To achieve the optimal visualization of the image structures, the enhancement of highpass filtered subimages
based on zerocrossing-tree is then integrated with the enhancement of baseband subimage according to human
psychovisual mechanism. It is well known that human vision follows the famous Weber’s Law?? that is, brightness
discrimination is poor at low levels of illumination, and it improves significantly as the brightness illumination
increases. Therefore, how to enhance a particular wavelet coefficient should also depend on the levels of
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illumination within its neighborhood. For low levels of illumination, large amount of enhancement is desired
while for high levels of illumination, moderate amount of enhancement may be sufficient. For this same reason, the
baseband subimage may also be enhanced by increasing the overall level of illumination so that the brightness
discrimination is maximized.

Images used in our experiments are obtained from the Mammography Image Analysis Research Database at
the University of South Florida. These 40 images have been made available by the Department of Radiology,
University Hospital Nijmegen, the Netherlands. The preliminary results of enhancement on these images show
that it is promising for computerized mass screening of mammograms since the proposed algorithm is able to
adaptively enhance local edge features, suppress noise and greatly improve global visualization of mammographic
image features.

Section 2 briefly discusses the discrete wavelet transforms used in this research with pyramid structure.
Section 3 introduces the adaptive feature enhancement algorithm based on the proposed multiresolution analysis.
We focus on the information integration aspect which is the key to the success of the proposed approach. Section
4 presents the experimental results and Section 5 concludes this paper with a summary and some discussion of
future research direction.

2. WAVELET ANALYSIS

Unlike the windowed Fourier transform which has a fixed resolution in the spatial and frequency domains,
the resolution of wavelet transform varies with a scale factor. Therefore, wavelet representations lie in between
the spatial and frequency domains and provide a simple and efficient hierarchical framework for interpretation
of image information from both the spatial and frequency domains. The regularity and orthogonality of wavelet
bases ensure the signal reconstruction with high quality. For a discrete wavelet decomposition of a given 1-D

signal f with a mother wavelet ¢ and a scaling function ¢, we have the following relations:??

f= Z emn(f)¥mn
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where g; = (—1)'hy_; and h, = V2 [ $(z — n)¢(2 — z)dz. For the orthonormal wavelet bases the exact
reconstruction can be written as:

am—l,l(f) = Z [h2n—lam,'n(f) + g2n—lcm,n(f)]' (2)

Equation (2) is a recursive relation which facilitates a fast computation algorithm. In the case of biorthogonal
wavelet bases, the reconstruction becomes?*

am—l,l(f) = Z [ﬁ2n—lam,n(f) + g2n—lcm,n(f):| (€))
n
where the decomposition and reconstruction filters satisfy:
gn = (—l)nhl—n
gn = (=1)"h1-n @)

Z hniln+2k = 6k,0
n
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According to Mallat?2, 2-D wavelet representations for images can be similarly constructed with a separable 2-D
wavelet transform. The implementation of 2-D discrete wavelet decomposition is shown in Fig.1. Each level
consists of four subimages denoted as LL, LH, HL and HH. LH exhibits the horizontal components (vertical
edges), HL the vertical components (horizontal edges), and HH the components in both directions (corners). The
LL corresponds the lowest frequencies and represents the local DC components of the original image. Because
of the bandwidth reduction after wavelet filtering, the resultant subimages may be downsampling to allow fast
computation in the process of enhancement. Fig. 2(a) shows the arrangement of subimages after discrete wavelet

decomposition and downsampling.
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Figure 1. Implementation of 2D discrete wavelet decomposition.
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Figure 2. (a) Subimage arrangements of wavelet decomposition; (b) Parent-child relations.

We choose short filters to enable fast computation. The shortest wavelet filters are those corresponding to
the Haar basis, i.e., hg = h; = \/5, go = —g1 = V2 and all other hn, gn = 0. However, such filters result
in less smoothness and lower efficiency in exploiting the spatial coherence of image structures in contrast to
the spatial randomness of noise. In many image processing applications, smooth wavelet filters are desired to
obtain better localization properties in both spatial and frequency domains. Therefore, a trade-off between the
computational speed and the characterization of image features is usually needed for a specific application. In
this research, we adopt the “Laplacian filters” (5/7) 2* for the discrete wavelet transform because these filters
are nearly orthonormal with moderate lengths.
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3. ENHANCEMENT ALGORITHM

Once a mammographic image is decomposed with the given wavelet filter, the baseband subimage is
essentially the replica of the original image with lower spatial resolution. However, the highpass filtered subimages
with different directional filtering and at different resolution levels would exhibit various edges corresponding to
the filter directions and the resolution levels. A distinct feature of this approach different from existing ones is
that we not only perform the enhancement on the individual highpass filtered subimages but also integrate the
information from corresponding subimages at different levels using the parent-child relation and the information
from baseband subimages according to human psychovisual mechanism.

In this section, we will first summarize some characteristics of the wavelet-based multiresolution analysis.
We will then describe the proposed adaptive enhancement scheme designed to take full advantage of these
characteristics to achieve optimal integration of information from different channels.

3.1 CHARACTERISTICS

There are several distinct characteristics of the wavelet-filtered subimages that can be exploited in the design
of an integrated adaptive enhancement algorithm. In this research, we will explore three such characteristics:
the baseband subimages, the zerocrossings, and the parent-child location relations of the zerocrossing tree. Once
these characteristics are carefully explored and the information from different channels are integrated, we expect
to achieve better performance in image enhancement.

Unlike existing approaches in which baseband subimage has not been used for feature enhancement, the
proposed enhancement algorithm will incorporate the information from baseband subimages to maximize the
visual effect of enhancement. The incorporation of baseband subimage will involve two types of operations: (1)
global shift of baseband intensity value; and (2) highpass subimages enhancement weighted by the corresponding
intensity value at baseband. Both operations are based on the Weber’s Law of visual perception. An appropriate
global shift of baseband intensity value will ensure that the reconstructed images would be bright enough to
perceive the subtle brightness discriminations. Since the wavelet-based enhancement can be implemented by
scaling the wavelet coefficients in highpass subimages, the weighting of baseband intensity value on the scaling
implies that the algorithm is adaptive to the local illumination levels. This is important since according to human
psychovisual mechanism, in particular the Weber’s Law, the brightness discrimination is poor at low levels of
illumination, and it improves significantly as illumination increases. Therefore, an inverse weighting would be
suitable so that, for same edge strength, large scaling is needed when the baseband intensity is low, and small
scaling will be adequate when the baseband intensity is high. It is evident that both operations would be subject
to the dynamic range limitation of the display devices.

In their classical paper?®, Marr and Hildreth have shown that the position of multiscale sharp variation
points can be obtained from the zerocrossings of the signal convolved with the Laplacian of a Gaussian. In
the case of mammographic images, the image features, such as microcalcifications, actually correspond to the
intensity discontinuities. We noticed that the filters for LH, HL and HH highpass filtering with orthonormal
or biorthogonal bases, except Haar bases, in discrete wavelet decompositions are of Laplacian-like property, a
second-order-derivative operation. The zerocrossing properties are still well preserved in these highpass filtered
subimages even with downsampling in the pyramidal structure. Fig. 3 shows examples of the zerocrossings
of a given image using “spline filters” and “Laplacian filters”.2* Notice that these zerocrossings correspond to
potential edges of the original image at multiresolution levels. Therefore, we assert that the zerocrossings in the
highpass filtered subimages are equivalent to the multiresolution edges of the original image. The multiresolution
position information of the edges can be obtained from processing of the zerocrossings of wavelet coefficients
in the highpass-filtered subimages.
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Figure 3. The bottom is a given image. The left and right are zerocrossings before and after neighborhood
processing using “Laplacian filters” (upper) and “spline filters” (middle) in wavelet decomposition.
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Because of the spatial coherence of image, image feature structures, in general, would appear at different level
of subimages. If we define a parent-child relation of subimage as relationship between subimages at specific
resolution level and the corresponding subimages at a finer resolution level, then, an image feature structure
in a parent subimage would have similar image features in its child subimage at corresponding locations. Such
parent-child location relation is shown in Fig. 2(b). This parent-child spatial coherence relation can be very useful
in zerocrossing analysis, since, for medical images, an isolated single-pixel intensity change in wavelet-filtered
subimages can be considered as noise and should be suppressed while abrupt intensity changes over a relatively
large connected region may be considered as clinically important structures. For mammographic images, these
coherent features usually correspond to the microcalcification details and should be preserved and preferably
visually enhanced. On the other hand, this parent-child relation may also be used to suppress mammographic
image noise because, as suggested by several researchers!”- 1825 that sharp variation point of image intensity
which do not propagate to coarser scales can be removed for noise suppression.

3.2 ADAPTIVE ENHANCEMENT ALGORITHM

The proposed adaptive enhancement scheme is shown in Fig. 4. Upon the completion of wavelet filtering
and downsampling to a desired decomposition level, the adaptive enhancement scheme can be applied to these
decomposed subimages. There are three basic steps in this proposed enhancement algorithm: zerocrossing
detection, zerocrossing-tree establishment, and integrated adaptive enhancement. With zerocrossing detection,
we are able to locate the accurate position of the image features within each subimages. Since not all edges are
considered useful features for mammographic image enhancement, we establish the zerocrossing-tree according to
the spatial coherence of image features. Only these edges within this zerocrossing-tree will be enhanced to ensure
that the mammographic image features, not the image noises, are indeed enhanced. Furthermore, to achieve an
optimal visualization of the features governed by Weber’s Law, the baseband information is also incorporated
into the enhancement algorithm.

Shifting of
low-pass filtered
baseband subimage

Enhanced
> Inverse | image output

Original
image input | Discrete

'

—™1 wavelet 1 3 wavelet ™

) Detecting selected
transform | | .. . transform

. zerocrossings in | Construction of _ | Integrated
' high-pass filtered zerocrossing-tree enhancement
! subimages
1
I
I
1

Figure 4. A wavelet-based adaptive feature enhancement approach.

As we have discussed, the zerocrossings in subimages characterize the edge structure of the image. These
edges correspond to potential microcalcifications and therefore need to be enhanced. Among the zerocrossings in
the highpass filtered subimages, those with locally maximum variation rate of wavelet coefficients is important
to represent the local edge features. To locate these zerocrossing, we introduce neighborhood configurations for
the algorithm to achieve its adaptivity to the local intensity variation. Three types of neighborhood configuration
are used in this research, namely, a horizontal 1-D neighborhood, a vertical 1-D neighborhood and a crossbar
2-D neighborhood, as shown in Fig. 5. These configurations correspond to the highpass filters used in wavelet
decomposition: horizontal filter for LH subimage, vertical filter for HL subimages, and diagonal for HH subimage.
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With these neighborhood mask, zerocrossings pass through the local maximum variation rate test will be assigned
as “selected zerocrossing” and will be used in the next step of processing.

HEEBEE

(@ (b) ©)

Figure 5. Neighborhood for (a) HL subimage processing, (b) LH subimage processing and (c) HH
subimage processing. x is the selected zerocrossing if it has maximum variation rate in the neighborhood.

The next step of processing aims at recognizing the spatial coherence of the image features from the selected
zerocrossings to establish a zerocrossing-tree. A “selected zerocrossing” is considered part of the zerocrossing-
tree if it passes the parent-child location relationship test. That is, a “selected zerocrossing” will be attached to the
zerocrossing-tree if its parent is also a “selected zerocrossing” and descends from the root of the zerocrossing-tree.
With this spatial coherence test, the zerocrossings in the zerocrossing-trees will include those image structure
with parent-child location relationship rather than the noise which would not have such relationship due to its
randomness nature. The established zerocrossing-trees represent the evolution of edge structure from coarse
resolution level to fine resolution levels. In the case of adaptive enhancement of mammographic images, only
these wavelet coefficients corresponding to zerocrossings within the zerocrossing-tree are scaled to achieve the
desired enhancement results.

Once the zerocrossing-tree is established, the information from baseband can be integrated with the enhance-
ment in the highpass-filtered subimages. In the case of global shift of baseband intensity value, if needed, an
appropriate constant is added to every pixels in the baseband to increase the overall brightness so that subtle
discrimination can be perceived after shift. In the case of weighted enhancement of highpass subimages, the
weighting function will be inversely proportional to the illumination levels in the corresponding neighborhood
in baseband subimages. Such operation allows the radiologists to achieve a balanced brightness discrimination
across the whole dynamic range of the display device.

If we denote Ej, , and E7, , as the proposed operators for processing low-pass filtered (baseband) and

highpass filtered components, respectively, with the spatial position n and at level m, the reconstruction of the
enhanced subimages can be written as:

am-11(£) = 3, [Pan-1Bfa (@) + G2n-t By (emn( )]

" . (%)
= am—l,l(f) + Z [th—l (Egz,n(am,n(f)) - am,n(f)) + Gon—1 (Eycn,n(cm,n(f)) - cm,n(f))] .

For baseband enhancement, the shift can be easily defined as:

Egz,n(am,n(f)) = ama(f) +0 (6)

where b is a shift constant. Such overall shift will be able to preserve the relative gray level distribution of the
original image. For weighted scaling used in the enhancement of highpass subimages, the weighting function
can be written as:

-1
P(xmn) (a Z Trm,s +ﬁ) @)

SEN,
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where « and 3 are constant parameters, N, represents a defined neighborhood for position n. With such weighting
function the enhancement operator can be expressed as:

Ef, n(emn(f)) = P(ama(f)) - emn(f)  if cma(f) in zerocrossing-tree . 8)

4. EXPERIMENTAL RESULTS

Images used in our experiments are obtained from the Mammography Image Analysis Research Database at
the University of South Florida. These 40 images have been made available by the Department of Radiology,
University Hospital Nijmegen, the Netherlands. For the convenience of display, the original images have been
subsampled and resulted in 512 x 512 images. In this experiment, “Laplacian filters (5/7)” 24 are selected
to compute discrete wavelet transform because the filters are nearly orthonormal filters with moderate lengths.
The width or height of the neighborhood mask has been chosen the same as the length of wavelet filters since
this has been shown to produce empirically better results. Prior information about microcalcification details in
mammographic image is used to guide the choice of desired decomposition levels. Some typical experimental
results on the images from the database are shown in Fig. 6.

It is evident from Fig. 6 that the shifting processing for baseband subimage improves global visualization over
the original images. Together with the weighted scaling using the illumination level of the baseband subimage, the
proposed enhancement scheme is able to make some unseen or barely seen features visible. The zerocrossing-tree
based processing allows us to enhance those structures in which we are interested while suppress noise.

5. SUMMARY

We have presented a novel and computationally efficient approach to adaptive mammographic image feature
enhancement and noise suppression using wavelet-based multiresolution analysis. We integrate information of the
tree-structured zerocrossing of wavelet coefficients and information of the low-pass filtered subimage to achieve
robust and optimal enhancement. The spatio-frequency localization property of the wavelet transform is exploited
based on the spatial coherence of image and the principle of human psychovisual mechanism. Preliminary results
show that the proposed approach is able to adaptively enhance local edge features, suppress noise, and improve
global visualization of mammographic image features. This wavelet-based multiresolution analysis is therefore
promising for computerized mass screening of mammograms.

This multiresolution analysis scheme can be extended to feature extraction applications to extract microcalci-
fications from mammographic images. By incorporating the shape and size knowledge of the microcalcification,
we will be able to develop a robust feature extraction algorithm suitable for computerized mass screening of
mammograms as well as computer-aided-diagnosis with real time implementation potential.
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Figure 6. Experimental results, the left are original images and the right are enhanced images. (Continued . .. )
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Figure 6. Experimental results, the left are original images and the right are enhanced images.
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